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Abstract: The risk of Alzheimer’s disease (AD) increases with nonmodifiable conditions including age
and lack of effective efficacious pharmacotherapy. During the past decades, the non-pharmacotherapy
mode of treatment of dietary modification received extensive attention in AD research. In order
to reduce the AD pathology and cognitive decline, various dietary patterns have been attempted
including caloric restriction (CR), dietary approaches to stop hypertension (DASH), ketogenic diets
(KD), Mediterranean diet (MedDi) and Mediterranean-DASH diet Intervention for Neurological Delay
(MIND) diet. Higher adherence to the MedDi diet was associated with decreases in cardiovascular
and neurological disorders including AD and related cognitive decline. However, another emerging
healthy dietary pattern MIND diet has also been associated with slower rates of cognitive decline and
significant reduction of AD rate. Olive serves as one of the building block components of MedDi and
MIND diets and the exerted potential health beneficial might be suggested due to the presence of its
bioactive constituents such as oleic acids and phenolic compounds (biophenols). A few trials using
medical food showed an optimal result in presymptomatic or early stages of AD. The review supports
the notion that MedDi and MIND diets display potential for maintaining the cognitive function as
nonpharmacological agents against AD pathology and proposed preventative mechanism through
the presence of olive biophenols and presents the gaps along with the future directions.
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1. Introduction

Brain ageing may be considered as a progressive and inevitable physiological process related to
the dramatic increase in the oxidative stress condition and inflammatory markers that potentially cause
damage to cellular structures of the brain [1]. The consequences of the long-term ageing of the brain
results in speed and memory performance decline [1]. It has become evident that ageing is one of the
major risk factors that strongly influence the instigation and progression of many neurodegenerative
disorders including Alzheimer’s disease (AD), Multiple sclerosis, Parkinson’s, and Huntington’s
diseases [1]. Neurodegenerative diseases affect people of all ages, however, AD is the most common
form of dementias affecting people of usually over 65 years old and cause an increase in the global
health challenge with 40–50 million people currently living with dementia [2]. AD is considered as a
multifactorial and heterogeneous phenomenon involving aberrant protein processing called senile
plaques and neurofibrillary tangles, composed of amyloid beta (Aβ) and paired helical filaments
of hyperphosphorylated tau protein [3]. To date, there is no cure or treatment available to even
alter the progressive course of AD. There are a few FDA approved drugs that regulate the activity
of neurotransmitters (e.g., Memantine, an NMDA receptor antagonist; donepezil, a cholinesterase
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inhibitor) and showed some stabilization with the limited temporary and symptomatic support of
cognitive functioning (mild to moderate stages) in these patients [4].

Following continuous attempts of using synthetic origin molecules against AD and their
unfortunate failure in pharmacotherapy, the research trend has been changed towards using plants
in diet or medication form that have positive effects on cognitive disorders, as well as strong
acetylcholinesterase (AChE) inhibitory, anti-inflammatory, and antioxidant activities, and are of
potential clinical interest for the treatment of AD [5]. Evidence amassed from numerous preclinical
and clinical studies between 1990 and 2018, suggested a strong association link between a few dietary
patterns and AD incidence [6], presenting diet as a modifiable risk factor that may play a central role
in managing the illness [7]. Intervention in these areas may reduce the risk of developing AD or at
least delay its clinical symptoms [8]. Dietary guidelines for the prevention of AD and healthy brain
ageing recommend generous daily consumption of vegetables, whole grains, legumes, fruit, nuts and
seeds [9].

Since 2000, it has become increasingly evident that biophenols, plant phenolic compounds
containing foods received extreme attention due to their vast occurrence and versatile actions including
several cellular functions modulation, processes that go well beyond their first-described natural
antioxidant capacities and neuroprotection [10]. Vegetables, fruit, nuts, chocolate and other types of
foods and beverages, such as wine, coffee and tea, are all rich sources of biophenols.

The present review summarizes the existing evidences of adherence to diets (specially the
Mediterranean diet (MedDi) and Mediterranean dietary approaches to stop hypertension (DASH) diet
Intervention for Neurological Delay (MIND)) with the reduction in AD risk and cognitive function
and exploring the involvement of olives as one of the backbone dietary components. In addition,
the neurobiological mechanisms of the MedDi against AD or cognition decline are proposed.

2. Search Criteria and Data Collection

The published scientific literatures were searched for in vitro, in vivo, observational studies,
prospective cohort studies and randomized controlled trials of adult human participants reporting
diet/nutritional intake and AD biomarkers. The searches were conducted digitally by using the
databases including MEDLINE, PubMed, ScienceDirect, Google Scholar, and SCOPUS to identify
peer-reviewed articles in the last two decades (January 1, 2000–April 14, 2019). A Boolean search
strategy was conducted with the following keywords and logic: (“diet” OR “dietary patterns” OR
“Mediterranean diet” OR “MIND diet” OR “caloric restriction diet” OR “DASH diet” OR “ketogenic
diet”) AND (“Alzheimer’s disease” OR “amyloid” OR “β amyloid” OR “β-amyloid” OR “Aβ42” OR
“Aβ40”) AND (“olive biophenols” OR “olive polyphenols” OR “oleuropein” OR “hydroxytyrosol”).

