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Apocynin Derivatives Interrupt Intracellular Signaling
Resulting in Decreased Migration in Breast Cancer Cells
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Cancer cells are defined by their ability to divide uncontrollably and metastasize to secondary sites in the body. Consequently,
tumor cell migration represents a promising target for anticancer drug development. Using our high-throughput cell migration
assay, we have screened several classes of compounds for noncytotoxic tumor cell migration inhibiting activity. One such com-
pound, apocynin (4-acetovanillone), is oxidized by peroxidases to yield a variety of oligophenolic and quinone-type compounds
that are recognized inhibitors of NADPH oxidase and may be inhibitors of the small G protein Rac1 that controls cell migration.
We report here that while apocynin itself is not effective, apocynin derivatives inhibit migration of the breast cancer cell line MDA-
MB-435 at subtoxic concentrations; the migration of nonmalignant MCF10A breast cells is unaffected. These compounds also
cause a significant rearrangement of the actin cytoskeleton, cell rounding, and decreased levels of active Rac1 and its related G
protein Cdc42. These results may suggest a promising new route to the development of novel anticancer therapeutics.

Copyright © 2006 Robert F. Klees et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Cancer remains the second highest cause of death in the
US [1, 2]. Unlike primary tumors that can be surgically re-
moved and treated with adjuvant chemotherapy and/or ra-
diotherapy, secondary tumors (metastases) are difficult to
treat because metastatic tumor cells disseminate through-
out the body, making them almost impossible to target.
While the majority of anticancer drugs target the hyper-
proliferation of metastatic cells and are efficacious in treat-
ing the beginning stages of cancer, none are curative for
metastatic disease [3, 4]. Many of these drugs are inef-
fective if the cancer is not treated immediately and may
prove toxic to healthy tissue. Cytotoxic anticancer drugs also
generate a variety of adverse side effects, including nau-
sea, vomiting, suppressed immune system, and hair loss
[5].

Nontoxic inhibitors of cancer cell migration are therefore
an attractive new class of potential anticancer drugs, offer-
ing the promise that potentially malignant tumors could be
confined to their tissue of origin through multiple rounds
of traditional adjuvant therapy. However, identifying such
compounds is complicated by the highly complex and tightly

controlled cell migration process [6–8]. Migrating cells use
proteolytic enzymes to digest “holes” in the surrounding
ECM, and then extend cytoplasmic projections (pseudopo-
dia) from the cell body in the direction of migration, form-
ing a “leading edge,” behind which the remainder of the cell
follows [9]. Extension and contraction of pseudopodia oc-
cur in a cyclic pattern, giving rise to the typical “crawling”
behavior of moving cells. Pseudopodia are enriched in pro-
teins thought to control the direction and rate of cell mi-
gration [10]. These include extracellular proteases, extracel-
lular matrix receptors (eg, integrins) and adapter proteins
that link these receptors to the actomyosin cytoskeleton, as
well as numerous signaling molecules, including GTPases
(Rac1, Cdc42, RhoA) that control the assembly and activa-
tion of this cytoskeleton [11]. However, how these molecules
work to choreograph the sequential rearrangement of cy-
toskeletal elements during cell migration is not well under-
stood.

The number of known compounds that specifically
inhibit this cyclical process is likewise very low. To ad-
dress this issue, we have developed an automated high-
throughput screening assay for identifying nontoxic in-
hibitors of cancer cell migration. We have previously used
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this assay to characterize the antimigratory behavior of
carboxyaminoimidazole, perillyl alcohol, and tamoxifen on
breast cancer cells [12, 13]. Having illustrated the nontoxic
effects of these well-known compounds on cancer cell mi-
gration, we have now turned our attention to identifying
new, previously unidentified inhibitors of tumor cell migra-
tion.

Natural products present a potentially rich source for
novel anticancer drugs. Plants, in particular, are reposito-
ries of biodiversity, and therefore, represent a source of many
medicines. Several therapeutic cancer treatments have been
derived from compounds found in plants (eg, taxol, pacli-
taxel, perillyl alcohol) [14, 15]. Apocynin, obtained from
the roots of Picrorhiza kurroa, is another potential anti-
cancer compound. Its rhizomes have been used in orien-
tal traditional medicine for thousands of years, treating
a variety of diseases of the liver and lungs [16]. Apoc-
ynin disrupts the assembly of the NADPH oxidase com-
plex, which includes the same Rac1 protein that regulates
the actin cytoskeleton during cell migration [17, 18]. The
possible link between apocynin and Rac1 inhibition sug-
gests that apocynin may be a source for inhibitors of Rac1-
mediated tumor cell migration. In this study, we report
the application of an in vitro screening assay to identify
apocynin-derived inhibitors of Rac1-based tumor cell migra-
tion.

