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Abnormal centrosome number and function have been implicated in tumour

development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton

dynamics, is found to localize at the mitotic centrosome. However, its role

at the centrosome is not fully explored. Here, we report that LIMK1

depletion resulted in multi-polar spindles and defocusing of centrosomes,

implicating its involvement in the regulation of mitotic centrosome integrity.

LIMK1 could influence centrosome integrity by modulating centrosomal

protein localization at the spindle pole. Interestingly, dynein light intermedi-

ate chains (LICs) are able to rescue the defects observed in LIMK1-depleted

cells. We found that LICs are potential novel interacting partners and sub-

strates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic

dynein function in centrosomal protein transport, which in turn impacts

mitotic spindle pole integrity.
1. Introduction
The centrosome is the primary microtubule organizing centre (MTOC) in mam-

malian cells, and is involved in regulating cell motility, adhesion, polarity and

mitotic spindle formation. The formation of an effective bipolar mitotic spindle

is crucial to ensure faithful chromosome separation during cell division.

Abnormal centrosome structure, function and number result in improper

spindle formation, which can potentially lead to chromosome instability

and tumourigenesis [1–3].

During mitosis, the centrosomes duplicate, mature and separate from each

other to form a bipolar spindle. Centrosome maturation begins at G2/M phase

transition, where several proteins are recruited to the pericentriolar material

(PCM) to increase its capacity to organize, nucleate and anchor microtubules

during mitosis. The maturation process is regulated by multiple kinases, includ-

ing cyclin-dependent kinase 1 (CDK1), Aurora kinase A (AurkA) and Polo-like

kinase 1 (PLK1) [4,5].

Several actin-associated proteins have been shown to localize at the mitotic

spindle, suggesting their involvement in regulating spindle functions [6]. LIM

kinase 1 (LIMK1) belongs to the LIM motif containing protein kinase (LIMK)

family and regulates actin cytoskeleton dynamics through phosphorylation of

cofilin [7,8]. CDK1 is reported to phosphorylate and activate LIMK1 during

mitosis [9,10]. Phosphorylated LIMK1 then localizes at centrosomes during

the M phase [11]. Although earlier findings have identified LIMK1 in regulation

of spindle orientation and cytokinesis, the exact role of this kinase at the mitotic

centrosome has not been fully explored [12–14].
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LIMK1 and AurkA are reported to function together for

proper spindle formation [15]. RNAi-mediated depletion of

LIMK1 results in abnormal spindle morphology [15]. Interest-

ingly, AurkA is reported to be a kinase as well as a substrate

of LIMK1 [15]. LIMK1 and AurkA may form a positive feed-

back loop during mitosis for proper mitotic spindle

formation.

The primary motivation of this study is to determine the

functional links between LIMK1 and cell cycle control. Our

observations that silencing LIMK1 leads to defective spindle

organization and centrosome integrity further confirm such

links. Here, we identify dynein light intermediate chains as

the downstream mediators of LIMK1 in the maintenance of

centrosome integrity.
 l.8:170202
2. Results
2.1. Silencing LIM kinase1 leads to centrosome

defocusing and multi-polarity
As CDK1 is crucial for coordinating mitosis and can phos-

phorylate LIMK1, we hypothesized that LIMK1 might play

functional roles during M phase. We first examined the local-

ization pattern of LIMK1. LIMK1 was observed to localize

close to the centrioles from prophase to metaphase

(figure 1a). The localization is lost when the cells are treated

with LIMK1 siRNA (electronic supplementary material,

figure S1). To determine the changes in LIMK1 accumulation

at the centrosome across mitosis, the intensity of LIMK1 at

the foci was calculated (electronic supplementary material,

figure S2). LIMK1 accumulation at the centrosome was at

its maximum and reached a plateau at pro-metaphase and

metaphase (figure 1b). After metaphase, LIMK1 localization

at the centrosome gradually declined and was almost com-

pletely lost during telophase. This loss of LIMK1 from the

centrosome coincided with the appearance of the kinase at

the mid-body (figure 1a and electronic supplementary

material, figure S3).

The localization of LIMK1 suggests possible function at

the centrosome during mitosis. To investigate further, we

designed siRNAs targeting two different sequences of the

30-untranslated regions (30-UTR) of LIMK1 mRNA. Both

siRNAs significantly reduced the endogenous LIMK1 protein

level, but not that of LIMK2 (figure 1c). The LIMK1 siRNAs

also did not affect either the levels of other kinases which

are regulators of the centrosomes or the levels of PCM

materials (figure 1c). HeLa cells transfected with LIMK1 or

control siRNA were immuno-stained with anti-pericentrin

(centrosome marker) and anti-a-tubulin (mitotic spindle).

Metaphase cells were identified through the arrangement of

the chromosomes. We observed that approximately 97% of

control cells formed bipolar spindles and the centrosomes

were focused into two compact foci (figure 1d,e). By contrast,

the proportion of metaphase cells forming bipolar spindles

dropped to approximately 18.0% in LIMK1-depleted cells.

Interestingly, most of the LIMK1-depleted cells (approx.

82.0%) formed multi-polar spindles, whereas the proportion

of such cells in the control was very low (approx. 1.3%)

(figure 1d,e). Astral and kinetochore microtubules were

observed to radiate from each spindle pole, suggesting

functional centrosomes. In addition to multi-polarity, the

centrosomal material of LIMK1-depleted cells appeared to
be diffused around the spindle poles (centrosome defocus-

ing), which is consistent with our previous report [16].