3. Dietary Pattern Attempted in Alzheimer’s Disease Prevention and Treatment

Alzheimer’s disease can be influenced by several factors and the potential effect of diet has become
a topic of increasing scientific and public interest. It was suggested that AD patients were associated
with a high intake of meat, butter, high-fat dairy products, eggs, and refined sugar [11]. Animal studies
showed that docosahexenoic acid (DHA) level altered cerebral haemodynamics (relative cerebral
blood volume (rCBV)) in 8-month-old APP/PS1 and wild type mice, and cholesterol-containing typical
Western diets (TWD) decreased rCBV in 15-month-old mice [12]. In addition, a short-term animal study
showed that four weeks administration of Western diet was sufficient to selectively promote cerebral
oxidative stress and metabolic disturbances in amyloid precursor protein and presenilin-1 (APP x PS1)
knock-in mice, with increased oxidative stress preceding alterations in Aβ [13]. In Australian and
Swedish studies [14,15], Western dietary pattern showed the consistent results of faster decline in
cognitive abilities, however, the findings for prudent dietary patterns (mostly characterised by intake of
fruit, vegetables, lean meat, fish and unprocessed grains) were inconsistent. It was observed that there
is no associations of cognitive decline with higher scores on the Healthy Eating Index that is based
on the U.S. Department of Agriculture (USDA) dietary guidelines [16], or for incident dementia with
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higher scores on the World Health Organization (WHO)-recommended diet or a low-carbohydrate diet
pattern [17].

3.1. Calorie Restriction Diet

Caloric restriction (CR) dietary interventions influence the ageing and age-related changes in
the brain and ultimately extend the lifespan and health span. In a transgenic mouse model of AD
study [18], two different dietary energy restriction regimens including 40% CR and intermittent fasting
(IF) protected against cognitive decline, however only the CR group have shown the lower levels of
Aβ40, Aβ42 and phospho-tau in the hippocampus compared to the control diet group. Further, in a
conditional double knockout of presenilin-1 and presenilin-2 (cDKO) mice study [19], administration
of the CR diet for four months resulted in the improvement of cognitive impairments through the
assessments of the novel object recognition test and contextual fear conditioning memory test as well
as a reduction in the induction of tau hyperphosphorylation. In a recent animal study [20], the CR
diet was associated with modest improvements in behavioural and cognitive outcomes, although the
results were mainly limited to females and inconsistent.

A few earlier pieces of epidemiological evidence indicated that individuals who habitually
consume fewer calories have a reduced incidence of AD [21,22]. In a randomized controlled trial [23],
the effect of six months of CR (25% restriction) on overweight subjects did not show significant
association with change in cognitive test performance (Table 1). In contrast, a trial on healthy elderly
subjects [24], a CR (30% reduction) diet with the limitation of 1200 kcal/day for three months resulted
in a significant increase in verbal memory scores (mean increase 20%; p < 0.001).

Table 1. Clinical studies on dietary pattern associated with the risk of Alzheimer’s disease.

Dietary Model Study Type Outcomes References

Calorie restricted
Caloric restriction (25%)
alone or with physical

exercise (6 months)

Daily energy deficit was not
significantly associated with change in

cognitive test performance
[23]

Calorie restricted

Caloric restriction (30%
reduction) diet with

limitation of 1200
kcal/day for 3 months

Significant increase in verbal memory
scores (mean increase 20%; p < 0.001) [24]

Calorie restricted
(DASH Diet)

Caloric restriction with
physical exercise

(4 months)

Participants on the DASH diet combined
with a behavioural weight management

programme exhibited greater
improvements in executive function

memory-learning (p = 0.008) and
psychomotor speed (p = 0.023) compared

with the usual diet control

[25]

DASH Diet
DASH diet was

administered in older
people

DASH score was associated with a slower
rate of global cognitive decline by 0.007

standardized units (standard error of
estimate = 0.003, p = 0.03)

[26]

Ketogenic Diet
Medium chain

triglycerides (MCT) in
AD patients

Facilitated performance on the (ADAS-cog)
Subscale and associated with rise in ketone

bodies
[27]

Ketogenic Diet

Oral administration of
ketogenic compound

AC-1202 (10–20 g) in AD
patients

Significant improvement in the ADAS-cog [28]

Ketogenic Diet

Administration of
carbohydrate (5–10%)

per day in older adults
with MCI

Significant improvement in verbal memory
performance [29]
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3.2. Assessment of Calorie Restriction Diet

Apart from the possible benefits of CR diets in the lowering of blood pressure and improved heart
health to longevity, it was also suggested that a reduction up to 30 % of daily calorie intake can cause
gaunt look or emaciated and experience dizziness, cognitive decline, loss of muscle mass, a faulty
menstrual cycle and a lowered libido. Moreover, animal studies showed that eliminating more calories
up to 60 % of daily intake resulted into signs of starvation in mice.