MATERIALS AND METHODS

Tissue culture media (DMEM, RPMI) and penicillin G-
streptomycin sulfate (GPS) were purchased from Mediat-
ech (Cellgro, Va). Fetal bovine serum (FBS) was purchased
from Gemini Bio-Products (Woodland, Calif). Trypsin-
EDTA was obtained from Sigma Chemical Co (St Louis,
Mo). F-actin/G-actin in vivo assay kit (BK037) was ob-
tained from Cytoskeleton Inc (Denver, Colo). PAK-1 PBD
agarose beads were obtained from Upstate Cell Signal-
ing (Lake Placid, NY). Mouse monoclonal IgG2b anti-
body against Rac1 (Cat# 610650) and mouse monoclonal
IgG1 antibody against Cdc42 (Cat# 610928) were pur-
chased from BD Transduction Laboratories (San Diego,
Calif). Horseradish peroxidase (HRP)-conjugated goat an-
timouse IgG and HRP-conjugated goat antirabbit IgG sec-
ondary antibodies were obtained from Jackson Immuno Re-
search (West Grove, Pa). The protein assay kit was pur-
chased from Pierce (Rockford, Ill). MTT and apocynin
were purchased from Sigma. Phalloidin and calcein AM
were purchased from Molecular Probes (Eugene, Ore).
MIC plates were generously donated by Millipore (Dan-
vers, Mass). Unless otherwise specified, the other standard
reagents were obtained from Fisher Scientific (Fair Lawn,
NJ).

Synthesis of compounds

Apocynin (1 g) was dissolved in 5 ml dimethylformamide
and transferred to 490 ml phosphate buffer (20 mM, pH 7)

to obtain a concentration of 12 mM apocynin. To this solu-
tion, 5 ml of a 1 mg/ml soybean peroxidase (SBP) solution in
aqueous buffer were added. The reaction vessel was wrapped
in aluminum foil and the solution was magnetically stirred at
room temperature. The reaction was initiated by the addition
of a concentrated H2O2 solution (30% w/v), added contin-
uously via syringe pump at 0.1 ml/h for 12 hours) resulting
in a total of 20 mM H2O2 fed to the reaction. The result-
ing precipitate was collected by centrifugation in 50 ml con-
ical centrifugation tubes at 3000 rpm for 15 minutes, and
washed three times with DI water. The individual pellets
were pooled, transferred to 1.5 ml microcentrifuge tubes,
and dried under vacuum. All compounds except A5 were
synthesized at pH 7-8 and collected after the first wash.
Compound A5 was synthesized at pH 5 and collected sim-
ilarly.

Cell culture

Cryopreserved MDA-MB 435 breast cancer cells were ob-
tained from the ATCC (Manassas, Va) and were grown
according to the manufacturers’ instructions. Briefly, cells
were plated at 5 × 103 cells/cm2 in a T75 flask (75 cm2)
for continuous passaging in RPMI medium supplemented
with 10% FBS, 1% L-glutamine [29.2 mg/mL], penicillin
G [10,000 U/mL], and streptomycin sulfate [10,000 μg/mL].
Medium was changed twice weekly and cells were detached
by trypsin-EDTA and passaged into fresh culture flasks at a
ratio of 1 : 10 upon reaching confluence. Cultures were in-
cubated at 37◦C in a humidified atmosphere containing 95%
air and 5% CO2.