Centrosome defocusing defects were quantified by measur-

ing the centrosome spread length. The mean centrosome

spread length was 2.14 mm in control cells. By contrast, the

mean centrosome spread length of LIMK1 siRNA-treated

cells (4.07 mm) was significantly longer (figure 1f ). These

studies imply that LIMK1 is important for the regulation of

centrosome integrity during mitosis and consequently for

the formation of a proper bipolar spindle.
2.2. Multi-polarity defects in LIM kinase1-depleted cells
are due to pericentriolar material fragmentation

Previous studies have shown that centriole over-duplication

and cytokinesis failure can lead to multi-polar spindle and

chromosome instability [17]. We next investigated whether

LIMK1 depletion led to cytokinesis failure or centriole over-

duplication. The process of centrosome duplication is

completed by early prophase [18]. To quantify the number

of centriole pairs, HeLa cells transfected with either control

or LIMK1 siRNA were immuno-stained with anti-g-tubulin

and anti-centrin 3 to visualize centrosome and centriole

pairs and the number of centrin 3 pairs within the centro-

somal foci per cell in early prophase cells was used for the

quantification. From our observations of cells at early

prophase, the number of centrin pairs per cell in LIMK1-

depleted cells was not significantly different from that of

control cells, suggesting that LIMK1 is not involved in

the centriole duplication process (figure 2a).

In addition to the abnormal number of centrosomes, cyto-

kinesis failure can lead to aneuploidy and multi-nucleated

cells. Cells containing an abnormal number of chromosomes

are reflected in the appearance of abnormal DNA content.

However, the DNA fluorescence-activated cell sorting (FACS)

profiles of LIMK1-depleted cells were similar to those treated

with control siRNA (figure 2b and electronic supplementary

material, figure S4b,c). In addition, LIMK1 depletion did not

result in a significant increase in the number of multi-nucleated

cells. Unlike LIMK1-knockdown cells, cells treated with cytocha-

lasin D to disrupt the actin cytoskeleton showed cytokinesis

defects and multi-nucleated cells (figure 2b). We also did not

observe obvious apoptosis in LIMK1-knockdown cells (elec-

tronic supplementary material, figure S4a). These findings

suggest that the multi-polarity observed in LIMK1-depleted

cells was not due to cytokinesis failure.

Aberrant PCM fragmentation and/or centriole splitting

have been reported to result in multi-polar spindle formation

[19]. Therefore, we decided to investigate if LIMK1 depletion

would result in PCM or centriole fragmentation in

mitosis. LIMK1 and control siRNA-treated HeLa cells were

immuno-stained with PCM protein (pericentrin) and cen-

triole (centrin 3) markers. We classified the mitotic spindle

pole morphology into four categories (figure 2c): Phenotype

1—cell forming two spindle poles and each pole containing

a pair of centrioles (normal bipolar spindle); Phenotype 2—

cell forming extra mitotic spindle poles but only two of the

spindle poles contain a pair of centrioles; Phenotype 3—cell

forming extra mitotic spindles with all the spindle poles con-

taining centrioles; and Phenotype 4—cells containing extra

mitotic spindle poles and centrioles but not all the spindle

poles contain centrioles. If the majority of mitotic cells display
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Figure 1. Silencing LIMK1 leads to multi-polar spindles. (a) HeLa cells were immuno-stained with anti-LIMK1 (red), anti-centrin 3 (green) and DAPI (blue) to
visualize the location of LIMK1 at various phases of the cell cycle. Scale bar, 10 mm. (b) The relative intensity of LIMK1 immuno-stained at different stages
of the cell cycle was quantified. The calculated intensity was normalized against the area of the selected foci and the mean LIMK1 fluorescence intensities
were plotted. For each stage of M phase, 300 cells from three independent repeats were included for the analysis. The error bars represent standard deviation.
arb. units, arbitrary units. (c) HeLa cells were transfected with two siRNAs targeting LIMK1 and a control siRNA for 48 h and synchronized with nocodazole. Protein
cell lysates collected were run on SDS-PAGE and subjected to western analysis with the respective antibodies. C, control siRNA; 1, LIMK1 siRNA1; 2, LIMK1 siRNA2.
(d ) HeLa cells were transfected with control or LIMK1 siRNA for 48 h. The cells were immuno-stained with anti-pericentrin (green) and anti-a-tubulin (red) to
visualize the centrosome and the mitotic spindle, respectively. Scale bar, 10 mm. (e) Cells were treated as described in (d ) and the numbers of metaphase cells
displaying bipolar and multi-polar spindles were counted. The mean proportion of metaphase cells displaying the respective phenotypes was calculated and plotted.
The experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation. ****p � 0.0001, Student’s t-test. ( f ) Cells were treated as
described in (d ) and the metaphase centrosome spread length was measured as described in Material and methods. The mean centrosome spread length was
calculated and plotted. Experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation. ****p � 0.0001, Student’s t-test.
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Phenotype 2, it would suggest that the multi-polar spindle is

due to PCM fragmentation. By contrast, Phenotypes 3 or 4

would suggest that multi-polar spindle formation is due to

pre-mature centriole fragmentation, leading to pre-mature
initiation of centriole duplication and formation of extra

spindle poles.

In control siRNA-treated cells, about 96.2% of metaphase

cells formed bipolar spindle (Phenotype 1) and only small
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Figure 2. The multi-polar spindle defects induced by LIMK1 knockdown are due to the fragmentation of pericentriolar material (PCM). (a) HeLa cells were trans-
fected with control and LIMK1 siRNAs. Immuno-staining was done using anti-centrin 3 (green) and anti-g-tubulin (red) to visualize the centrioles and pericentriolar
material, respectively. DAPI stains the nuclear DNA (blue). Scale bar, 10 mm. The percentages of cells with two pairs or more than two pairs of centrin were
counted. There appears to be no difference between control and LIMK1 siRNA-transfected cells. n.s., p . 0.05. (b) FACS analysis. No obvious difference was observed
between the DNA FACS profiles of LIMK1-knockdown and control. On the other hand, cells treated with cytochalasin D (control) showed extra peaks at 6N and 8N
due to cytokinesis defects. (c) HeLa cells were transfected with either control or LIMK1 siRNA for 48 h. Transfected cells were then immuno-stained with anti-centrin
3 (green) and anti-pericentrin (red) antibodies, and DAPI (blue). Representative images of each phenotype are presented. Scale bar, 10 mm. (d ) LIMK1 depletion
leads to PCM fragmentation. The mean proportion of metaphase cells displaying the different phenotypes was scored in both control and LIMK1 siRNA-treated cells.
Error bars represent the s.d. (n ¼ 300). The experiment was performed in triplicate.
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percentages of control metaphase cells displayed Phenotypes