The researchers asserted that long-term calorie restricted diet can increase stem cell functionality
but may also reduce the performance of the immune system especially regarding bacterial infections.
Although, there is experimental evidence for a calorie restricted diet as an ageing intervention,
the potentially harmful effects and risks in elderly humans need to be studied further.

However, initiating a CR intervention prior to adulthood imposes many practical, physiological,
and ethical challenges, including consideration of the impact on growth and development in humans.
Therefore, introducing a CR intervention prior to adulthood is not an option in human studies.

3.3. Dietary Approaches to Stop Hypertension (DASH) Diet

The dietary approaches to stop hypertension (DASH) diet mainly contains a high intake of plant
foods, fruits, vegetables, fish, poultry, whole grains, low-fat dairy products, and nuts, alongside low
intake of red meat, sodium, sweets, and sugar-sweetened beverages [30]. The DASH dietary pattern
became popular in context to reduce cardiovascular health abnormalities, however there are only a few
trials that have been conducted to show the beneficial health in cognition related AD. In a randomized
trial, administration of the DASH diet showed the improvement in neurocognitive and psychomotor
functions among older adults with high blood pressure (Table 1), at greater risk for cognitive decline
and AD [25]. Moreover, a long-term study in older people showed slower rates of cognitive decline
by 0.007 standardized units slower or equivalent to at least 4.4 years younger age after DASH diet
administration, and suggested this was through an anti-inflammatory mechanism [26].

Coronary heart disease and hypertension are independent risk factors for AD [31], while few
studies have reported an association between raised serum cholesterol levels and an increased risk of
developing AD [32]. A randomized trial in patients randomly assigned to a DASH diet on corticosteroid
therapy for 10 weeks showed significantly (p = 0.04) different systolic and diastolic blood pressures [33].
Moreover, diabetes has been recognized as a risk for development of AD [34], and the same randomized
trial showed that serum total cholesterol and fasting blood glucose were significantly decreased in
the corticosteroid medications patient following the DASH diet [33]. Studies have been suggested
that high levels of low-density lipoprotein (LDL) cholesterol and total cholesterol (TC) concentrations
were associated with an increased risk of AD [35], which may result in cognitive impairment. In a
randomized crossover trial, DASH diet, but not the high fat-DASH diet, significantly reduced LDL
cholesterol, HDL cholesterol, apolipoprotein A-I, intermediate-density lipoprotein and large LDL
particles, and LDL peak diameter compared with the control diet [36].

3.4. Assessment of DASH Diet

Despite the known benefits of the DASH diet, adherence has been limited to the general population.
The approach taken for DASH diet constructing an adherence score is a major limitation to the study.
Incomplete data on the DASH diet made it difficult to take into account specific intake levels for each
food group according to energy requirements for individuals because these data were not available.
Additional research is needed to determine whether this finding also holds true for men and other
race/ethnicity, as well as in the educated, socioeconomic status subgroups.

3.5. Ketogenic Diet (KD)

A ketogenic diet primarily consists of high-fats (55%–60%), moderate-proteins (30%–35%), and
very-low-carbohydrates (5%–10%) and provides 2000 kcal per day diet [37]. Administration of ketone
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bodies or high-fat, low-carbohydrate ketogenic diets (KD) may help in the augmentation and supply of
brain fuel in later life [38], and the increasing number of animal and human studies data demonstrated
the utility and usefulness of KD in AD. In a short-term animal study [39], a KD-fed group of transgenic
mice exhibited low levels of both Aβ40 and Aβ42. In an animal study [40], dogs were administered
(2 g/kg/day) medium chain triglycerides (MCT) which are rapidly converted to ketone bodies, for two
months, showed dramatically improved mitochondrial function and decrease in total Aβ levels in the
parietal lobe. Another animal study using transgenic mice [41], showed significant improvements in
the learning and memory performance test after administration of a ketone ester-based diet (KET).
In addition, KET-fed mice exhibited decreased Aβ deposition in the hippocampus and the amygdala
along with reduction in hyperphosphorylated tau deposition in the hippocampus, amygdala, and
cortex regions [41].

In a double-blind placebo-controlled study on AD patients [27], the oral dose of MCT facilitated
performance on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) and was
associated with an elevation in ketone body beta-hydroxybutyrate (β-OHB) levels (Table 1). In a
randomized, double-blind, placebo-controlled, parallel-group study [28], administration of an oral
ketogenic compound AC-1202 (10–20 g) resulted in significant improvement of the ADAS-cog test in
AD patients compared to placebo. Short-term (six weeks) consumption of low carbohydrate (20 g/day)
caused significant improvement of verbal memory performance in older adults with Mild Cognitive
Impairment (MCI) [29].

