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Abstract
The objectives of this study were to develop an efficient algorithm for calculating prediction error variances (PEVs) for genomic best linear unbiased 
prediction (GBLUP) models using the Algorithm for Proven and Young (APY), extend it to single-step GBLUP (ssGBLUP), and apply this algorithm 
for approximating the theoretical reliabilities for single- and multiple-trait models in ssGBLUP. The PEV with APY was calculated by block sparse in-
version, efficiently exploiting the sparse structure of the inverse of the genomic relationship matrix with APY. Single-step GBLUP reliabilities were 
approximated by combining reliabilities with and without genomic information in terms of effective record contributions. Multi-trait reliabilities 
relied on single-trait results adjusted using the genetic and residual covariance matrices among traits. Tests involved two datasets provided by  
the American Angus Association. A small dataset (Data1) was used for comparing the approximated reliabilities with the reliabilities obtained by the 
inversion of the left-hand side of the mixed model equations. A large dataset (Data2) was used for evaluating the computational performance of the 
algorithm. Analyses with both datasets used single-trait and three-trait models. The number of animals in the pedigree ranged from 167,951 in Data1 
to 10,213,401 in Data2, with 50,000 and 20,000 genotyped animals for single-trait and multiple-trait analysis, respectively, in Data1 and 335,325 in 
Data2. Correlations between estimated and exact reliabilities obtained by inversion ranged from 0.97 to 0.99, whereas the intercept and slope of 
the regression of the exact on the approximated reliabilities ranged from 0.00 to 0.04 and from 0.93 to 1.05, respectively. For the three-trait model 
with the largest dataset (Data2), the elapsed time for the reliability estimation was 11 min. The computational complexity of the proposed algorithm 
increased linearly with the number of genotyped animals and with the number of traits in the model. This algorithm can efficiently approximate the 
theoretical reliability of genomic estimated breeding values in ssGBLUP with APY for large numbers of genotyped animals at a low cost.

Lay Summary
The estimated breeding value (EBV) of an animal measures its genetic merit. For calculating EBVs, pedigree and genomic information are jointly 
used in a procedure called single-step genomic best linear unbiased prediction (ssGBLUP). Genetic evaluations report each EBV with its reli-
ability, which measures how accurate the breeding value estimation was. Calculating EBV with ssGBLUP for large datasets is computationally 
expensive; Therefore, the Algorithm for Proven and Young (APY) was developed to reduce its computational cost. However, the procedure for 
obtaining the reliabilities of EBV is still computationally unfeasible to apply. Thus, this study aimed to develop a new method for approximating 
reliabilities for ssGBLUP with APY for large datasets. We required this new method to be accurate and with fewer computational requirements 
than the estimation of breeding values by itself. The method that we develop consists of accumulating pedigree and genomic information in 
successive steps, allowing for computational efficiency. Using a dataset with more than 300,000 genotypes in a pedigree of 10,000,000 animals 
provided by the American Angus Association, we showed that our proposed method is accurate and computationally efficient, with a correlation 
of 0.98 between the approximated and target values running in less than 12 min.
Key words:  accuracy approximation, BIF accuracy, genomic evaluation, prediction error variance, large-scale evaluation
Abbreviations: APY, Algorithm for Proven and Young; BW, birth weight; EBV, estimated breeding value; ERC, effective records contribution; GBLUP, genomic 
best linear unbiased predictor; MME, mixed model equation; PEV, prediction error variance; PWG, postweaning gain; SNP, single-nucleotide polymorphism; 
SNP-BLUP, single-nucleotide polymorphism best linear unbiased predictor; ssGBLUP, single-step GBLUP; WW, weaning weight