2, 3 or 4 (figure 2c,d ). By contrast, only about 27.9% of

LIMK1-depleted mitotic cells displayed Phenotype 1

(figure 2c,d ). Consistent with earlier observations, LIMK1-

depleted cells that formed bipolar spindle displayed

centrosome defocusing defect. About 56.0% of LIMK1-

depleted mitotic cells contained extra PCM foci with only

two of them containing a pair of centriole, suggesting that

these cells display Phenotype 2 (figure 2c,d ). A very small

percentage of LIMK1 siRNA-treated cells displayed Pheno-

types 3 and 4 (7.0% and 9%, respectively) (figure 2c,d ). We

confirmed these observations using g-tubulin (another PCM

marker) and centrin 3 staining (electronic supplementary

material, figure S5).

Taken together, our data suggest that the majority of

LIMK1-depleted cells form multi-polar spindle due to PCM

fragmentation during mitosis. Although pre-mature centriole

fragmentation contributes to the formation of multi-polar spindle,

it is not the major contributing factor in LIMK1-depleted cells.

2.3. LIM kinase1 depletion results in lower
pericentriolar material protein accumulation
at spindle poles

Prolonged mitosis or metaphase–anaphase transition can

result in excessive PCM protein accumulation at spindle

poles, which can lead to cohesion fatigue, resulting in PCM

fragmentation. Live cell imaging revealed that the average

time taken for LIMK1-depleted cells to complete mitosis

did not deviate significantly from the average time taken

for the control cells (figure 3a and electronic supplementary

material, figure S6). In addition, the metaphase–anaphase

transition of LIMK1- and control-siRNAs treated cells was

not significantly different (figure 3a). Thus, LIMK1 depletion

did not affect mitotic progression.

Decreasing centrosomal accumulation of AurkA, nuclear

mitotic apparatus protein (NuMA), pericentrin, PLK1, tubulin

g complex-associated protein 2 (TubGCP2) and g-tubulin can

compromise centrosome structural integrity, leading to PCM

fragmentation. Therefore, we proceeded to measure the PCM

protein accumulation at the spindle pole. The fluorescence

intensities of the above-mentioned proteins at spindle poles

were measured to quantify their accumulation at the centro-

somes. We observed a significant decrease in the fluorescence

intensities of AurkA, NuMA, pericentrin, PLK1 and g-tubulin

at spindle poles in LIMK1-depleted cells, (figure 3b–d
and electronic supplementary material, figure S7a–d).

Immunoblotting of centrosome isolated from LIMK1-

treated cells also showed similar results (electronic

supplementary material, figure S7e). Interestingly, the

fluorescence intensity of TubGCP2 at metaphase centrosome

was not significantly reduced in LIMK1 siRNA-treated cells,

compared to the control cells (figure 3c,d ). Our analysis

suggested a role for LIMK1 in the regulation of PCM protein

centrosomal accumulation and maintenance of centrosome

structural integrity.

2.4. Active LIM kinase1 is required for the maintenance
of proper centrosome and spindle organization

Earlier studies show that LIMK1 is hyper-activated during

mitosis and its kinase activity is involved in regulating
mitosis [9,10]. These earlier findings led us to hypothesize

that the kinase activity of LIMK1 could be crucial for regula-

ting centrosome integrity. To test this hypothesis, we

generated and introduced kinase-dead LIMK1 mutant

(LIMK1-D460A) or active LIMK1 mutant (LIMK1-T508EE)

[20] into LIMK1-depleted cells (see electronic supplementary

material, figure S8a for transfection efficiency). We found that

when LIMK1-WT or LIMK1-T508EE is co-transfected with

LIMK1 siRNA, there are fewer cells with multi-polar spindles

(figure 4a,b). In addition, the centrosome spread length was

also reduced (figure 4b). Inactive LIMK1 (D460A) was not

able to rescue LIMK1-knockdown phenotypes. Expression

of LIMK1-WT or LIMK1-T508EE also restores the levels of

some centrosomal proteins (figure 4c).
2.5. LIC1 and 2 function downstream of LIM kinase1
in regulating centrosome integrity

Our earlier results suggest that LIMK1 depletion negatively

affects AurkA, g-tubulin, NuMA, pericentrin and PLK1 at

mitotic centrosome. However, accumulation of TubGCP2 at

the centrosome was not affected (figure 3d ). Interestingly,

all the centrosomal proteins, except for TubGCP2, were

reported cargoes of cytoplasmic dynein 1 [21–25]. Cyto-

plasmic dynein 1 light intermediate chain 1 (LIC1) and 2

(LIC2) are two of the multiple subunits belonging to cyto-

plasmic dynein 1 motor complex. LIC1 and LIC2 define

cargo specificity of dynein [26–29]. In addition, both LIC1

and LIC2 are reported to localize to the mitotic spindle and

regulate key M phase processes [29–31]. Therefore, we

hypothesized that LIC1/2 might function downstream of

LIMK1 to regulate the transportation of centrosomal proteins,

which in turn help to maintain the integrity of mitotic

centrosome.

We introduced LIC1 and LIC2 constructs into LIMK1

siRNA-treated cells and monitored mitotic centrosome

defects. Cells co-transfected with control siRNA and GST-

FLAG construct served as controls for comparison. We

observed that the proportion of cells displaying multi-polar

spindle decreased when LIC1 and LIC2 were introduced

into LIMK1-depleted cells (11.7% and 14.8%, respectively)

(figure 5a,b and electronic supplementary material, figure

S8b). This decrease was significant when compared to cells

co-transfected with LIMK1 siRNA and GST-FLAG (72.0%

cells show multi-polar spindle; p � 0.001) (figure 5a,b).

