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Abstract
Introduction:Hydrogen sulfide (H2S), a colorless, water soluble, flammable gas with a characteristic smell of rotten eggs, has been
known as a highly toxic gas for several years. However, much like carbon monoxide (CO) and nitric oxide (NO), the initial negative
perception of H2S has developed with the discovery that H2S is generated enzymatically in animals under normal conditions. With the
result of this discovery, much more work is needed to elucidate the biologic effects of H2S. In recent years, its cytoprotective
properties have been recognized in multiple organs and tissues. In particular, H2S plays important roles in combating oxidative
species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) and protect the body from oxidative stress.
Therefore, this review discusses the biologic effect of H2S and how it protects cells in various diseases by acting as an antioxidant that
reduces excessive amounts of ROS and RNS.

Ethics and dissemination: Ethical approval and informed consent are not required, as the study will be a literature review and
will not involve direct contact with patients or alterations to patient care.

Conclusion:H2S has been found to be cytoprotective in oxidative stress in a wide range of physiologic and pathologic conditions,
an increasing number of therapeutic potentials of H2S also have been revealed. However, there is still much debate on the clear
mechanism of action of H2S, so that the mechanisms of cell signaling that promote cellular survival and organ protection need to be
further investigated to provide better H2S-based therapeutics.

Abbreviations: AMPK = adenosine 5’-monophosphate (AMP)-activated protein kinase, ATG5 = autophagy related 5, Bcl-2 = B-
cell lymphoma-2, Bcl-xL = B-cell lymphoma-extra large, CAT = catalase, ONOO� = peroxynitrite, CBS = cystathionine b-synthase,
CGL or CSE = cystathionine g-lyase, CNS = central nervous system, CO = carbon monoxide, CoCl2 = cobalt(II) chloride, COX-2 =
cyclooxygenase-2, ER = endoplasmic reticulum, ERK = extracellular-signal-regulated kinase, GPx = glutathione peroxidase, GST =
glutathione S-transferase, H2O = water, H2O2 = hydrogen peroxide, H2S = hydrogen sulfide, HO-1 = heme oxygenase-1, IL-8 =
interleukin-8, KATP = ATP-sensitive potassium channel, KCa = intermediate calcium-dependent potassium channel, Keap-1 = Kelch-
like ECH associating protein 1, LTP =long-term potentiation, 3-MST = 3-mercaptopyruvate sulfurtransferase, mTOR =mammalian
target of rapamycin, NaHS = sodium hydrosulfide, NF-kB = nuclear factor kappa B, NMDA = N-methyl-D-aspartate, NO = nitric
oxide, Nrf2 = nuclear-factor-E2-related factor-2, O2 = oxygen, O2

� = superoxide, PKCe = protein kinase C epsilon type, RNS =
reactive nitrogen species, ROS= reactive oxygen species, siRNA = small interfering RNA, SOD = superoxide dismutase, SR-A = the
class Amacrophage scavenger receptor, STAT-3= signal transducer and activator of transcription 3, TNF-a= tumor necrosis factor
a, Trx = thioredoxin, TrxR = thrioredoxin reductase.
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1. Introduction

The 1st toxic gas identified as a signal molecule is nitric oxide
(NO), which is produced from arginine by NO synthase.[1]

Another toxic gas, carbon monoxide (CO), is produced from
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biliverdin by hemeoxygenase. Both NO and CO were found as
smooth muscle relaxants, and recognized later as neurotransmit-
ters.[3,4] Researchers have suggested that NO liberated from
postsynaptic neurons may travel back to presynaptic terminals to
cause long-term potentiation (LTP) expression, which is thought to
be an importantmechanismunderlying learning andmemory in the
central nervous system.[5,6] H2S is the 3rd endogenous gasotrans-
mitter followed by NO and CO.[7] It was initially found to be a
neuromodulator[8] and facilitate the inductionof hippocampal LTP
by enhancing the activity of N-methyl-D-aspartate (NMDA)
receptors in neurons and increases the influx of Ca2+ into
astrocytes.[9] The biosynthesis of H2S has been attributed to 3
endogenous enzymes: cystathionine b-synthase (CBS), cystathio-
nine g-lyase (CGL or CSE), and 3-mercaptopyruvate sulfurtrans-
ferase (3-MST).[10] The desulfhydration of cysteine is considered as
themajor sourceofH2S inmammals.CBSandCSEare2pyridoxal-
5-phosphate-dependent enzymes. CBS is mainly expressed in
various regions of the brain and is crucial to the production of H2S
in the central nervous system,[11–13] whereas CSE is primarily
observed in the cardiovascular system.[14,15] Recently, 3-MST was
reportedas the3rdenzyme forH2Sproduction,which is localizedat
mitochondria and nerve endings.[16,17]
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The H2S functions in the secretion of corticotrophin-releasing
hormone from serotonergic neurons[18,19] and in the relaxation
of smooth muscle.[9,20] In addition, H2S shields neurons and
cardiac muscles from oxidative stresses[19,21–23] and helps to
maintain insulin secretion.[24,25] H2S has diverse physiologic
functions such as relaxing blood vessels, lowering blood
pressure,[26,27] antiapoptosis,[28] anti-inflammation,[29] and anti-
oxidative stress.[30] Among these functions, the role of H2S in
antioxidative stress has been one of the main focuses over
years.[31] Here, we summarize the existing knowledge about the
antioxidant effect of H2S, highlighting recent advances in our
understanding of the ability of H2S to neutralize reactive oxygen
species, and further discuss its function in different diseases.
2. Potential mechanisms of H2S in antioxidative
stress