Introduction
Reliabilities obtained from the inverse of the mixed model 
equations (MMEs) are used for measuring the variation in 
the estimated breeding values (EBVs) from genetic evalu-
ations; therefore, their calculation is necessary. Under the cor-
rect model specification, the reliabilities can be calculated as 
a function of the prediction error variances (PEVs), which are 
obtained from the diagonal of the inverse of the coefficient 
matrix of the MMEs (Henderson, 1984). The direct calcula-
tion of PEVs is computationally demanding because its cost 
increases cubically with the number of equations. Before the 

genomic era, several algorithms were developed for approxi-
mating PEVs (e.g., Misztal and Wiggans, 1988; Meyer, 1989; 
Tier et al., 1991) or their functions (e.g., Harris and Johnson, 
1998; Tier and Meyer, 2004; Liu et  al., 2004) by exploit-
ing the sparse structure of the animal model (Quaas, 1976). 
However, with the use of dense panels of single-nucleotide 
polymorphism (SNP) for genetic evaluations, such a structure 
was lost, and the existing algorithms were not useful.

For situations where all the animals are genotyped, the ex-
isting methods for estimating reliabilities rely on the equiva-
lence between breeding value (GBLUP) and marker effect 
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models (SNP-BLUP; Liu et al., 2014). The reason for this is 
that for the latter, the dimension of the coefficient matrix of 
the MMEs remains constant with the number of genotyped 
animals. However, this advantage is lost when a residual poly-
genic effect is added to the model (Liu et al., 2014). Therefore, 
different strategies such as reducing the number of SNP, ex-
tracting a subset of reference animals (Sargolzaei et al., 2014), 
or using Monte Carlo sampling (Ben Zaabza et  al., 2020) 
were developed for reducing the computational burden of ap-
proximating genomic reliabilities. It is worth noting that all 
of these methods have a computational cost that increases cu-
bically with the number of traits and SNPs, and quadratically 
with the number of genotyped animals.

When not all the animals are genotyped, methods such as 
single-step GBLUP (ssGBLUP; Aguilar et al., 2010), single-step 
SNP-BLUP (Liu et al., 2014), or single-step Bayesian Regression 
(Fernando et  al., 2014) are required for estimating breeding 
values for all genotyped and non-genotyped animals. In such a 
case, direct inversion of a block of the coefficient matrix of the 
MMEs (Misztal et al., 2013), propagation of genomic informa-
tion via reverse reliability calculations (Liu et al., 2017; Edel 
et al., 2019), or Monte Carlo sampling (Fernando et al., 2016) 
was proposed for calculating PEV. On the one hand, the first 
two types of methods have an equal computational complexity 
than the procedures for estimating reliabilities for a GBLUP 
model, because the reliability for a GBLUP model is estimated 
as an intermediate step for single-step estimation methods. 
On the other hand, convergence and elapsed time per sample 
are the major drawbacks of Monte Carlo sampling methods 
(Hickey et al., 2009; Fernando et al., 2016). Therefore, their 
application to large datasets is very time-consuming.

Although large-scale genomic evaluations are feasible with 
the Algorithm for Proven and Young (APY; Misztal, 2016), 
which relies on the sparse representation of the inverse of the 
genomic relationship matrix, no specific methods exist for cal-
culating the reliability when using APY. Therefore, the object-
ives of this study were to: 1) develop an efficient method for 
calculating reliabilities for APY-GBLUP models and extend it 
to APY-ssGBLUP and 2)  apply the algorithm for estimating 
reliabilities in ssGBLUP single- and multiple-trait models.

Materials and Methods
We present the algorithm in two sections for easy understand-
ing: a new GBLUP-based approach to combine genomic in-
formation and records contributions, and the propagation to 
ssGBLUP using existing techniques.

