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Abstract
Since the publication of the DRiP (defective ribosomal product) hypothesis in 1996, numerous studies have addressed the

contribution of DRiPs to generating viral antigenic peptides for CD8? T cell immunosurveillance. Here, we review studies

characterizing the generation of antigenic peptides from influenza A virus encoded DRiPs, discuss the many remaining

mysteries regarding the nature of their co-translational generation, and speculate on where the future might lead.
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Introduction

Influenza A virus (IAV), a negative-sense, single-stranded,

segmented RNA virus, causes significant worldwide mor-

bidity, mortality and economic burden due to its evasion of

adaptive immunity, despite repeated infection and vacci-

nation. CD8? T cell immunosurveillance of MHC

class I-peptide complexes, a crucial part of the adaptive

immune system, recognizes peptides encoded by each of

the eight IAV gene segments, limits viral replication and

reduces morbidity and mortality in hosts whose antibody

responses fail to prevent infection (McMichael et al. 1983;

Kim et al. 2011). Vaccines that induce and boost CD8? T

cells are promising candidates for improving the duration

of effective immunity to IAV (Souquette and Thomas

2018), since many of the immunogenic IAV peptides are

highly conserved among human IAV isolates.

By binding and presenting oligopeptides at the cell

surface, MHC class I molecules provide a window into the

translational status of cells. This enables CD8? T cell

recognition of viruses and other intracellular pathogens,

cancers, transplants and autoimmune targets. MHC class I

molecules also function in other biological processes,

including neutral killer cell activation, mate selection, and

neuronal development (McAllister 2014; Apanius et al.

2017).

Viruses have played a central role in understanding the

MHC class I biology, starting from the discovery of MHC

restriction, which provided the first clear evolutionary

justification for a system discovered based on its prominent

role in graft rejection (Zinkernagel and Doherty 1974).

CD8? T cells play an important role in the clearance of

many viruses. The sheer number and variety of viral pro-

teins known to interfere with various steps of the class I

pathway underscores the importance of antigen presenta-

tion in viral immunity and viral evolution (Schuren et al.

2016).

MHC class I antigenic peptides encoded by host or viral

genes have two potential sources: ‘‘retirees’’ (Yewdell

2001, 2003) and DRiPs (defective ribosomal products)

(Yewdell et al. 1996). Retirees are proteins that reach

stable structures and degrade with normal turnover kinet-

ics, i.e. a median half-life of 46 h across the entire pro-

teome (Schwanhäusser et al. 2011). DRiPs, a substantial

subset of nascent gene products that degrade more rapidly

than their corresponding native retiree pools (Wheatley

et al. 1980; Schubert et al. 2000; Wang et al. 2013), were

originally proposed to explain the rapidity of CD8? T cell

recognition of virus infected cells. Viral peptide ligands

can be generated well within an hour after viruses are

added to cells (Esquivel et al. 1992; Croft et al. 2013;

Zanker et al. 2013).

DRiPs were originally conceived as misfolded or pre-

maturely terminated proteins arising as inevitable errors in

protein biogenesis and errors deliberated enhanced by

& Jonathan W. Yewdell

jyewdell@nih.gov

1 Cellular Biology Section, Laboratory of Viral Diseases,

National Institute of Allergy and Infectious Diseases,

National Institutes of Health, Bethesda, MD 20892, USA

123

Virologica Sinica (2019) 34:162–167 www.virosin.org
https://doi.org/10.1007/s12250-018-0061-y www.springer.com/12250(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2123-6189
http://crossmark.crossref.org/dialog/?doi=10.1007/s12250-018-0061-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12250-018-0061-y&amp;domain=pdf
https://doi.org/10.1007/s12250-018-0061-y
www.springer.com/12264


innate cellular responses to infection (Yewdell et al. 1996).

The DRiP hypothesis has evolved over the years (Yewdell

2003, 2011; Yewdell and Nicchitta 2006; Anton and

Yewdell 2014) to encompass all possible errors that can

occur in converting genetic information into mature pro-

teins, including stoichiometric excess subunits of multi-

protein complexes (Bourdetsky et al. 2014), and products

of non-canonical translation and mistranslation. Impor-

tantly, numerous studies support that immunological rele-

vant viral peptides predominately originate from DRiPs,

including products from downstream initiation on AUG

codons (Berglund et al. 2007), frame shifting (Fetten et al.