3.6. Assessment of Ketogenic Diet

In summary, KD showed an improvement in cognitive outcomes, which was associated with
the level and duration of ketosis [42]. In addition, improvement in the cognitive outcome was more
pronounced in ApoE4-negative patients. It was also reported that the cognitive improvement was also
found in elderly, non-demented people [43]. Currently, there is limited evidence of the efficacy of these
diets in AD. In order to get a significant outcome, the ketogenic diets could be administered early in
the presymptomatic stages of AD.

4. Promising Dietary Patterns Associated with the Prevention or Attenuation of AD

A number of studies have shown the slow rate of cognitive decline and reduced risk of cognitive
impairment and suggested that the decreased rate of dementia have been associated with a higher
consumption of single nutrients (e.g., vitamins B–E, tocopherol, polyunsaturated omega-3 fatty acids,
biophenols) or of single foods (e.g., olive oil, vegetables, fruits, nuts, red wine, and fish [44–48]).

4.1. Mediterranean Diet

The theoretical concept of the Mediterranean diet was originally coined and documented by Ancel
Keys [49], in the Seven Countries Study. However, the Mediterranean diet (MedDi) is characterized
by a high intake of vegetables, legumes, fruits, and cereals; a high intake of extra virgin olive oil
as unsaturated fatty acids, but low intake of saturated fatty acids; a moderately high intake of fish;
a low-to-moderate intake of dairy products; a low intake of meat and poultry; and a regular but
moderate amount of ethanol, primarily in the form of wine during meals [50]. Of the multiple
components of the MedDi, fat reaches 40% of total calories, yet nearly all of this comes from olive
oil. According to the USDA (United States Department of Agriculture), extra virgin olive oil contains
73.33 g of monounsaturated fatty acids, 13.33 g of saturated fatty acids, and 6.67 g of polyunsaturated
fatty acids per 100 mL and considered as the best oil for consumption [51].

The MedDi, primarily known as a food model, enhances the quality and safety of foods and
is accepted worldwide including Australia [52] due to multiple pharmacological effects and health
benefits including cardiovascular disease prevention in populations inclusive of individuals with
diabetes [53]. Research has suggested that the primary benefits of MedDi is due to richness in
unsaturated fat and biophenols from the core component olive [54].
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A systematic review showed higher adherence to MedDi was associated with better cognitive
function, lower rates of cognitive decline, and reduced risk of AD in nine out of 12 studies [55]. Further
meta-analysis of 22 studies showed the higher adherance to MedDi was consistently associated with
reduced risk for cognitive impairment (RR = 0.60, 95% CI = 0.43–0.83) [56]. The data are consistent as
well with large observational studies providing longitudinal evidence of a moderate protective effect
of the MedDi against cognitive decline and AD. Since the last two decades, MedDi received higher
attention and showed associated with a reduced risk of developing MCI and AD, and a reduced risk
(33%) of progressing from MCI to AD [57]. In a Greek study [58], adherence to the MedDi was associated
with better performance in memory, language, visuospatial perception and the composite cognitive
score; the associations were strongest for memory in dementia and MCI patients. Meta-analysis of
cohort studies revealed a significant association between MedDi and older adults’ episodic memory
and global cognition, but not working memory or semantic memory [59]. Meta-analysis of RCTs
revealed that compared with controls, MedDi improved delayed recall, working memory, and global
cognition but not episodic memory, immediate recall, paired associates, attention, processing speed,
or verbal fluency and strongly suggested the beneficial effect of the MedDi in healthy older adults’
global cognition [59]. Furthermore, a higher level of evidence from six RCTs and 31 cohorts studies,
a recent systematic review [60] reported that the MedDi was the most investigated with evidence
supporting protection against cognitive decline among older adults and suggested the mechanism
through antioxidant activity from phenolic compounds and anti-inflammatory activity from omega-3
fatty acids containing MedDi.

4.2. Assessment of Mediterranean Diet

Studies suggested the interactions and overlaps exist between diet and other lifestyle factors,
such as physical exercise [61,62]. For example, a randomized controlled trial using a robust design
conducted in highly active people in a Mediterranean culture demonstrated the cognitive benefits in
participants that consumed MedDi [63]. Another major limitation and threat to external generalizability
of studies on associations between cognitive functions and the MedDi is that there are no a priori
determinations of cut-off points or recommendations regarding the exact composition of the MedDi.