Single-trait APY-GBLUP
Let an APY-GBLUP model be: 

y = Xb+Wu+ e

E [y] = Xb

Var

ñ
u
e

ô
=

ñ
GAPYσ

2
u 0

0 Iσ2
e

ô
 (1)

where y is the vector of phenotypes, b is the vector of fixed 
effects, e is the vector of error terms, X and W are incidence 
matrices, and σ2

u and σ2
e  are the genetic and residual variances, 

respectively. The structure of GAPY and its inverse, as defined 
in Misztal (2016), is:
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where the subscripts c and n represent the core and noncore 
animals, respectively; Pnc = GncG−1

cc ; Pcn = G−1
cc Gcn; and 

Mnn = diag
(
Gnn −GncG−1

cc Gcn
)
 is a diagonal matrix. Letting 

α = (σ2
e )/(σ

2
u), the MMEs for the model (1) are:
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Then, the PEVs are obtained from:

diag
Ä
D+G−1

APYα
ä−1

 (4)

where D is a diagonal matrix such that 

D ≈ W′
Ä
I−X(X′X)

−1X′
ä
W  (VanRaden and Freeman, 

1985; Misztal and Wiggans, 1988).
Here, we assume that G−1

APY is created following the block 
implementation in Masuda et al. (2016) and stored in disk. 
For obtaining equation (4), we implemented an algorithm for 
calculating a block sparse inverse, following formula (8) from 
Henderson and Searle (1981). Then, the steps for calculating 
the PEV are (A1):

 1. Read and store G−1
APY in memory;

 2. Approximate D and overwrite G−1
APY asG−1

APY = D+G−1
APYα.  

Note that this implies updating the diagonal elements of 
Gcc and the diagonal matrix M−1

nn ;
 3. Calculate Gcn∗ = GcnMnn;
 4. Overwrite Gccas Gcc = Gcc −Gcn(Gcn∗) ′;
 5. Invert Gcc;
 6. Overwrite Gcn as Gcn = −GccGcn∗;
 7. Overwrite M−1

nn  as M−1
nni = Mnni −

(
Gcn∗

.i

) ′

Gcn
.i , where the 

subscript i refers to the ith element of M−1
nn  and Mnn, or the 

ith row of Gcn∗ and Gcn;
 8. Obtain PEVs from diag (Gcc) and M−1

nn  for core and 
noncore animals, respectively.

Algorithm for Proven and Young-ssGBLUP
The method presented for single-trait APY-GBLUP can be 
used for approximating the reliabilities for a single-trait 
APY-ssGBLUP by using different procedures based on effect-
ive records contributions (ERCs) such as in Liu et al. (2017) 
or Edel et al. (2019), among others. A general outline of the 
method is (A2):

 1. Approximate pedigree reliabilities and obtain ERCs.
 2. For genotyped animals, solve equation (4) in A1 using 

ERCs instead of D.
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 3. Approximate pedigree reliabilities for genotyped animals 
without taking into account the information provided by 
non-genotyped animals by removing their contributions. 
This will be referred to as approximating reliabilities of 
A22, where A22 stands for the numerator relationship 
matrix for genotyped animals.

 4. Obtain final reliabilities for genotyped animals using for-
mulas (18 to 27) from Liu et al. (2017).

 5. Back-solve the reliabilities for genotyped animals 
to get ERCs. A  detailed procedure for back-solving 
the reliabilities to obtain ERCs is explained in the 
Supplementary Appendix. Then, calculate reliabilities 
for non-genotyped animals by applying those ERCs as 
weights in a method for obtaining pedigree reliabilities.

Extension to multiple-trait models
For extending both single-trait APY-GBLUP and APY-ssGBLUP 
to multi-trait models, single-trait reliabilities were adjusted 
using the genetic and residual covariance matrices among traits 
following the method of Strabel et al. (2001). For each animal, 
this method requires a diagonal matrix with effective observa-
tions per trait (O) obtained from the single-trait reliabilities, the 
matrices of genetic (G0) and residual (R0) covariances among 
traits, and the number of progenies for each trait. Then, for 
each animal, its adjusted reliability for the jth trait is equal to:

relj = 1−
Wjj

G0jj
 (5)
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and ntraits is the number of traits, mj is the number of progen-
ies for the jth trait, and is Q a diagonal matrix with Qjj = 1
if the jth trait is non-missing and zero otherwise. It is worth 
noticing that the dimension of all the matrices in equation (6) 
is equal to the number of traits. Therefore, calculating equa-
tion (6) is not computationally demanding. For more details, 
we refer the reader to Strabel et al. (2001).