Besides reducing the number of cells displaying multi-polar

spindle, introduction of either LIC1 or LIC2 was able to

reduce the mean metaphase centrosome spread length

(figure 5b). These observations suggest that LIC1 and LIC2

could rescue the defects in LIMK1-depleted cells and could

potentially be novel substrates functioning downstream of

LIMK1 in regulating mitotic centrosome integrity.

Next, we investigated if LIC1 and LIC2 are able to restore

the centrosomal protein levels at the spindle poles in LIMK1-

depleted cells. We introduced either LIC1 or LIC2 into

LIMK1 siRNA-treated cells. The fluorescence intensities of

the centrosomal proteins were calculated as described in the

previous section (figure 5c (only g-tubulin staining was

shown)). Cells co-transfected with control siRNA and GST-

FLAG construct served as controls for comparison. Similar

to earlier experiments, we focused our efforts on AurkA,

g-tubulin, NuMA, pericentrin, PLK1 and TubGCP2 at the
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Figure 3. LIMK1 knockdown resulted in less protein accumulation at the centrosome. (a) The time taken for LIMK1 siRNA-transfected cells to go through M phase of
the cell cycle was monitored by live-cell imaging. No obvious differences were observed between control and LIMK1 siRNA-transfected cells. (b) HeLa cells were
transfected with control and LIMK1 siRNA. The cells were fixed and immuno-stained with anti-pericentrin (green), anti-a-tubulin (red) and for DNA (DAPI, blue).
Scale bar, 10 mm. (c) HeLa cells were transfected with control and LIMK1 siRNA. The cells were fixed and immuno-stained with anti-TubGCP2 (green), anti-a-
tubulin (red) and for DNA (DAPI, blue). Scale bar, 10 mm. (d ) HeLa cells were transfected with control and LIMK1 siRNA. The cells were fixed and immuno-stained
with the respective antibodies. The fluorescence intensities of AurkA, g-tubulin, NuMA, pericentrin, PLK1 and TubGCP2 were measured and calculated as described in
Material and methods. The calculated intensity was normalized against the area of the selected foci and plotted. Experiment was performed in triplicate; n ¼ 300.
The error bars represent standard deviation. arb. units, arbitrary units. ****p � 0.0001; **p � 0.01; n.s., p . 0.05.
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mitotic spindle poles. Our measurement showed that the flu-

orescence intensities of these proteins at spindle poles, except

for TubGCP2, were restored to levels similar to those of the

control (figure 5d ). These results suggest that both LICs

could potentially function downstream of LIMK1 in regulating

the transportation of centrosomal protein.

2.6. LIC1 and LIC2 depletion results in similar defects
as LIM kinase1 knockdown

Earlier we showed that introducing LIC1 and LIC2 into

LIMK1-depleted cells reduced metaphase centrosome
defocusing and cells forming multi-polar spindles. In

addition, we demonstrated that both LICs restored the cen-

trosomal protein levels in LIMK1-knockdown cells. These

data raised the possibility that LIC1/2 might function down-

stream of LIMK1 in regulating centrosome integrity.

Therefore, we decided to determine if silencing endogenous

LIC1 and LIC2 could lead to similar phenotypes as LIMK1

knockdown.

We knocked down LIC1 and LIC2 in HeLa cells (elec-

tronic supplementary material, figure S8c) and monitored

the resulting centrosome defects. We observed that about

only 6.0% of the control cells forms multi-polar spindles. By
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Figure 4. Active LIMK1 is required for the maintenance of proper centrosomal and spindle organization. (a) HeLa cells were transfected with the respective
combination of control siRNA with GST-FLAG, LIMK1 siRNA and various LIMK1 constructs (LIMK1-WT, wild-type LIMK1; LIMK1-D460A, inactive LIMK1; LIMK1-
T508EE, active LIMK1) for 48 h. Transfected cells were then harvested for immuno-fluorescence staining with anti-g-tubulin (green) and anti-a-tubulin
(red) antibodies to visualize mitotic centrosome and spindle, respectively. Mitotic chromosomes were stained with DAPI (blue). Scale bar, 10 mm. (b) The
percentage of metaphase cells showing multi-polar phenotype was counted. The experiment was performed in triplicate; n ¼ 300. The error bars represent
standard deviation. The mitotic centrosome spread length was measured as described in Material and methods. The mean metaphase centrosome spread
length was calculated and plotted. The experiment was performed in triplicate; n ¼ 300. For both plots, the error bars represent standard deviation.
****p � 0.0001; ***p � 0.001; n.s., p . 0.05. (c) The fluorescence intensities of AurkA, NuMA, pericentrin, PLK1, g-tubulin and TubGCP2 at the mitotic
centrosome were measured and calculated as described in Material and methods. The calculated intensity was normalized against the area of the selected
foci and plotted. Experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation. arb. units, arbitrary units. ****p � 0.0001;
***p � 0.001; n.s., p . 0.05.
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Figure 5. Introducing LIC1and LIC2 into LIMK1-depleted cells rescued the mitotic defects. (a) HeLa cells were transfected with the respective combination of siRNA
and LIC constructs for 48 h. Treated cells were then fixed for immuno-fluorescence staining with anti-pericentrin (green) and anti-a-tubulin (red) antibodies to
visualize centrosome and mitotic spindle, respectively. Mitotic chromosomes were stained with DAPI (blue). Representative images are presented. Scale bar, 10 mm.
(b) The percentage of metaphase cells showing multi-polar phenotype was counted. The experiment was performed in triplicate; n ¼ 300. The error bars represent
standard deviation. The mitotic centrosome spread length was measured as described in Material and methods. The mean metaphase centrosome spread length was
calculated and plotted. The experiment was performed in triplicate; n ¼ 300. For both plots, the error bars represent standard deviation. ****p � 0.0001; ***p �
0.001. (c) Same as in (a) except that anti-g-tubulin (green) was used to visualized the centrosomes. (d ) The fluorescence intensities of AurkA, NuMA, pericentrin,
PLK1, g-tubulin and TubGCP2 at the mitotic centrosome were measured and calculated as described in Material and methods. The calculated intensity was normal-
ized against the area of the selected foci and plotted. Experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation. arb. units,
arbitrary units. ****p � 0.0001; ***p � 0.001, **p � 0.01, *p � 0.05, n.s., p . 0.05.
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contrast, about 70.0% of LIC1 knockdown cells and 56.0%

of LIC2 knockdown cells formed multi-polar spindles

(figure 6a,b).