Adhesion assays

Cell adhesion assays were performed as previously de-
scribed using Sarstedt 96-well suspension cell culture plates
[19]. Tissue culture plates were coated with purified fi-
bronectin at a concentration of 20 μg/mL for 1 hour at
room temperature. Wells were washed twice with PBS
and incubated with nd-blotto (5% nondairy creamer in
PBS + 0.2% Tween 20) for 30 minutes prior to the assay.
Cells were allowed to attach for 30 minutes at 37◦C in
the presence of either 203 ng/μl, 36 ng/μl, or 3.6 ng/μl per
well of each of the four compounds, or their respective
vehicle controls. Cells were subsequently fixed with 3%
paraformaldehyde, washed twice in PBS, and incubated
in crystal violet dye for 15 minutes. Wells were washed
thoroughly with water and the violet dye was extracted
with 10% SDS solution. Absorbance was measured using
a TECAN SPECTAFluor spectrophotometer at 595 nm and
relative adhesion was compared to cells attached to nd-
blotto.

Migration assays

Cell migration assays were performed using 8 μm MIC plates.
Control filters were coated with purified fibronectin at a
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concentration of 20 μg/ml or nd-blotto for 1 hour at room
temperature prior to assay. Basal chambers for the nd-
blotto wells were filled with migration medium (DMEM +
1% sodium pyruvate + 1X GPS) while the basal chambers
for the remaining wells were filled with control medium.
Cell suspensions in migration medium were seeded at a
density of 5 × 103 cells per well. One lane of cells was
left untreated while the rest were given either one of the
four compounds at final concentrations of either 203 ng/μl,
36 ng/μl, or 3.6 ng/μl per well, or their respective vehi-
cle control. Migrations were allowed to run for 18 hours
at 37◦C. Filters were then incubated for 30 minutes with
5 μM calcein AM and washed thoroughly with PBS. Resid-
ual cells were swabbed from the top of the wells to avoid
false readings. To quantitate migration, plates were read
at 485Ex/535Em with a TECAN SPECTAFluor spectropho-
tometer. Relative fluorescence values for each experimental
condition were expressed relative to FN and nd-blotto con-
trols.

Viability

Cell viability assays were performed using Sarstedt 96-
well suspension cell culture plates. Cells were plated at
a density of 5 × 103 cells per well in a half and half
mixture of migration medium and control medium. One
lane was left untreated as a positive control while the re-
maining lanes were treated as per the migration plates
with the compounds and vehicles. After aspirating the
medium, cells were supplied with fresh medium con-
taining 5 mg/ml of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) and incubated for 4 hours at
37◦C. Medium was again aspirated and 100 μl of 10% SDS
was added to each well. Plates were placed back in the
incubator for 2 hours and absorbance was measured us-
ing a TECAN SPECTAFluor spectrophotometer at 570 nm.
Viability was expressed relative to the untreated con-
trol.

Immunohistochemistry

MDA-MB 435 cells were grown on glass cover slips coated
with 20 μg/ml of fibronectin for 4 hours in the presence
of one of the four compounds at a final concentra-
tion of 15.2 ng/μl or the respective ethanol vehicle con-
trol. Cells were then fixed with 3% paraformaldehyde
for 30 minutes and washed thoroughly with PBS. Cover
slips were blocked with PBS + 1% BSA for 30 minutes
and again washed thoroughly with PBS. TRITC conju-
gated phalloidin was incubated with the cover slips at a
1 : 200 concentration in blocking solution for 1 hour
at room temperature. Cover slips were mounted us-
ing Prolong antifade medium (Molecular Probes). Cells
were visualized with a Nikon TE2000-S inverted fluores-
cence/phase contrast microscope equipped with a digital
SPOT camera.

Actin isolation

Actin was isolated using an F-actin/G-actin in vivo assay
kit. Briefly, cells were plated on four separate 25 cm tis-
sue culture plates which were coated with fibronectin for
4 hours at a concentration of 30 × 106 cells per plate. Com-
pounds 5 and 9 were each added to one of the plates at
a final concentration of 36 ng/μl. The other plates were
used as an untreated condition and vehicle control. Cells
were grown for 4 hours and harvested in approximately
1 ml of warm LAS2 buffer (LAS1 stabilization buffer with
100 mM ATP and protease inhibitors). Cell lysates were
homogenized using a 25 G needle and incubated at 37◦C
for 10 minutes, followed by centrifugation at 100,000 xg
for 60 minutes at 37◦C. Supernatants containing G-actin
were immediately removed and the pellets containing the
F-actin were dissociated using cytochalasin-D in ice cold
dH2O.