Implementation
For calculating the reliabilities of APY-GBLUP, only the 
nonzero elements of G−1

APY were stored in disk, as suggested 
by Masuda et  al. (2016). The approximation of D requires 
reading the data file only twice. Although Harris and Johnson 
(1998) suggested to adjust records only for the major fixed 
effect, we approximated D by accounting for all the cross-
classified effects, which can be more robust. The inversion 
of M−1

nn  is straightforward since it is a diagonal matrix. The 
matrix multiplications were performed using the dgemm sub-
routine from the Intel Math Kernel Library (MKL; Intel cor-
poration), whereas the inversion of Gcc was performed using 
dpotrf and dpotri from the same library. All the MKL sub-
routines and loops were parallelized using OpenMP (http://
www.openmp.org). The most time-consuming steps from 
Algorithm A1 are 4 to 6. Letting nc be equal to the number of 
core animals and nn be the number of noncore animals, the 
computational costs of steps 4 to 6 without any optimized al-
gorithm are O

(
n2cnn

)
, O

(
n3c
)
, andO

(
n2cnn

)
, respectively. The 

notation O ( f (n)) denotes that a function is upper bounded 

by f (n) when n → ∞ (Knuth, 1976). Thus, for example, an 
algorithm with asymptotic behavior O (n) is preferable to an-
other whose limiting behavior is O

(
n2
)
. Although step 5 re-

quires matrix inverse, the number of core animals in APY is 
hardly ever over 25k (Pocrnic et al., 2016).

For approximating the reliabilities under APY-ssGBLUP, 
the animals should be ordered such that the parents pre-
cede their progeny for obtaining ERCs (Harris and Johnson, 
1998). This was implemented recursively by first classifying 
the animals in nonoverlapping generations using a parallel-
ized subroutine (with OpenMP) and then by ordering using a 
recursive Quicksort (Sedgewick, 1990; pp. 118). The default 
pedigree reliabilities were approximated by the method of 
Harris and Johnson (1998). In this case, ERCs are obtained 
as a subproduct of the reliability estimation and calculated 
following Liu et al. (2018) but considering the own record’s 
contributions for males, which the authors did not consider 
since they presented their formulae for dairy cattle. However, 
the user can provide external pedigree reliabilities that could 
be back-solved using a root-finding technique to obtain ERCs 
using the method of Liu et  al. (2018) (see Supplementary 
Appendix). The root-finding technique that we chose was 
Steffensen’s method (Johnson and Scholz, 1968) because it 
does not require derivatives, has good convergence proper-
ties, and its implementation is straightforward. For calculating 
genomic reliabilities, Algorithm A1 was used as described in 
the previous paragraph. Finally, the propagation to the non-
genotyped animals was implemented by back-solving the 
reliabilities for genotyped animals using Steffensen’s method. 
The implementation of the adjustment for multiple traits used 
the native functions from Fortran because the matrix products 
and inversions are of dimension equal to the number of traits.