1991; Bullock and Eisenlohr 1996; Elliott et al. 1996; Zook

et al. 2006), initiation on non-AUG start codons (Yang

et al. 2016), stop codon read through, and translation of

viral RNA in the nucleus (Dolan et al. 2010a).

Flu DRiPs

The first studies demonstrating that peptides can efficiently

arise from rapidly degraded defective proteins came from

Alain Townsend’s pioneering research showing that CD8?

T cells lyse cells expressing rapidly degraded versions of

truncated influenza proteins expressed from transgenes

(Townsend et al. 1985, 1986). These findings were exten-

ded by Fetten et al. (1991) who found that presentation of a

NP peptide to CD8? T cells continued apace after intro-

duction of an upstream frameshift that completely abro-

gated detection of full length NP encoded by a retrovirus

transduced gene. These findings were extended to mutated

IAV proteins expressed by recombinant vaccinia viruses

(Bullock and Eisenlohr 1996; Elliott et al. 1996), which

became a workhorse for mechanistic antigen processing

studies due to the relative ease of generating recombinant

viruses that could be used to infect many cells lines in vitro

as well as animals in vivo.

With time, it became possible to use IAV itself to study

the effects of genetic alterations on class I peptide gener-

ation (Webby et al. 2003). This was an essential step to

understanding IAV peptide generation, since the rules of

generating peptides are likely to vary depending on the

exact nature of how the protein is synthesized, which varies

considerably among different virus familes. For example,

we found that the same protein encoded by a vaccinia virus

generated mRNA vs. a host cell transgene encoded-mRNA

generates peptide with different efficiencies per retiree

molecule degraded (Dolan et al. 2012). Still, the small

coding capacity of IAV sets a fairly tight limit on adding

genetic information and the need for the virus to replicate

limits genetic manipulation of essential genes.

The engineering of the model H2-Kb binding 8-mer

SIINFEKL peptide into IAV (Jenkins et al. 2006), in

combination with Kb-SIIINFEKL detection reagents B3Z

hybridoma cells (Karttunen et al. 1992), OT-I TCR trans-

genic mice (Clarke et al. 2000), and the 25-D1.16 mono-

clonal antibody (Porgador et al. 1997), provides an

invaluable system for sensitively and quantitatively

studying peptide generation in vitro and in mice. To study

natural IAV DRiPs, Dolan et al. genetically inserted

SIINFEKL into the stalk of IAV neuraminidase (NA-

SIINFEKL) and monitored Kb-SIINFEKL presentation on

cell surface after IAV infection (Dolan et al. 2010b). As far

as known, the only function of the NA stalk is to set the

height of NA globular domain, and stalk length varies

widely among various circulating NA genes in the animal

reservoir. Indeed, SIINFEKL insertion did not change NA

translation, folding, degradation, transport, or surface

expression. Kinetic analysis using 25-D1.16 for flow

cytometric determination of Kb-SIINFEKL cell surface

generation revealed that Kb-SIINFEKL is generated in

lockstep with initiation and abrogation of NA synthesis in

both L-Kb fibroblast cells and DC2.4 dendritic/monocyte

cells, supporting the importance of natural viral DRiPs

during infection.

Dolan et al. (2010a) reported an intriguing disconnect

between standard NA-SIINFEKL translation and Kb-

SIINFEKL generation. Unlike most RNA viruses, IAV

(and other myxoviruses) express their mRNA in the

nucleus, where the mRNAs steal caps from cellular mRNA

to enable their export from the nucleus and translation.

RNA polymerase (RNAP) II inhibitors,

5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB)

and actinomycin D, prevent nuclear of export some IAV

mRNAs (Amorim et al. 2007), including NA, as Dolan

et al. reported. Remarkably, a 33-fold reduction of NA

expression in DRB treated cells was accompanied by only

a 5-fold decrease in Kb-SIINFEKL cell surface expression.

This is consistent with the idea that translation of NA-

SIINFEKL RNA in the nucleus accounts for a fraction of

antigenic peptide generation from NA.