Rac1/Cdc42 isolation

Rac1 and Cdc42 isolation was done using PAK-1 PBD
agarose beads. Briefly, treated and untreated cells were
lysed with 1 ml of MLB (magnesium-containing lysis buffer)
(25 mM HEPES pH 7.5, 150 mM NaCl, 1% NP-40, 10%
glycerol, 25 mM NaF, 10 mM MgCl2, 1 mM EDTA, 1 mM
sodium orthovanadate, protease inhibitors). PAK-1 agarose
(30 μl) was added to each lysate and agitated for 1 hour at
4◦C. Beads were collected by centrifugation and the super-
natant discarded. Beads were then washed three times with
MLB.

Western blotting

Western blots were performed on actin lysates and
Rac1/Cdc42 lysates. Once protein concentrations were de-
termined using a Pierce micro-BCA kit, lysates were sus-
pended in Laemmli sample buffer and resolved on a 10%
SDS-PAGE gel. The gels were then electrophoretically trans-
blotted to Trans-Blot nitrocellulose membranes (0.2 μm)
(Bio-Rad, Hercules, Calif). The membranes were incubated
with blocking solution (5% nonfat dried milk in 1X PBS +
0.2% Tween-20 (PBST)) for 1 hour, then probed with either
a G-actin antibody (1 : 1000), Rac1 antibody (1 : 250), or a
Cdc42 antibody (1 : 250) for 2 hours at room temperature.
After three washes with PBST, membranes were incubated
with HRP-conjugated secondary IgG (1 : 25, 000) for 1 hour,
followed by another three washes with PBST. Immunoreac-
tive bands were detected using the SuperSignal chemilumi-
nescent reagent (Pierce) and quantitatively analyzed by nor-
malizing band intensities to the controls on scanned films by
IMAGEJ software.

Statistical analysis

All experiments were repeated a minimum of two times
and the representative data were presented as mean ± SE.
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Scheme 1: (a) Typical products obtained by the SBP catalyzed oxidation of apocynin. (b) Probable structure of the major product obtained
from the SBP catalyzed oxidation of apocynin at pH 8 that had a significant inhibition on cancer cell migration.

Statistical analyses were preformed using Student’s unpaired
t test, and a p value less than 0.05 was considered significant.

RESULTS

A subset of apocynin derivatives inhibit cancer
cell migration at nonlethal doses

We employed our high-throughput assay to determine
if apocynin and its derivatives had a physiological ef-
fect on cancer cell migration. Apocynin itself had no
substantial effect on migration, nor did other simi-
larly structured compounds and their dimers, such as
vanillin (data not shown). Of the nearly 100 compounds
screened, only a handful yielded any significant inhibi-
tion of migration. Peroxidase catalyzed oxidation of apoc-
ynin leads to a mixture of products (Scheme 1(a)); how-
ever, at pH 8 the major oxidation product is a trimeric
hydroxylated quinone of m/z 50819a (Scheme 1(b)). Re-
sults from a representative ineffective apocynin deriva-
tive, A5, are shown in Figure 1(a). At sublethal doses,
the effective compounds blocked migration by at least
40%, and as high as 80% (Figures 1(b)–1(d)); at higher,
toxic doses, migration was completely inhibited as ex-
pected (not shown). The inhibition of cell migration seen
with the mixture of apocynin oxidation products at pH
8 could be predominantly due to the trimer hydroxylated
quinone.

Apocynin derivatives inhibit migration at the level
of the actin cytoskeleton

To address the possible mechanisms underlying this non-
toxic migration inhibition activity, we further character-
ized the cells treated with these compounds. In 30-minutes-
adhesion assays, the active compounds had no appreciable
inhibitory effect on cell adhesion to fibronectin as compared
to the controls (Figure 2). The slight decreases seen in ad-
hesion caused by compounds A5, A8, and 9 correlated to
the minor levels of cell death observed in Figure 1. Stain-
ing with fluorescently tagged phalloidin revealed that, un-
like control MDA-MB 435 cancer cells, which spread and
formed well-defined actin stress fibers when plated on fi-
bronectin (Figure 3, panels (a) and (b)), cells treated with the
migration inhibiting drugs (compound A8, Figure 3, panel
(c); compound 9, panel (e)) failed to organize their fila-
mentous actin (F-actin) cytoskeleton and remained round.
Cells treated with the ineffective compound A5 (Figure 3,
panel (d)) spread well and organized distinct stress fibers
as seen in controls. These changes in actin organization
were likewise reflected in western blots for monomeric actin
(G-actin) and F-actin in treated and untreated cell lysates
(Figure 4): cells treated with active compounds 5 and 9 con-
tained approximately 50% less F-actin compared to control
cells, while the amount of G-actin was comparable in all con-
ditions.