Data
The two datasets used in this study to test the approximated 
reliabilities of genomic EBV from APY-ssGBLUP were pro-
vided by the American Angus Association (St. Joseph, MO). 
A small dataset (Data1) was used for comparing the approxi-
mated reliabilities with the reliabilities obtained by the in-
version of the left-hand side of the MMEs. A  large dataset 
(Data2) was used for evaluating the computational per-
formance of the algorithm. Data1 for single-trait analysis 
(Data1_st) consisted of 50,000 animals that had genotypes 
for 39,759 SNPs after quality control. From the genotyped 
animals, 10,523 were randomly selected as core based on the 
number of core animals proposed by Pocrnic et  al. (2016) 
for different livestock species. This number of core animals 
was proposed based on the number of eigenvalues explaining 
98% of the variance in the spectrum of the genomic relation-
ship matrix. Consequently, the number of noncore animals 
was 39,477. The number of core animals was the same across 
all the datasets and analyses, as well as the number of SNPs. 
In Data1_st, the pedigree consisted of 167,951 animals, of 
which 76,758 had records for postweaning gain (PWG). In 
Data1 used for multi-trait analysis (Data1_mt), 78,641 ani-
mals had phenotypes for at least one of the three traits: PWG, 
birth weight (BW), or weaning weight (WW), and the number 
of animals in the pedigree was 172,089. Because of limitation 
in the computation of the inverse of the left-hand side of the 
MMEs for multi-trait models with many genotypes, the total 
number of genotyped animals in Data1_mt had to be reduced 
to 20,000, of which 9,477 were noncore.
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The second dataset (Data2) had 335,325 genotyped ani-
mals, and the number of noncore animals was equal to 
324,802. In single-trait analysis (Data2_st), 4,218,407 indi-
viduals had records for PWG, and the total number of ani-
mals in the pedigree was 10,213,401. The multi-trait analysis 
with Data2 (Data2_mt) used the same number of animals 
in the pedigree as in Data2_st, but 8,681,659 animals had 
phenotypes for at least one of the three traits. A summary of 
all datasets can be found in Table 1.

Software, computational resources, and 
benchmark tests
PreGSf90 (Misztal et al., 2014) was used to calculate and store 
G−1

APY. The exact reliabilities for Data1_st and Data1_mt were 
obtained by sparse inversion of the Cholesky factor of the co-
efficient matrix using BLUPF90. Those reliabilities were used 
as benchmark to compare the approximation algorithm pre-
sented here. Comparisons included the correlation between 
exact and approximated reliabilities, the intercept and slope 
of the regression of exact on the approximated reliabilities, 
and the mean absolute change (i.e., the absolute difference be-
tween exact and approximated reliability). Because the nov-
elty of this approximated reliability is to use G−1

APY instead 

of G−1 in the computation of diag
Ä
D+G−1

APYα
ä−1

, we also 

investigated reliabilities when using G−1.
The methods presented in the previous sections were pro-

grammed in Fortran 95 and compiled with the Intel Fortran 
Compiler version 15.0.3 with options -fpp and -O3. All the 
computations were performed on a Dell PowerEdge R740XD 

server with 1.5 TB of memory, 45 TB of disk, and two Intel 
Xeon Gold 6258R processors with 56 threads each; however, 
the number of threads for all the computations was limited 
to 32.

Results and Discussion
Table 2 presents statistics for the approximated reliabilities 
for Data1_st and Data1_mt. For both genotyped and non-
genotyped animals, correlations were above 0.97. Also, for 
all the scenarios, the mean absolute change was smaller than 
0.03. The slope of the regression of the true on the approxi-
mated reliabilities for the genotyped animals ranged from 
0.93 to 0.96, whereas the intercept ranged from 0.02 to 0.04. 
For non-genotyped animals, the slope ranged from 0.97 to 
1.05, whereas the intercept ranged from 0 to 0.01. However, 
the mean square errors were significantly higher for the non-
genotyped animals (results not shown). Scatter plots for the 
comparison between true and estimated reliabilities for geno-
typed animals for the Data1_mt are shown in Figure 1. It 
can be noticed that there is a minor overestimation of the 
reliabilities for BW and WW. However, the fit for the three 
models is appropriate and, consequently, the method is accur-
ate. This overestimation was due to a slight overestimation of 
the pedigree reliabilities from the first step in A2.