Nuclear translation is a highly contentious topic (Dahl-

berg et al. 2003; Iborra et al. 2004; David et al. 2012; Reid

and Nicchitta 2012; Al-Jubran et al. 2013), and its resur-

rection stirred the hornet’s nest (Dahlberg and Lund 2012).

Its possible contribution to immunosurveillance was further

supported by studies showing that OT-I T cells equally

recognize cells expressing SIINFEKL from introns vs.

exons in transfected genes (Apcher et al. 2013).

Kb-SIINFEKL generation from both exons and intronic

SIINFEKL was unaffected by blocking mRNA export from

the nucleus, suggesting nuclear translation of prespliced

RNA as a surprising source for peptide generation.

Over several decades the Shastri lab pioneered studies

demonstrating the usage of non-canonical translation start

sites for MHC class I peptide immunosurveillance. With
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the Pan lab, they discovered that antigenic peptides can be

initiated from CUG with an elongator leucine-tRNA rather

than the canonical AUG start codon with Met-tRNA

(Starck et al. 2012). This translation is based on initiation

factor eIF2 rather than canonical eIF2A initiation (Starck

et al. 2016). Yang et al. (2016) extended these findings to

IAV immunosurveillance by studying the generation of Kb-

SIINFEKL complexes from the IAV M2 gene with SIIN-

FEKL at its C-terminus. IAV exploits its nuclear tran-

scription to create a number of spliced mRNAs. Gene

segment seven encodes two proteins: M1 is translated from

unspliced mRNA while all but the 9-N-terminal residues in

M2 encoded by the M1 ?1 reading frame from a spliced

mRNA. Yang found that while the mRNA splicing inhi-

bitor spliceostatin A nearly completely inhibited M2

mRNA generation and protein synthesis, Kb-SIINFEKL

complexes were still robustly generated. The use of CUG

codons in unspliced M1 mRNA as initiation codons was

supported by three lines of evidence. First, Kb-SIINFEKL

was generated in vitro and in vivo from mRNA synthesized

in the cytoplasm by vaccinia virus, whose mRNAs are not

known to be subject to splicing, which is thought to only

occur in the nucleus. Second, drugs that block AUG initi-

ation did not reduce the level of Kb-SIINFEKL complexes.

Third, and most conclusively, synonymous mutation of

CUG codons severely reduced Kb-SIINFEKL generation.

Thus, Yang et al. defined an IAV DRiP generated by

cytoplasmic noncanonical translation, and demonstrates the

participation of CUG-codon–based translation initiation in

pathogen immunosurveillance.

Even more remarkably, although the negative stranded

genomic RNA of IAV is nearly ‘‘non-coding’’ by defini-

tion, Hickman et al. (2018) found that Kb-SIINFEKL

complexes can be generated from two different negative

strand gene segments. A long open reading frame that is

highly conserved among human and animal IAVs is present

in the genomic strand of segment eight, encoding a

potential *167 residue protein termed NEG8 (Zhirnov

et al. 2007; Clifford et al. 2009). Despite a lack of bio-

chemical evidence of NEG8 protein expression,

Kb-SIINFEKL complexes are generated when SIINFEKL

is appended to the predicated COOH-terminus of NEG8,

since infection with the recombinant virus activates OT-I T

cells in vitro and in vivo. SIINFEKL embedded in the

negative strand of the NA-stalk coding sequence also

activates OT-I T cells in vivo, albeit weakly. These findings

demonstrate translation of the IAV negative strand can also

contribute to DRiPs generation and anti-viral immuno-

surveillance. The fascinating questions of where in the cell

(nucleus vs. cytoplasm) and how the IAV negative stand is

translated remain to be investigated.

IAV DRiPomics

A central aspect of the DRiPs theory holds that DRiPs are

an inevitable result of protein translation. Although the

biochemical nature of DRiPs generated from viral proteins

remains a work very much in progress, mass spectrometry-

based studies that correlate viral protein synthesis with

peptide generation provide definitive evidence for DRiPs

as a major source of viral peptides. In a groundbreaking

study, Croft et al. (2013) used a novel approach, liquid

chromatography coupled with a targeted variation of mass

spectrometry termed multiple reaction monitoring, to

quantify eight vaccinia virus immunogenic peptides and

their source proteins at multiple time points after infecting

cultured cells. This revealed a tight correlation between the

onset of protein expression and peptide presentation, pro-

viding the strongest biochemical evidence to date for the

central contribution of DRiPs to presentation of viral

peptides during acute cell infection.