4.3. MIND Diet

An observational study that combined two dietary plans including the MedDi and DASH diets
called Mediterranean-DASH diet Intervention for Neurological Delay (MIND) diet (fifteen dietary
components make up the MIND diet [64]), observed a 53% reduction in the rate of AD [65] and
suggested that the MIND diet substantially slows cognitive decline with age [66,67]. Generally,
the MIND diet differs from the MedDi by allocating separate categories for green leafy vegetables and
berries, and a category for cakes and pastries. Unlike the MedDi, fruit was excluded, and fish was not
prescribed daily because evidence suggested two to three times a week is adequate for neuroprotective
effects [66]. In a recent study [68], MIND dietary pattern was associated with better cognition among
the elderly subjects living in middle to low income countries.

4.4. Assessment of MIND Diet

Across four studies, the MIND diet has been associated with reduced AD risk [65] and better
cognitive performance [69,70] but inconsistently with the cognitive decline [69]. To date, the cognitively
protective effect of the MIND diet has not been evaluated or compared with the MedDi outside the
United States; two of the four MIND diet studies were conducted in the same sample belonging to the
Chicago-based Memory and Ageing Project (MAP). Clearly, trials of the MIND diet conducted in other
populations and geographic locations are required to further evaluate its protective effects.
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5. Proposed Mechanism of MedDi and MIND Diets Action against Alzheimer’s Disease

The exact pharmacological mechanism by virtue MedDi exerts a protective effect in brains are
not fully understood. Despite the lack of studies investigating the underlying mechanisms, MedDi
and MIND diets showed multiple pharmacological action including anti-oxidant, anti-inflammation,
anti-atherogenic, and cognitive enhancement mediated through its food components. However, it may
suggest that the health beneficial effects of the MedDi and MIND diet have been attributed to the use
of olive as a major source of dietary fats and phenolic compounds [71].

5.1. Olive’s Major and Minor Components

Triglycerides are the major constituents of olive oil (98–99% by weight) categorized into three main
fatty acids fraction including monounsaturated fatty acid (oleic acid), saturated fatty acid (palmitic
acid) and polyunsaturated fatty acid (linoleic acid) respectively [72]. There is a plethora of non-polar
unsaponifiable fraction present in olive oil as a minor fraction (approximately 2% of the weight), among
them, phytosterol, squalene, tocopherols, sterols, and triterpenic compounds along with the polar
phenolic compounds (Figure 1) [73].

Phenolic compounds called biophenols isolated from plant tissues or products are derived from
shikimate-phenylpropanoid and/or polyketide pathway(s) including their derivatives, conjugates,
degradation products and metabolites [74]. Olive contains a large variety of biophenols and their
concentrations depend upon the types of oil as well as the source such as leaves > fruits > oils [75].
However, the occurrence of phenolic compounds in olives and olive oils are variable according to
the olive variety, age of the tree, agricultural techniques used in cultivation, degree of ripeness, soil
composition, climate, processing technique, and storage conditions [76].
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In general, secoiridoids compounds, and tyrosol (p-HPEA) or its hydroxyl derivative
hydroxytyrosol (3,4-DHPEA) are the most abundant class of phenolics found in all olive products.
However, olive oil, specially the extra virgin olive oil (EVOO), is mostly represented by the presence of
abundant secoiridoids as aldehydic forms of oleuropein and ligstroside aglucones (3,4-DHPEA-EA
and p-HPEA-EA, respectively) [77]. In addition, lignins were concentrated as (+)-1-acetoxypinoresinol
and (+)-1-pinoresinol in EVOO. The European Union regulation (EUn.432/2012) allows the
acknowledgement for extra virgin olive oil containing more than 250 mg kg−1 of biophenols
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(hydroxytyrosol and its derivatives e.g., oleuropein complex and tyrosol) with the health claim
“Olive oil polyphenols contribute to the protection of blood lipids from oxidative stress” [78]. Olive
fruits mainly contain phenols as secoiridoids oleuropein and dimethyl oleuropein, and phenolic
glycosides such as ligstroside, and hydroxycinnamic acid derivative verbascoside [79]. Olive leaves
contain secoiridoids (oleuropein, ligstroside, dimethyloleuropein, and oleoside), flavonoids (apigenin,
kaempferol, luteolin) and phenolic compounds (caffeic acid, tyrosol, hydroxytyrosol).

Biophenols serve as potent scavengers through capturing free radicals (Figure 2), combining with
peroxyl and alkoxyl radicals, and chelate trace metals. Studies have suggested that the scavenging
property seems to be more efficient in the decarboxymethyl and aldehydic forms of oleuropein aglycone
compared with hydroxytyrosol [80]. It was suggested that oleuropein and its derivatives are better
antioxidants than vitamin C, vitamin E, and the synthetic antioxidant butylated hydroxytoluene [81].
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5.2. MedDi against AD Mediated through Olive’s Monounsaturated Fatty Acid