The comparison between reliabilities obtained from inver-
sion of the MME with G−1 and G−1

APY is presented in Table 3. 
All correlations were greater than 0.98 for both Data1_st and 
Data1_mt for genotyped and non-genotyped animals. In all 
cases, the reliabilities for non-genotyped animals were almost 

Table 1. Traits, number of animals in the pedigree, number of animals with records, and number of genotyped animals for each dataset

Data11 Data21

  Data1_st Data1_mt Data2_st Data2_mt

Trait(s)2 PWG BW—WW—PWG PWG BW—WW—PWG

Animals in the pedigree 167,951 172,089 10,213,401 10,213,401

Animals with records 76,758 78,641 4,218,407 8,681,659

Genotyped animals Core 10,523 10,523 10,523 10,523

Noncore 39,477 9,477 324,802 324,802

1Data1_st , Data1 for single-trait analysis; Data1_mt, Data1 used for multi-trait analysis; Data2_st , Data2 for single-trait analysis; Data2_mt, Data2 used 
for multi-trait analysis. 
2The traits are birth weight (BW), weaning weight (WW), and postweaning gain (PWG). 

Table 2. Correlation, intercept, slope, and mean absolute change (MAC) between the exact and estimated reliabilities for Data1_st and Data1_mt

Dataset Trait1 Group Correlation Intercept Slope MAC

Data1_st2 PWG Genotyped 0.98 0.02 0.94 0.01

Non-genotyped 0.97 0.01 1.05 0.03

Data1_mt2 BW Genotyped 0.98 0.04 0.93 0.01

Non-genotyped 0.98 0.00 0.98 0.02

WW Genotyped 0.98 0.02 0.94 0.01

Non-genotyped 0.99 0.00 0.97 0.02

PWG Genotyped 0.98 0.02 0.96 0.01

Non-genotyped 0.99 0.00 1.01 0.01

1BW, birth weight; PWG, postweaning gain; WW, weaning weight.
2Data1_st , Data1 for single-trait analysis; Data1_mt, Data1 used for multi-trait analysis.
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Table 1. Traits, number of animals in the pedigree, number of animals with records, and number of genotyped animals for each dataset

Data11 Data21

  Data1_st Data1_mt Data2_st Data2_mt

Trait(s)2 PWG BW—WW—PWG PWG BW—WW—PWG

Animals in the pedigree 167,951 172,089 10,213,401 10,213,401

Animals with records 76,758 78,641 4,218,407 8,681,659

Genotyped animals Core 10,523 10,523 10,523 10,523

Noncore 39,477 9,477 324,802 324,802

1Data1_st , Data1 for single-trait analysis; Data1_mt, Data1 used for multi-trait analysis; Data2_st , Data2 for single-trait analysis; Data2_mt, Data2 used 
for multi-trait analysis. 
2The traits are birth weight (BW), weaning weight (WW), and postweaning gain (PWG). 

identical. However, for genotyped animals, the slope and the 
intercept of the regression of true reliability with G−1 on the 
true reliability with G−1

APY for Data1_st were 0.92 and 0.06, 
respectively. For the multiple-trait model, that is for Data1_
mt, the slopes were greater than the unity, ranging from 1.05 
to 1.10; the intercepts were lower than zero, ranging from 

−0.03 to −0.07. According to these results, it is not possible to 
state that the reliability is under or overestimated with APY 
when compared with G−1.

Table 4 presents the elapsed wall clock time for each step 
of Algorithm A2 for each dataset. The total time for the lar-
gest dataset in this study (i.e., Data2_mt) was 11 min. It can 

Figure 1. Scatter plots comparing reliability obtained from the inverse of the mixed model equation against estimated reliability for the genotyped 
animals in Data1_mt. Abbreviations: BW, birth weight; PWG, postweaning gain; ssGBLUP, single-step genomic best linear unbiased prediction; WW, 
weaning weight. 

Table 4. Wall clock time in minutes of each step for estimating reliabilities for each dataset1

Single trait Multiple trait

 Data1  
(7.5 GB)

Data2  
(55 GB)

Data1  
(2.7 GB)

Data2  
(55 GB)

Sorting pedigree 0.003 0.23 0.003 0.23

Approximation of pedigree reliabilities 0.009 0.46 0.031 1.37

Calculation of GBLUP2 reliabilities 0.28 1.85 0.36 4.92

Approximation of reliabilities of A22
3 0.008 0.44 0.025 1.32

Propagation to non-genotyped animals 0.001 0.05 0.002 0.16

Multiple-trait adjustment — — 0.03 3.23

Total time 0.31 3.32 0.42 11.11

1The memory requirements in gigabytes (GB) are inside parenthesis.
2GBLUP, genomic best linear unbiased prediction.
3A22 refers to the numerator relationship matrix for genotyped animals.