Small G-proteins are well-known moderators of the
actin cytoskeleton. To test their possible sensitivity to these
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Figure 1: Migration (solid) and viability (shaded) assays of MDA-MB 435 breast cancer cells in the presence or absence of compound
A5 (panel (a)), compound A8 (panel (b)), compound 5 (panel (c)), and compound 9 (panel (d)). Migration studies were performed for
18 hours using Millipore MIC plates, and cells were stained with calcein AM. Viability was assessed by utilizing an MTT assay and measuring
absorbance at 570 nm. Three concentrations of each compound were used; [low] = 3.6 ng/μl, [med] = 36 ng/μl, and [high] = 203 ng/μ l.
Data not shown for high concentration.
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Figure 2: Static 5 hours adhesion of MDA-MB 435 breast cancer cells to purified fibronectin in the presence and absence of test compounds.
Concentrations used were 36 ng/μl. Adherent cells were stained with crystal violet, solubilized in 1% SDS, and absorbance determined at
570 nm. Values represent mean± standard deviation.

compounds, we used PAK-PDB pull down assays to quan-
titate active amounts of both Rac1 and Cdc42 (Figures 5
and 6, resp). As shown in Figure 5, levels of active Rac1
changed very little between untreated cells, vehicle treated
cells, and cells treated with the inactive compound A5. In
contrast, cells treated with active compounds experienced a
40%–70% decrease in the amount of active Rac1. Similar re-
sults were seen with active Cdc42 in Figure 6. Relative to the
untreated control there was a small decrease in cells treated
with A5, presumably due to the presence of vehicle which
yielded the same slight decrease. However, we observed an
even greater decrease in cells treated with compounds A8, 5,
and 9.

DISCUSSION

Our screening assay has previously identified three noncy-
totoxic compounds that inhibit tumor cell migration. All
the three are already in clinical trials or have been ap-
proved for clinical use [20–22]. Here we expanded our
search to compounds that inhibit cell migration but whose
effects on cancer are unknown, starting with compounds
that inhibit intracellular signaling events that may be linked
to cancer cell migration. The target of this study, apoc-
ynin, upon peroxidase-catalyzed metabolic activation, in-
terferes with NADPH oxidase and inhibits lymphocyte mi-
gration through a G-protein regulated pathway without
affecting adhesion. Reactive oxygen species generated by
NADPH oxidase also control actin structure [23]. Apoc-
ynin or its metabolites have also been shown to affect the
migration of polymorphonuclear granulocytes, suggesting

its mechanism of action is conserved throughout cell types
[24].

Our data collectively suggests that the compounds we
identified induce sufficient rearrangement of the actin cy-
toskeleton to inhibit migration but not cause cell death over
an 18-hour period. Major disruptors of the actin cytoskele-
ton such as cytochalasin-D trigger apoptosis [25], but our
compounds do not elicit such a severe response. This dis-
ruption of the actin cytoskeleton leads to cell rounding with-
out an appreciable decrease in cell adhesion. The highest ef-
fective doses used in our study reduced adhesion by 20%–
40% (Figure 2), but lower doses which also inhibited cell
migration resulted in no significant decrease in adhesion
(data not shown). That these cells continued to be adher-
ent may explain why they remained viable even after treat-
ment. MDA-MB 435 breast cancer cells contain the charac-
teristic integrin receptors to bind fibronectin; α3β1, α5β1,
and αVβ3 [26]. It is through these integrins, particularly
the α5β1 pairing, that cells are able to receive survival sig-
naling which includes activation of the phosphatidylinosi-
tol 3-kinase (PI3K)/Akt pathway [27]. Akt signaling path-
ways have significant roles in response to extracellular stim-
uli, serving to regulate a number of cellular functions includ-
ing nutrient metabolism, cell growth, apoptosis, and survival
[28].