We next examined the mean metaphase centrosome

spread length (figure 6b). Similar to our earlier findings,

the mean metaphase centrosome spread length was about

1.9 mm for control cells. When cells were treated with either

LIC1 siRNA (5.0 mm) or LIC2 siRNA (5.8 mm), the mean

metaphase centrosome spread length was significantly

increased. These observations suggest that depleting either

one of the LICs leads to centrosome defocusing.

Lastly, we investigated if depleting LIC1 and LIC2 would

result in lower centrosomal protein accumulation at the mitotic

spindle poles. HeLa cells transfected with control, LIC1 or

LIC2 siRNA were monitored as described earlier (figure 6c).

We observed that the fluorescence intensities of AurkA,

g-tubulin, NuMA, pericentrin and PLK1 at the mitotic spindle

poles were reduced in either LIC1 or LIC2 knockdown cells

(figure 6d ). The fluorescence intensity of TubGCP2 serves as

a control, because it is not a reported cargo of cytoplasmic

dynein 1. Our observations suggest that LIC depletion has a

negative effect on centrosomal protein accumulation.

Taken together, our data show that similar to LIMK1

knockdown, depletion of either LIC1 or LIC2 results in cen-

trosome defocusing and multi-polar spindle formation.

Treating cells with either LIC1 or LIC2 siRNA also reduces

the accumulation of proteins at the mitotic centrosome.
2.7. LIC1 and LIC2 are novel interacting partners
and substrates of LIM kinase1

As LIC1 and LIC2 were able to rescue the defects observed in

LIMK1-knockdown cells, they could potentially function

downstream of LIMK1. We next performed endogenous

protein immuno-precipitation assay to determine if LIMK1

interacts with LICs. HeLa cells were first synchronized to

M phase using nocodazole, cell lysates were collected and

incubated with LIMK1-IgG antibodies for the immuno-

precipitation assay. LIMK2-IgG antibodies were included as

negative control. We found that LIC1 and LIC2 co-immuno-

precipitated with LIMK1 (figure 7a). LIMK2, a closely related

protein kinase of LIMK1, did not co-immuno-precipitate

with LIC1 or LIC2. These data suggest that LIMK1, but

not LIMK2, interacts with both LICs during M phase.

Interestingly, we also observed LIC1/2 interaction with

LIMK1 in asynchronized cells (electronic supplementary

material, figure S9a).

To narrow down the domain on LIMK1 which could

potentially interact with LICs, we generated two GST-

tagged LIMK1 constructs containing either the LIM-PDZ or

the kinase domain (figure 7c). We found that LIC1 and

LIC2 co-precipitated with LIMK1 kinase domain, but not

with LIM-PDZ (figure 7b,c). Consistently, we observed less

LIC interaction with the kinase-dead mutant LIMK1-D460A

(electronic supplementary material, figure S9b).

The LICs could be potential substrates of LIMK1 during

M phase. We proceeded to examine the phosphorylation

profiles of LIC1 and LIC2 in LIMK1 siRNA-treated cells

using Phos-tag polyacrylamide gel electrophoresis (Phos-tag

PAGE). HeLa cells were first treated with either LIMK1 or

control siRNAs and synchronized to M phase. Cell lysates

were then harvested and subjected to Phos-Tag PAGE
analysis. LIMK2 siRNAs were included as additional con-

trols. From the Phos-tag PAGE analysis, we observed that

several slower migrating LIC1 and LIC2 bands were present

in M phase, but not in interphase cell lysates (figure 8a). This

observation suggests that some residues or combination of

residues on LICs are specifically phosphorylated during

mitosis. When cells were transfected with LIMK2 siRNAs,

the mitotic phosphorylation profiles of both LICs were simi-

lar to those of cells treated with control siRNA (figure 8a). By

contrast, the mitotic phosphorylation profiles of both LICs

were altered when the cells were transfected with LIMK1

siRNA, indicating that LIMK1 depletion affects the phos-

phorylation of LIC1 and LIC2. To confirm our hypothesis

that LIMK1 is an upstream kinase of LICs, we performed

an in vitro kinase assay. Both LIC1 and LIC2 were phosphory-

lated in the presence of wild type, but not kinase-dead

LIMK1 (figure 8b). As LIMK1 is also reported to phosphory-

late tyrosine [32], we determined if any tyrosine residues in

LIC1 and LIC2 were phosphorylated by LIMK1 (electronic

supplementary material, figure S9c). Indeed, LIMK1 was

able to phosphorylate LIC1 and LIC2 at tyrosine residues.

Together with the results obtained from GST-pull-down

assay and Phos-Tag PAGE analysis, it is reasonable to speculate

that LICs are potential substrates of LIMK1.

As LICs could be potential LIMK1 substrates, we investi-

gated how LIMK1 might affect dynein motor function. We

tracked the trafficking of PLK1, which is a cargo of the

dynein motor, in cells co-transfected with GFP-PLK1 together

with vector, active or inactive LIMK1 constructs. We found

that when the kinase-dead LIMK1-D460A was overexpressed,

the speed of PLK1 trafficking was altered compared to that of

control (electronic supplementary material, figure S10),

suggesting that the activity of LIMK1 could affect dynein

motor function.
3. Discussion
Abnormal centrosome structure, function and number can

result in improper spindle formation, which could potentially

lead to chromosome instability and tumourigenesis.