Table 3. Correlation, intercept, slope, and mean absolute change (MAC) between the reliabilities obtained by inversion with G−1 and G−1
APY for Data1_st 

and Data1_mt

Dataset Trait1 Group Correlation Intercept Slope MAC

Data1_st2 PWG Genotyped 0.99 0.06 0.92 0.01

Non-genotyped 0.99 0.00 1.00 1.0 × 10-3

Data1_mt2 BW Genotyped 0.98 −0.03 1.05 0.01

Non-genotyped 0.98 0.00 0.99 0.02

WW Genotyped 0.98 −0.03 1.07 0.01

Non-genotyped 0.98 0.00 0.98 0.02

PWG Genotyped 0.98 −0.07 1.10 0.01

Non-genotyped 0.99 0.00 0.99 0.02

1BW, birth weight; PWG, postweaning gain; WW, weaning weight.
2Data1_st , Data1 for single-trait analysis; Data1_mt, Data1 used for multi-trait analysis.
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be observed that the computing time for A1 (i.e., to obtain 
diag
Ä
D+G−1

APYα
ä−1

) increases proportionally with the num-
ber of genotyped animals. As an example, for the single-trait 
models, the number of genotyped animals increased seven 
times when moving from Data1_st to Data2_st, whereas the 
elapsed time for A1 also increased by seven times. For the 
multiple-trait models, the increase in wall clock time for A1 
was less than proportionally. While the amount of genotyped 
animals increased 16-fold when moving from Data1_mt to 
Data2_mt, the elapsed time only increased 14-fold. On the 
other hand, an increase in the number of traits changed the 
elapsed time a little more than proportionally. For instance, 
when comparing Data2_st against Data2_mt, the number of 
traits increased by three but the total elapsed time increased 
by 3.3 times. The reason for this is that for multiple-trait 
models, not only the single-trait reliabilities but also the ad-
justment for multiple traits is required (Strabel et al., 2001). 
When subtracting the latter step from the algorithm, the total 
elapsed time increased less than proportionally with the num-
ber of traits. It is worth noticing that this comparison cannot 
be done with Data1_st and Data2_st because of the differ-
ent number of genotyped animals. Finally, it can be observed 
that the elapsed time for the pedigree reliability estimation in-
creased less than proportionally with the number of animals 
in the pedigree.

As can be noticed, the method developed in the pre-
sent study is much faster than the current methods for ap-
proximating reliabilities. For example, Erbe et  al. (2018) 
reported that the calculation of genomic reliabilities 
for 78,000 genotyped animals took 35  min, whereas for 
222,619 genotyped animals, Ben Zaabza et al. (2020) and 
Ben Zaabza et al. (2021) reported a minimum of 140 and 
36  min, respectively. Besides the employed hardware, al-
gorithmic differences explain why our method is much 
faster than the cited references. The main contrast between 
these and our method is the way of calculating the gen-
omic reliabilities. The computational complexity of those 
methods arises from making the MME, inverting them, and 
obtaining the individual reliabilities from the reliabilities 
of the SNP. The complexity of the first and third tasks in-
creases quadratically with the number of markers and lin-
early with the number of genotyped animals, whereas the 
complexity of the second step increases cubically, at least, 
with the number of markers. If a residual polygenic effect 
is included in the model, then the complexity of the inver-
sion of the system increases more than cubically with the 
number of markers. The algorithm from the present study 
does not require constructing the MME but approximating 
weights to be added to the diagonal of the inverse of the 
genomic relationship matrix. These weights are an approxi-
mation of the absorption of the equations related to fixed 
effects (Mohammad et al., 1985), and its approximation is 
not costly (VanRaden and Freeman, 1985). Then, the most 
expensive steps from the sparse inversion in A1 are two 
matrix multiplications whose computational complexity in-
creases quadratically with the number of core animals and 
linearly with the number of noncore animals and a matrix 
inversion that increases always cubically with the number 
of core animals. From this, it can be observed that the ad-
vantage in elapsed time of our algorithm comes from the 
fact that the number of core animals (~10k to 20k in cattle) 
is much less than the number of markers (~30k to 80k) for 