Dysregulation of unsaturated fatty acids including oleic acid metabolism plays a major role in
driving AD pathology [82]. Oleic acid is the highest content of triglyceride as monounsaturated fatty
acid (MUFA) in olive oil and are typically thought to be crucially responsible for the cardioprotective
effects when compared with diets containing oils with a dominant content of saturated fatty acids [83,84].
A few studies have proposed the improvement in cognitive function mediated through the positive
effects on cardiovascular risk factors [85,86]. In an elderly population of southern Italy study,
administration of a typical MedDi was associated with a high level of protection against age-related
cognitive decline (ARCD) suggested due the presence of MUFA [87]. A population-based prospective
study in nondemented elderly (65–84 years) subjects consuming a typical MedDi containing high
MUFA showed protective activity against ARCD [88]. In a recent study on two groups consuming
MedDi and MedDi plus low dose (~26 g) extra virgin olive oil showed significant improvement in
cognitive functions, suggested through its anti-oxidant and anti-inflammatory action in the brain [89].

Inflammation, a well-known causative factor of several diseases showed a significant association
with compromised vascular health, as well as neuronal damage in the brain, through amyloid peptides
accumulation and subsequent activation of microglia and reactive astrocytes [90]. Prevention of NLRP3
inflammasome activation [91], and cause downregulation of circulating inflammatory biomarkers [92],
supported the beneficial effects through MUFAs in MedDi [93]. There is no direct role of high cholesterol
in the pathogenesis of AD, however, a few studies have shown membrane cholesterol play a role
in the formation and aggregation of Aβ [94], and concluded that high total cholesterol in midlife
(>6.5 mmol/L) may increase the risk of AD but urge cohort studies to publish their data on this topic
to increase the knowledge base [95]. Oleic acid from the olive in MedDi was found to be involved
in the lowering of cardiovascular and neurological disorder through the mechanism of acetyl-CoA
carboxylase (ACC) and 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibition [96]. Oleic
acid supplementation reduced secreted Aβ levels in amyloid precursor protein (APP) 695 transfected
Cos-7 cells and reduced BACE-1 levels, presenilin levels, and reduced amyloid plaques in transgenic
mice [97]. The in vitro and in vivo study reported anti-inflammatory and vasculo-protective activities
of oleic acid and that it provided improvements in insulin resistance and type 2 diabetes mellitus [98].
There is a need of studies using oleic acid against various AD biomarkers and a description of the
molecular mechanism of protection in humans.

5.3. MedDi Action against AD Mediated through Olive Biophenols

As MedDi is a plant-based dietary pattern particularly rich in biophenols, usually olives and olive
oil together provided approximately 11% of total biophenols intake, followed by red wine, which
contributed approximately 6%.

Multiple pharmacological activities (Table 2) have been associated with olive biophenols
(oleuropein, hydroxytyrosol, verbascoside, and quercetin) as potent antioxidants [74], which can
scavenge superoxide anion, hydrogen peroxide, hypochlorous acid [75], with anti-atherogenic,
anti-thrombotic, anti-inflammatory properties [74], and with inhibition the enzymes involved in AD
pathogenesis (acetylcholinesterases, butyrylcholinesterases, beta-secretases, histones deacetylases) [99],
and reducing Aβ toxicity [100]. Similarly, MedDi biophenols have shown favourable effects in
cognitive function through its anti-oxidant capacity [101] and anti-inflammatory properties [102].
MedDi containing biophenols, especially oleuropein and hydroxytyrosol, were significantly inhibited
events connected with endothelial activation, including the expression of adhesion molecules such as
VCAM-1, E-selectin, and to a lesser extent, ICAM-1 after stimulation with virtually any stimulus able
to elicit the coordinated expression of such genes [103] through reduction of reactive oxygen species
levels and nuclear factor (NF)-kB nuclear translocation and activation.

Diabetes is an established link with cognitive decline, and olive biophenols showed antidiabetic
effect through significantly improved insulin sensitivity and pancreatic β-cell secretory capacity [104].
However, there are still other possible mechanisms of brain protection by MedDi, such as an increase
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of neurotrophic factors related to neurotransmission, synaptic plasticity, and elimination of Aβ from
the brain. A report from the three-year PREDIMED study showed the significant increase in plasma
concentrations of brain-derived neurotrophic factor in the MedDi plus nuts group [105].

Table 2. Major pharmacological activities of olive biophenols.

Activity Study Action References

Antioxidant In vitro
Verbascoside, oleuropein, and caffeic acid

scavenges superoxide radical and protected
H2O2-induced SH-SY5Y cells

[5,75]

Cardioprotective

Randomised controlled
trial

OLE reduces blood pressure and plasma
TC, LDL-C and TAG [106]

Randomised controlled
trial

OLE improve vascular function and reduce
inflammatory cytokine (IL-8) [107]

Randomised controlled
trial

Virgin olive oil phenolic compounds cause
increase in bifidobacteria population together

with increase in biophenols microbial
metabolites

[108]

Neuroprotective

In vivo
Oleuropein aglycone reduces Aβ42

deposition, plaque deposit, and improves
the cognitive performance

[109]