Wu extended this approach to IAV (2017), identifying

22 IAV-derived class I bound peptides including eight

previously unknown peptides. Peptides bound by surface

MHC-I on IAV infected DC2.4 cells were then quantified

across a time course of infection with the abundance of

viral source proteins measured simultaneously. Impor-

tantly, nearly all of the viral peptides were detected prior to

or simultaneously with their source proteins, clearly

demonstrating the general relevance of DRiPs to IAV

immunosurveillance.

Future Directions

The next step in defining the contribution of DRiPs to viral

immunosurveillance is to use ribosome profiling (Ribo-

Seq) to identify all possible translation events. In RiboSeq,

RNase resistant ribosome protected fragments are deep

sequenced in conjunction with the use of translation inhi-

bitors to enable identification of initiation, stalling, and

termination events (Ingolia et al. 2011, 2014). The fre-

quency of translation is inferred by read numbers of

translated sequences. Despite the power and progressive

optimization of RiboSeq (McGlincy and Ingolia 2017), the

method is challenging both technically and informatically.

While information from RiboSeq will be essential in

unraveling the mysteries in DRiP generation and will likely

identify additional immunogenic IAV peptides, other

approaches will also be important. The efficiency of gen-

erating class I binding peptides from DRiPs can differ

several fold from highly similar virus-encoded substrates,

pointing to important differences in exactly how proteins

are delivered to proteasomes for degradation (Princiotta

164 Virologica Sinica

123



et al. 2003). Further, intracellular peptide competition

studies showed that while preprocessed peptides competed

for class I presentation as expected from the law of mass

action, they are unable to inhibit presentation by peptides

liberated from DRiPs (Lev et al. 2010), consistent with the

idea of compartmentalized translation, degradation, and

delivery of peptides to the TAP. Further, the burgeoning

heterogeneity in ribosome structures (Slavov et al. 2015;

Shi et al. 2017; Genuth and Barna 2018), ribosomes

themselves are likely to have modifications that modulate

their ability to generate antigenic peptides (Yewdell and

Nicchitta 2006; Wei and Yewdell 2018).

Adding to the complexity and interest, a recent report

concludes that 30% of class I peptides are generated by

peptide splicing (Liepe et al. 2016), presumably via the

proteasome (Hanada et al. 2004; Vigneron et al. 2004;

Warren et al. 2006). As proteasome-mediated splicing is an

uncommon, though potentially efficient event using puri-

fied proteasomes (Berkers et al. 2015), this points to the

possibility of special treatment of spliced peptides by the

class I pathway. It will certainly be of great interest to

explore the contribution of peptide splicing to viral

immunosurveillance.

Finally, it is highly likely that tissue and cell type

specific viral epitopes exist and are exploited by the

immune system. In vivo studies that combine RiboSeq and

mass spec of MHC-I peptides, although technically chal-

lenging given the large amount of starting material needed,

are absolutely needed to validate and extend findings with

cultured cells.

Working Together to Improve Global Health

This review was written to commemorate the highly suc-

cessful visit of NIH virologists in March 2018 to Wuhan

and Beijing to meet Chinese virologists and share their

expertise and knowledge. Among all pathogens, viruses

pose the greatest risk to humanity due to their ubiquity and

ability to rapidly mutate. Viruses do not respect political

boundaries between countries. With the ever expanding

human population, increased travel of individuals between

once isolated locales, and man-made rapid changes in cli-

mate that alter local ecologies, the risk for catastrophic

viral pandemics constantly increases. Increased communi-

cation between virologists, including organized mecha-

nisms for sharing data, reagents and people, will be

essential to minimize the impact of viruses on human

health.

On a personal note, one of the joys as a senior scientist

(JWY), is to work with talented and enthusiastic young

scientists from around the globe. In the course of my career

at NIH, I have had the great pleasure of working with seven

post-docs from China, all of whom made important dis-

coveries in my laboratory. I thank the people of China for

raising and training such outstanding people, and to urge

that the scientific ties between our countries, and all

countries, continue to increase.

The fate of the world depends on it!
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