Although earlier findings showed that LIMK1 regulates spin-

dle orientation and cytokinesis, the exact role of this kinase in

mitosis is not explored. Our current study suggests that

LIMK1 is important for maintaining mitotic centrosome

integrity by regulating PCM protein accumulation. Based

on our experimental findings, we proposed the following

working model: during G2/M-phase transition, LIMK1 is

phosphorylated and activated by an M-phase kinase, such

as CDK1. Activated LIMK1 then phosphorylates LICs,

which in turn regulate the interaction between dynein and

PCM proteins or the trafficking of PCM proteins, thus mod-

ulating the transportation of PCM proteins to the mitotic

spindle poles. These PCM proteins are required for the

maintenance and structural integrity of the mitotic centrosome.

As cytokinesis defect could potentially lead to abnormal

centrosome number in subsequent cell division, we initially

hypothesized that the multi-polar spindle observed in

LIMK1-depleted cells could be due to cytokinesis failure.

Surprisingly, our data did not support this. We did not

observe abnormal DNA content in LIMK1-knockdown cells

(figure 2b and electronic supplementary material, figure S4b).

In addition, LIMK1 siRNA treatment did not significantly
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Figure 6. (Caption Opposite.)
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Figure 6. (Opposite.) Knocking down LIC1 or LIC2 resulted in multi-polar spindles. (a) HeLa cells were transfected with the respective siRNAs for 48 h. Treated cells
were then processed for immuno-fluorescence staining with anti-pericentrin (green) and anti-a-tubulin (red) antibodies to visualize centrosome and mitotic spindle,
respectively. Mitotic chromosomes were stained with DAPI (blue). Representative images are presented. Scale bar, 10 mm. (b) The percentage of metaphase cells
showing multi-polar phenotype was counted. The experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation. The mitotic
centrosome spread length was measured as described in Material and methods. The mean metaphase centrosome spread length was calculated and plotted. The
experiment was performed in triplicate; n ¼ 300. For both plots, the error bars represent standard deviation. ****p � 0.0001; ***p � 0.001. (c) Same as in
(a) except that anti-g-tubulin (green) was used to visualize the centrosomes. Scale bar, 10 mm. (d ) The fluorescence intensities of AurkA, NuMA, pericentrin,
PLK1, g-tubulin and TubGCP2 at the mitotic centrosome were measured and calculated as described in Material and methods. The calculated intensity was
normalized against the area of the selected foci and plotted. Experiment was performed in triplicate; n ¼ 300. The error bars represent standard deviation.
arb. units, arbitrary units. ****p � 0.0001; ***p � 0.001, **p � 0.01, *p � 0.05, n.s., p . 0.05.
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increase the number of multi-nucleated interphase cells (elec-

tronic supplementary material, figure S4c). Collectively, these

data suggest that LIMK1 depletion does not lead to cytokin-

esis failure. It is not immediately clear why our findings

contradict earlier reports, which suggest involvement of

LIMK1 in cytokinesis. However, other studies have also

shown that transient expression of LIMK1 prolongs mitosis

timing, but cells exit mitosis without cytokinesis defects

[33]. The observations that cells with LIMK1 knockdown

are capable of completing cytokinesis might be due to poss-

ible redundant function of LIMK2 as LIMK2 is localized to

the midzone microtubules during anaphase to telophase

[34]. It is also possible that the activity of LIMK1 is not

required for cytokinesis as LIMK1 is hyperphosphorylated

at the onset of M phase and gradually becomes inactivated

during telophase and cytokinesis [9,10]. Although we

observe multi-polar spindles in LIMK1-knockdown cells,

these extra spindle poles may eventually coalescence/cluster

to become bipolar spindles before anaphase onset especially

in cancer cells [35]. We also reported more cells exhibiting a

multi-polar spindle in LIMK1-knockdown situations than

LIMK2-knockdown situations [16]. In addition, our Phos-

tag SDS-PAGE analysis demonstrated that depletion of

LIMK1, but not of LIMK2, affected the phosphorylation of

LICs (figure 8), suggesting specific functions and requirement

for LIMK1.

It has been proposed that prolonging metaphase–

anaphase transition leads to excessive accumulation of

centrosomal protein at the spindle poles, which results in

unstable spindle poles. This instability, in turn, leads to cen-

trosome fragmentation and multi-polarity [36]. Although we

observed multi-polar spindles in LIMK1-depleted cells, our

data do not support this hypothesis. Instead, we found

that there were lower amounts of centrosomal proteins at

the spindle poles (figure 3d ).

PLK1 phosphorylates and recruits centrosomal protein

Kizuna (Kiz) to the centrosome [37]. Kiz then acts as a ‘link-

ing bridge’ to bind other PCM proteins, thus preventing

mitotic spindle pole fragmentation. NuMA has also been

shown to be important for maintaining the bipolar status of

the mitotic spindle [38]. Immuno-depletion of NuMA from

Xenopus egg extracts disrupts microtubule anchorage to the

spindle pole and prevents the formation of a focused spindle

pole [23]. The reduced accumulation of NuMA and PLK1

could potentially explain the defocused centrosomes and

multi-polar spindles observed in LIMK1-knockdown cells.

In this study, we found that LIMK1 interacts with

LIC1/2. However, we cannot conclude that LIMK1–LIC

interaction is dependent on microtubules. This is because we

synchronized the cells at M phase using 50 nM nocodazole.
It has been reported that nanomolar concentrations of noco-

dazole can block cells in mitosis without disassembling the

microtubule network but by reducing the microtubule

dynamics instead [39,40]. At this concentration, nocodazole

treatment leads to improper spindle structure and DNA

alignment due to reduction in microtubule growth and

shortening velocities instead of depolymerizing the existing

microtubule network.