In vitro Oleocanthal inhibited aggregation of tau
protein [110]

In vitro and in vivo
Oleuropein and hydroxytyrosol reduces
Aβ42 aggregation in SH-SY5Y cells and

plaques formation in mice
[100]

Metabolic syndrome

In vivo Hydroxytyrosol decrease fasting glucose
level in obese mice [111]

Randomised controlled
trial

Olive oil phenolic compounds improve
endothelial function in hypertensive

patients
[112]

Randomised controlled
trial

OLE improve insulin sensitivity and
pancreatic β-cell secretory capacity [104]

Enzyme modification
In vitro Olive mill waste phenolic compounds

increase GSH levels in erythrocytes [113]

In vitro Olive biophenols inhibited AChE, BChE,
BACE-1 and HDAC [99]

Aβ: amyloid beta; AChE: acetyl cholinesterase; BACE-1: β-secretase; BChE: butyryl cholinesterase; HDAC: histone
de-acetylase; LDL-C: low density lipid cholesterol; OLE: olive leaf extract; TAG: triacylglycerol; TC: total cholesterol.

Overall, the findings provide insights into the proposed mechanisms of action of the MedDi
containing olive biophenols in the context of prevention of neuroprotection and cognitive decline.
Studies highlight significant cardioprotective and protection from age dependent cognitive decline
which was suggested due the presence of oleic acid and biophenols in MedDi. Further experiments
will involve the investigation into the effects of MedDi in aged and Alzheimer’s patients to provide
insights into the potential anti-Alzheimer’s properties of the olive biophenols.

Growing evidence from the recent experimental and clinical data show the key role of gut dysbiosis
and gut microbiota-host interactions in neurodegeneration, and may contribute in the pathogenesis of
AD in elderly through the convergence of gut-derived inflammatory response together with ageing
and poor diet [114].

Significant reduction of gut bacteria Eubacterium rectale and Bacteroides fragilis counts having
anti-inflammatory action and rise of pro-inflammatory bacteria Escherichia/Shigella counts were observed
in the cognitively impaired elderly patients with brain amyloidosis [115]. Studies have shown the
positive correlation between MedDi dietary pattern and gut bacteria through the biophenol-induced
increase in Bifidobacteria counts and anti-inflammatory activity with reduction in C-reactive protein and
plasma cholesterol concentrations [116,117]. Further study supported the gut microbiota and dietary
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intervention approaches to modify the gut microbiota population specially through the consumption
of biophenols which resulted in the increase of Bifidobacteria population [108].

There is a need of research regarding MedDi diet-microbiota and specific inflammatory biomarkers
in AD, as there are not many studies that explore this connection. Moreover, probiotic therapy by
using measured quantity of specific olive biophenols are also warranted which may offer an intriguing
approach to promote host health via delivering anti-inflammatory mediators.

6. Trends of Medical Foods against Alzheimer’s Disease

Based on the recognized scientific principles and medical evaluation, a medical food is formulated
to be consumed or administered under the direct supervision of physician and intended to meet
specific dietary or nutritional requirement for management of a disease or condition. The products
are considered medical foods in the European Union, however in the United States the products
are regulated as dietary foods for special medical purposes. It was found that the symptomatic
benefits in AD have been claimed for three medical foods (Table 3) including Axona, Souvenaid, and
CerefolinNAC [118].

6.1. Axona

The dietary intake of coconut or palm kernel oils was suggested to be unable to provide caprylic
triglyceride in sufficient quantities to meet the needs of people with AD [119]. Axona consists of
medium-chain caprylic triglyceride, which was intended to be metabolized to ketones, and provided
an alternative source of energy to the brain. The underlying rationale of Axona use was to diminish
the glucose metabolism in the brain of AD patients and compensated by ketone bodies serving as an
alternative source of energy. Axona was found to be helpful in the clinical dietary management of
the metabolic processes related to mild-to-moderate AD [120]. However, due to presence of frequent
adverse events, primarily transient, mild-to-moderate gastrointestinal effects, Axona was not approved
by US Food and Drug Administration as a medical food for the AD therapy. Further, studies are
warranted to determine the safety and clinical efficacy of Axona in AD patients.

Table 3. Significance of medical foods in Alzheimer’s disease (AD).

Brand Name Ingredients Mechanism of Action Significance References

Axona Caprylic
triglyceride

Caprylic acid to ketone
bodies metabolism

provided an alternative
energy source for

neurons with
compromised glucose

utilization

Cause significant increase in serum
ketone bodies 2 h after

administration.
A significant difference was found

between Axona and placebo
groups in mean change from

baseline in ADAS-cog score on
days 45 and 90 of administration

(Axona group improving and
controls worsening)

[28]

Souvenaid

Omega-3 fatty acids
(eicosapentaenoic acid,

Docosahexaenoic acid), vitamins B6,
B12, C, and E, choline, folic acid,

selenium, uridine
monophosphate, phospholipids

Effects on deficits in
neuronal membrane

composition and function
as well as improvement of

synapse formation

A significant improvement was
found in delayed verbal recall and
unchanged clinical outcomes after
daily administration for 12 weeks.