routine genetic evaluations (Misztal et al., 2020) and that 
the matrix multiplication takes more advantage of the par-
allel computations than the matrix inversion.

Since the reliability estimation is done after estimating 
breeding values, G−1

APY can be stored in disk from the latter 
and be reused for the former. This is the reason that we did 
not consider the calculation of G−1

APY as a part of the algo-
rithm in Table 3. Nonetheless, the wall clock time for cal-
culating G−1

APY for Data1_st and Data1_mt was less than a 
minute, whereas for Data2_st and Data2_mt was 12 min. It 
is worth noticing that the memory requirements for approxi-
mating the reliabilities for our method are less than or equal 
to the memory requirements for estimating breeding values. 
Furthermore, with multiple traits, it is possible to read and 
deallocate G−1

APY (i.e., D+G−1
APYα) for each single-trait re-

liability estimation. Therefore, the memory requirements 
do not increase by increasing the number of traits. As pre-
sented in Table 4, the memory requirements for estimating the 
reliabilities were 7.5 and 3 GB for Data1_st and Data1_mt, 
respectively, and 55 GB for Data2_st and Data2_mt. Such val-
ues do not represent limitations for most of the servers where 
routine genetic evaluations are run.

Conclusion
An efficient method for calculating exact genomic reliabilities 
with APY G−1 was developed. This method is the basis of 
a larger procedure for approximating reliabilities for single- 
and multiple-trait ssGBLUP models. The algorithm proposed 
in this study was both accurate and computationally effi-
cient. Since the memory requirements and computing time 
of the proposed method are less than or equal to the ones 
required for estimating breeding values, it can be applied for 
routine genetic evaluations. Therefore, the approximation of 
reliabilities for large ssGBLUP models is no longer a bottle-
neck in genetic evaluations.
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Supplementary data are available at Journal of Animal Science 
online.
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APY as a part of the algo-
rithm in Table 3. Nonetheless, the wall clock time for cal-
culating G−1

APY for Data1_st and Data1_mt was less than a 
minute, whereas for Data2_st and Data2_mt was 12 min. It 
is worth noticing that the memory requirements for approxi-
mating the reliabilities for our method are less than or equal 
to the memory requirements for estimating breeding values. 
Furthermore, with multiple traits, it is possible to read and 
deallocate G−1

APY (i.e., D+G−1
APYα) for each single-trait re-

liability estimation. Therefore, the memory requirements 
do not increase by increasing the number of traits. As pre-
sented in Table 4, the memory requirements for estimating the 
reliabilities were 7.5 and 3 GB for Data1_st and Data1_mt, 
respectively, and 55 GB for Data2_st and Data2_mt. Such val-
ues do not represent limitations for most of the servers where 
routine genetic evaluations are run.

Conclusion
An efficient method for calculating exact genomic reliabilities 
with APY G−1 was developed. This method is the basis of 
a larger procedure for approximating reliabilities for single- 
and multiple-trait ssGBLUP models. The algorithm proposed 
in this study was both accurate and computationally effi-
cient. Since the memory requirements and computing time 
of the proposed method are less than or equal to the ones 
required for estimating breeding values, it can be applied for 
routine genetic evaluations. Therefore, the approximation of 
reliabilities for large ssGBLUP models is no longer a bottle-
neck in genetic evaluations.
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