Dynein and its adaptors and binding proteins play impor-

tant roles in different stages of the cell cycle [41]. In addition,

depletion of LICs has been implicated in centriole cohesion

and multi-spindle formation [42]. As phosphorylation of

dynein motor subunits has been shown to regulate cargo–

motor interactions and trafficking [43,44], we speculate that

LIMK1-mediated phosphorylation of LIC1 and LIC2 could

affect loading or unloading of the PCM protein cargoes. In

addition, LIMK1-mediated phosphorylation of LIC1 and

LIC2 might affect the trafficking of PCM proteins as

suggested by our data (electronic supplementary material,

figure S10). Interestingly, overexpression of LIC1/2 could

rescue the phenotypes elicited by silencing LIMK1. One poss-

ible explanation is that under the situation of overexpression,

other kinases might be able to phosphorylate the abundant

LICs. Cdc2 kinase has been reported to phosphorylate

LIC and regulate dynein transport [43]. Alternatively, the

residual amount of the remaining LIMK1 is capable of

phosphorylating a portion of the overexpressed LICs. It

appears that LIMK1-mediated phosphorylation, together

with other post-translational modifications, could enhance

the accumulation of PCM proteins onto the mitotic centro-

some during centrosome maturation. In conclusion, our

current work demonstrated a new role for LIMK1 in main-

taining centrosomal integrity and the bipolar spindle.

Active LIMK1 is required for regulating dynein function

through phosphorylation of LICs.
4. Material and methods
4.1. Cell culture, drug treatment and transfections
HeLa cells were cultured in minimum essential medium

(Sigma Aldrich) supplemented with 10% fetal bovine

serum, 2.2 g l21 sodium bicarbonate and 2 mM L-glutamine.

The cells were maintained in a humidified incubator at 378C
in 5% CO2. Cells were synchronized to G2/M phase of the

cell cycle by treating with 50 ng ml21 nocodazole (Sigma

Aldrich) for 16 h. Cells were subjected to cytochalasin D

(0.5 mg ml21) for 16 h to disrupt the actin cytoskeleton.
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Figure 7. LIC1 and LIC2 interact with LIMK1. (a) HeLa cells were first synchronized to M phase by treating the cells with nocodazole for 16 h. After synchronization,
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All transfections were performed using Lipofectamine

2000 according to the manufacturer’s protocol. For all

transfections, cells were seeded onto 35-mm dishes 24 h

prior to transfection. For siRNA transfection, 150 pmol of

Stealth siRNA (Invitrogen) was mixed with 3 ml Lipofecta-

mine 2000 (Invitrogen) and incubated at room temperature

for 20 min. The siRNA/Lipofectamine mixture was then

added to and incubated with the cells for 48 h. For

plasmid transfection, 1 mg of plasmid was mixed with 3 ml

Lipofectamine-2000 and incubated at room temperature

for 20 min. If two or more plasmid constructs were trans-

fected into cells, the amounts of plasmids were adjusted

such that the total amount of plasmids transfected would

be 1 mg. The DNA/Lipofectamine mixture was then

added to and incubated with the cells for 24 or 48 h as

described. For rescue experiments, cells were first trans-

fected with siRNA for 24 h and subsequently transfected
with respective plasmid constructs. Twenty-four hours

after plasmid transfection, cells were processed for

subsequent experiments.

4.2. Antibodies and siRNA
Antibodies used in this project include antibodies against

pericentrin (Abcam), LIMK1 (Cell Signaling), LIMK2

(Cell Signaling), AurkA (Abcam), centrin 3 (Santa Cruz

Biotechnology), LIC1 (Abcam), LIC2 (Abcam), PLK1 (Abcam),

a-tubulin (Sigma Aldrich), g-tubulin (Sigma Aldrich),

TubGCP2 (Sigma Aldrich) and NuMa (Cell Signaling).

siRNA sequences are as follows.

LIC1 sense: AGUGCUUCUUCAGAUGGACUAAAUU;

LIC2 sense: CACUUUCUAACAGGGUGGAGCAAAU;

LIMK1siRNA1 sense: CCUCUUGCUUCUCCUUGCAUGA

GCU;
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LIMK1 siRNA2 sense: CAACAGGUAUCGAGGACUCUC

CAAA;

Luciferase sense: ACAUCACGUACGCGGAAUACUUCGA.

Cells were incubated with 150 pmol of stealth siRNA

(Invitrogen)/Lipofectamine 2000 (Invitrogen) mixture for

48 h, according to the manufacturer’s protocol.
4.3. Immuno-fluorescence microscopy

Cells were fixed and permeabilized in methanol at 2208C for

5 min, rehydrated with 1� PBS for 30 min and blocked with

4% bovine serum albumin (BSA) for 1 h. Cells were then incu-

bated with the respective primary antibodies, washed with
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0.1% Triton X/1� PBS, incubated with the appropriate sec-

ondary antibodies, and washed again with 0.1% Triton X/

1� PBS. Immuno-stained samples were then counter-stained

with DAPI contained in a mounting medium (Vectashield).

All primary and secondary antibodies were diluted in 0.2%

Triton X/1� PBS at a ratio of 1 : 500 and 1 : 1000, respectively.

All immuno-stained samples were examined using the Axio

Observer D1 microscope (Zeiss) equipped with either an

EC Plan-Neofluar 40�/1.30 or a Plan-Apochromat 63�/

1.40 oil immersion objective lens (Zeiss). AXIOVISION software

was used to capture images using a CoolSNAP HQ2 camera.

Images were then analysed and processed using IMAGEJ

software.