The Rho family of proteins control remodeling of the
actin cytoskeleton [29, 30]. These small G-proteins, which
include Rac1 and Cdc42, are well known for their abil-
ity to modulate and rearrange the actin cytoskeleton. They
regulate signal transduction pathways that mediate distinct
cytoskeletal rearrangements required for the production
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Figure 3: Rearrangement of actin cytoskeleton in treated and untreated MDA-MB 435 breast cancer cells. Cells were plated on fibronectin
for 4 hours in the presence of either compound 9 (panel (c)), compound A5 (panel (d)), or compound A8 (panel (e)) at a final concentration
of 15.2 ng/μl and were compared to the positive control (panel (a)) and the ethanol vehicle (panel (b)).Cells were fixed and stained for F-actin
using TRITC-phalloidin. Bar = 50 μm.

of actin-rich protrusions called lamellipodia and fillipodia
and then subsequent cell migration [31]. Our data sug-
gest that the active derivatives of apocynin might be in-
hibiting migration by altering the activity of these pro-
teins.

Apocynin or its oxidation products inhibit transloca-
tion of the cytosolic p47-phox and p67-phox proteins to
their membrane fraction counterparts, causing inactivation

of NADPH oxidase [32]. Active Rac1 is necessary for the
translocation of p47-phox and p67-phox, though it does not
mediate it directly. Rac1’s role in NADPH oxidase activation
is not well understood, but it is able to bind p67-phox, and
this binding may be what causes the final formation of the
active NADPH oxidase complex. When Rac1 is in its inac-
tive form, there is a decreased level of O2

−, signifying inactive
NADPH oxidase [33]. NADPH oxidase has also been shown
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Figure 4: (a) Western blot for G- and F-actin levels in MDA-MB 435 breast cancer cells cultured on fibronectin for 4 hours. Positive control
(lanes 1 and 2) and ethanol control (lanes 3 and 4) were compared to cells in the presence of 36 ng/μl of compound 5 (lanes 5 and 6)
and 36 ng/μl of compound 9 (lanes 7 and 8) by probing with an antibody for G-actin. Odd numbered lanes represent G-actin while even
numbered lanes represent F-actin totals. (b) Densitometry of the intensity of G- and F-actin bands.
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Figure 5: (a) Western blot of MDA-MB 435 breast cancer cells cultured on fibronectin for 1 hour. Active Rac1 was isolated using a PAK-PBD
pull down assay. Positive control (lane 1) and ethanol control (lane 2) were compared to cells treated with 36 ng/μl of either compound A5,
A8, 5, or 9 (lanes 3, 4, 5, and 6, resp) by probing with a monoclonal antibody for Rac1. (b) Densitometric analysis of Rac1 band intensities.

to associate with the actin cytoskeleton, implicating another
mode by which Rac1 may manage cytoskeletal structure [34].
Other inhibitors of NADPH oxidase also result in decreased
cell migration [35]. This could be caused by the decreased
activation of Rac1 from low levels of reactive oxygen species,
attributed to diminished activity of NADPH oxidase [36].

Our data suggests that the compounds may act through Rac1
also.

The oxidation products of peroxidase catalysis on apoc-
ynin may mimic the active metabolite synthesis of myeloper-
oxidase found in blood. Thus, the inhibitory effect may be
due to the in vivo activation of a biologically inert compound
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Figure 6: (a) Western blot of MDA-MB 435 breast cancer cells cultured on fibronectin for 1 hour. Active Cdc42 was isolated using a PAK-
PBD pull down assay. Positive control (lane 1) and ethanol control (lane 2) were compared to cells treated with 36 ng/μl of either compound
A5, A8, 5, or 9 (lanes 3, 4, 5, and 6, resp) by probing with a monoclonal antibody for Cdc42. (b) Densitometric analysis of Cdc42 band
intensities.

to give a highly potent cell proliferation inhibitor. Peroxidase
catalysis does not result in single products [37]. Rather, the
enzyme generates a mixture of oxidation products. We have
purified several of these compounds in this work and tested
their abilities to inhibit cell proliferation. In therapy, how-
ever, the action of myeloperoxidase would most likely gen-
erate a mixture of metabolites. The influence of this mixture
on biological activity may serve to increase the potency of
the inhibitory effect. Such a study is left for future investiga-
tions.
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