[121]

A significant improvement in
memory domain function was

found and assessed with a
neuropsychological

test battery

[123]

CrerefolinNAC L-methylfolate,
methylcobalamin, N-acetyl-cysteine

Effects on metabolic
imbalances and

neurovascular oxidative
stress in

hyper-homocysteinemia

A significant decrease in
hippocampal and cortical atrophy
rates were found in participants

with both AD and
hyperhomocysteinemia

[122]

6.2. Souvenaid

Souvenaid is a multinutrient beverage enriched with 11 vitamins and supplements, approved for
early AD in some European countries and Australia. Souvenaid formulation consists of phosphatide
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precursors along with the supporting nutrients, which may intend to act synergistically to enhance the
membrane formation and synaptic function improvement in individuals with AD [121]. In addition,
the beverage mixture contains omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid,
vitamins B6, B12, C and E, choline, folic acid, selenium, uridine monophosphate, and phospholipids at
levels above to those contained in the normal diet. To date, no further studies have been investigated
to verify the 12-week effects of Souvenaid in patients with mild AD. Indeed, long-term study using
Souvenaid in phospholipid formation, synaptic function, and cognitive abilities in people with and
at risk of AD need to be examined in randomized controlled trials with a large sample size and over
substantially longer periods of time.

6.3. CerefolinNAC

CerefolinNAC is a mixture of L-methylfolate, methylcobalamin, and N-acetyl-cysteine, mainly
to address the metabolic imbalances of hyperhomocysteinemia and neurovascular oxidative stress
involved in the cognitive impairment. Administration of CerefolinNAC in AD or cognitive impaired
patients having hyperhomocysteinemia due to cerebrovascular disease resulted in an adjusted
hippocampal atrophy rate 4.25 times slower than those with AD and related disorders but not
those with hyperhomocysteinemia who did not receive CerefolinNAC [122].

However, the study has not been further verified and needs to be investigated in the future in a
large sample size with a longer follow-up period and a randomized assignment to the CerefolinNAC
treatment and placebo. Moreover, there is a need to emphasize that the findings in individuals with
hyperhomocysteinemia cannot be extrapolated to those with normal homocysteine levels.

7. Conclusions

The neuroprotective activity of olive phenolic constituents including oleuropein, hydroxytyrosol,
verbascosides, and oleocanthal are well documented [100,124–127]. According to the European Food
Safety Authority (EFSA), hydroxytyrosol is the only phenolic compound that has received a health
claim approval [128], and suggested that 5 mg of HT and its derivatives (e.g., oleuropein and tyrosol),
provided by moderate amounts of olive oil, can be easily consumed in the context of a balanced
diet, although the concentration of some olive oils may be too low to achieve this intake. However,
the specific activity in AD with cognitive decline still need to be investigated from each of the olive
biophenols. As olive biophenols represented one of the key ingredients in the MedDi and MIND
diet, the health beneficial effects due to their presence may be speculated too (Figure 3). Studies have
shown the adherence to the MedDi associated with a reduced risk for coronary heart diseases and
metabolic syndrome including hypertension and dyslipidemia, which have been associated with the
development of cognitive impairments [129,130].

In summary, accumulated evidence from animal studies, epidemiological studies, and clinical
trials linked higher adherence to a MedDi to a reduced risk of cognitive decline and dementia. However,
the prescription of the MedDi as a preventive or therapeutic measure in AD is hampered by the lack of
established levels of individual dietary components, especially of bioactive phytochemicals whose
identification, content, and efficacy are well characterized.
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8. Future Direction

The health benefits of olive’s major and minor constituents i.e., oleic acid and biophenols
are well established in context to cardioprotective and neuroprotective activity. Furthermore,
it is also well documented that the most important health-promoting mechanisms induced by a
MedDi are: a lipid-lowering effect, protection against oxidative stress, inflammation and platelet
aggregation, modification of hormones and growth factors involved in cancer, the inhibition of nutrient
sensing pathways by restricting specific amino acids, and gut microbiota-mediated production of
metabolites [131].

However, the cognitive benefits of MedDi and MIND diet are not very well investigated in context
to the use of olive or olive biophenols. Following considerations are warranted:

• The need to stick with a uniform source of olive intake (virgin or extra virgin olive oil or fruit) in
the MedDi and MIND diet.

• The measured portion or percentage of olive or olive biophenols are missing in the MedDi and
MIND diet. There is a need for a specified and uniform amount of olive inclusion in both diets.

Indeed, there is a need to investigate the randomized trial in placebo versus MedDi or MIND diet
group which may include or exclude olive in cognitive decline patients.

Funding: This research received no external funding.
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