4.4. Time-lapse imaging
HeLa cells were transfected with GFP-H2B to visualize

chromosomes and chromatin at different stages of the cell

cycle. Time-lapse fluorescent microscopic analysis was per-

formed on an Axio Observer D1 microscope (Zeiss)

equipped with a Plan-Apochromat 63�/1.4 oil immersion

objective lens (Zeiss), a sample heater (378C) and a CO2

incubation chamber. Images of the cell were captured with

a CoolSNAP HQ2 camera every 5 min controlled by

AXIOVISION software through the whole mitotic phase.

4.5. Centrosome defocusing and centrosomal protein
fluorescence intensity quantification

To quantify centrosome defocusing, the centrosome spread

length was measured. HeLa cells were immuno-stained

with anti-pericentrin antibodies to visualize the centrosome.

Metaphase cells were selected for z-stack (0.5 mm intervals)

microscopy to visualize all spindle poles in a cell. A line, par-

allel to the metaphase plate, was drawn on the pericentrin

foci and the length of the line represented the centrosome

spread length.

For centrosomal protein foci intensity quantifications,

fixed cells were immuno-stained with the respective anti-

bodies. Metaphase cells were imaged at fixed microscope

camera exposure settings. The centrosomal protein foci

were outlined and background-corrected integrated fluor-

escence intensity was calculated for all individual

centrosomal protein foci. The calculated intensity was then

normalized against the area of the centrosomal protein foci

(electronic supplementary material, figure S2).

4.6. Western analyses
Cells were lysed in mammalian cell lysis buffer (25 mM

Hepes, pH 7.5, 0.25 M NaCl, 1 mM MgCl2, 1 mM EGTA,

20 mM p-glycerol phosphate, 1 mM sodium vanadate,

10 mM NaF, 5% glycerol, 0.5% Triton X-100, 5 mM DTT,

10 mg ml21 DNase I, 1� protease inhibitor cocktail (Roche),

1� phosphatase inhibitor cocktail (Roche)). Cell lysates

were separated by SDS-PAGE using 10% or 8% polyacrylamide

gels and transferred onto nitrocellulose or PVDF membranes.

For Phos-tag SDS-PAGE, Mn2þ-based Phos-tag SDS-PAGE

resolving and stacking gels containing 20 mM Phos-tag and

0.1 mM MnCl2 were prepared according to the manufac-

turer’s protocol (Wako Pure Chemical, Osaka, Japan). The

membranes were blocked with 5% BSA and probed with
one of the following antibodies: mouse monoclonal

anti-actin (1 : 5000; Chemicon International), rabbit poly-

clonal anti-AurkA (1 : 1000; Abcam), mouse monoclonal

anti-GAPDH (1 : 5000; Ambion), rabbit polyclonal anti-

LIMK1 (1 : 1000; Cell Signaling Technology), rabbit

polyclonal anti-LIMK2 (1 : 1000; Cell Signaling Technology),

rabbit polyclonal anti-NuMA (1 : 1000; Cell Signaling Tech-

nology), rabbit polyclonal anti-pericentrin (1 : 2000; Abcam),

rabbit monoclonal anti-PLK1 (1 : 1000; Abcam), rabbit polyclo-

nal anti-TubGCP2 (1 : 1000; Sigma Aldrich), mouse monoclonal

anti-a-tubulin (1 : 5000; Sigma Aldrich) and rabbit polyclonal

anti-g-tubulin (1 : 1000; Sigma Aldrich); horseradish peroxi-

dase-conjugated anti-mouse (1 : 5000) or anti-rabbit (1 : 5000)

antibodies (Dako Cytomation). ECL Plus Chemiluminescent

Detection Kit (Amersham) was used for detection.

4.7. GST pull-down and immuno-precipitation
HEK 293 cells were transfected with GST-tagged constructs

for 24 h. Cell lysates were harvested. Thirty micrograms of

total lysates was kept to determine the expression of the

respective constructs (input) and the remaining lysate was

incubated with 50 ml of Glutathione Sepharosew 4B slurry

beads (Amersham Biosciences). Beads were washed thrice

with mammalian cell lysis buffer. Bound proteins were recov-

ered from beads by adding 50 ml of 2� SDS sample buffer

and analysed by western blotting.

For immuno-precipitation assay, HeLa cells were lysed

with mammalian cell lysis buffer and 30 mg of total lysates

was kept to determine the endogenous protein levels

(input). The remaining cell lysates were pre-cleared with irre-

levant antibody slurry beads and incubated with antibodies

to proteins of interest or control antibodies, which were

immobilized on magnetic Protein A slurry beads (Merck

Millipore). Beads were washed four times with mammalian

cell lysis buffer. Bound proteins were recovered from beads

by adding 2� SDS sample buffer. The supernatants recovered

were analysed by western blotting.

4.8. Centrosome isolation
HeLa cells were synchronized with 0.2 mM nocodazole for

1 h at 378C. Cells were sequentially washed with 1� TBS,

0.1� TBS and 8% sucrose (w/v) in 0.1� TBS, and later

lysed in lysis buffer containing 0.1� TBS and 8% sucrose

and left to stand for 10 min at 48C. Crude centrosomes

were isolated by 60% sucrose centrifugation at 25 000g for

15 min at 48C. The crude centrosomal fraction (bottom 20%)

was collected and subjected to a second round of sucrose

step gradient (70% : 50% : 40%) centrifugation at 120 000g
for 1 h, at 48C. Separate fractions containing 0.5 ml were

collected and analysed by SDS-PAGE.

4.9. In vitro kinase assay
The substrates were purified as GST-fusion proteins from

Escherichia coli. The kinases were recovered using glutathione

sepharose beads from COS-7 cells transfected with constructs

encoding different mutants of GST-LIMK1. The in vitro
kinase assay was performed by incubating different combi-

nations of substrate and kinase in kinase buffer containing

50 mM Hepes, pH 7.5, 25 mM b-glycerol phosphate, 5 mM

MgCl2, 5 mM MnCl2, 1 mM Na3VO4 and 500 mM ATP at
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308C for 45 min. The reaction mix was then assayed by SDS-

PAGE and western blot analysis.
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