2.1. Direct scavenging of ROS

Oxidative stress involves molecular or cellular damage caused by
ROS and RNS, resulting from deficiency of antioxidants and/or
antioxidant enzyme systems[32,33] and disrupting the cellular
reduction-oxidation balance. Excessive ROS can result in
deoxyribonucleic acid damage, protein misfolding, organelle
injury, and neuronal synaptic dysfunction.[34] Geng et al reported
that H2S reduces lipid peroxidation in the heart following
isoproterenol-induced myocardial ischemic injury by scavenging
hydrogen peroxide (H2O2) and superoxide (O2

�).[35] The major
ROS/RNS species produced in cells are O2

�, H2O2, and NO.[36]

In the ROS scavenging pathway, superoxide dismutase (SOD)
transfers O2

� to H2O2, which is converted to O2 and H2O by
catalase (CAT). Peroxynitrite (ONOO�), a cytotoxic species, and
potent oxidant which can lead to tyrosine nitration and tyrosine
residues in proteins, is formed from rapid interaction of O2

� and
NO.[37] H2S has been recognized as a direct scavenger of
ONOO�. Tyrosine nitration and cell toxicity induced by
ONOO� can be significantly inhibited by NaHS pretreatment
at 30 mM in human neuroblastoma cell line SH-SY5Y under
physiologic condition.[38] Additionally, it has been reported that
H2S can shield mouse brain neuroblastoma Neuro2a cells from
oxidative stress mediated by H2O2 and restore glutathione levels
suppressed by H2O2.

[25] Similarly, Whiteman and his colleagues
have shown that H2S can convert NO to form a novel
nitrosothiol compound in vitro, indicating that H2S directly
interacts with NO-free radicals to reduce oxidative stress.[39]

Collectively, H2S protects cells in various models of cellular
injury by acting as a direct scavenger that reduces excessive
amounts of ROS.
2.2. Nrf2-ROS-AMPK signaling pathway

The H2S protects cells from oxidative stress via 2 distinct
mechanisms: it either acts as a direct scavenger of ROS or
upregulates antioxidant defense system. A research indicated that
H2S could upregulate endogenous antioxidants through a
nuclear-factor-E2-related factor-2 (Nrf2)-dependent signaling
pathway.[40] Nrf2, a member of the NF-E2 family of nuclear
basic leucine zipper transcription factors, regulates gene expres-
sion of a wide range of enzymes that serve to attenuate oxidative
stress.[41] In mammals, Nrf2 plays an essential role in oxidative
and electrophilic stress responses.[42] This regulation is mediated
by Nrf2 binding to the antioxidant responsive element, a cis-
acting regulatory element or enhancer sequence which is found in
2

the promoter region of certain genes such as heme oxygenase-1
(HO-1), thioredoxin (Trx), glutathione S-transferase (GST),
glutathione peroxidase (GPx), thrioredoxin reductase (TrxR),
and catalase.[43,44] In the cytoplasm, Nrf2 couples with Kelch-like
ECH-associating protein 1 (Keap-1), which inhibits its transfer
into the nucleus. H2S promotes s-sulfhydrate Keap1 releasing
Nrf2, which helps Nrf2 translocation into the nucleus.[28] Calvert
et al demonstrated that 30minutes following the treatment of
H2S, Nrf2 assembled in the nucleus in cardiac tissue, and
remained at an increased level for at least 2hours. Moreover, the
protein expression of HO-1 and Trx1 was found to be elevated
24hours following H2S treatment.[45] Liu et al also reported that
H2S decreased high glucose-induced autophagy in endothelial
cells through the Nrf2-ROS-AMPK signaling pathway. Admin-
istration of 100mmol/kg NaHS could protect mouse arterial
endothelial cells against excessive autophagy induced by type II
diabetes and attenuate the impairment of expressions and
activities of SOD and CAT.[46] A role of Nrf2 in regulating
the antioxidative stress of H2S is further supported by the finding
that garlic oil, a reported H2S donor can induce Nrf2
activation.[47]
2.3. SR-A signaling pathway

The SR-A, the class A macrophage scavenger receptor, is
primarily expressed on the Golgi apparatus or on the plasma
membrane of macrophages.[48] It is essential in several macro-
phage-associated pathologic conditions resulting from noninfec-
tious diseases, such as adhesion, phagocytosis, and
atherosclerosis.[49–51] SR-Amay promote the host innate immune
response by regulating direct phagocytosis of pathogenic bacteria
and recognizing various pathogen-associated molecular pat-
terns.[52,53] In addition, SR-A activation could suppress endo-
plasmic reticulum (ER) stress-induced autophagy in
macrophages.[54] A recent study shows that administration of
100mg/kg NaHS (ip injection) after 50 minutes of ischemia could
attenuate renal ischemia/reperfusion injury by suppressing ER
stress-induced autophagy via SR-A signaling pathway in rats.[55]

SR-A is also a potential regulatory factor of oxidative stress and
concomitant inflammation.[56,57] Kobayashi et al reported that
hyperoxia increases SR-A expression inmurine lungs, while SR-A
deficiency exacerbates oxidative lung injury with increased levels
of tumor necrosis factor-a (TNF-a). They also confirmed that
intrapulmonary SR-A expression reduces macrophage activation
by inhibiting the production of proinflammatory cytokines and
protects against oxidative stress.[58]
2.4. Modulation of GSH

The H2S protects neurons from oxidative stress and improves the
viability of cells by increasing the production of intracellular
GSH, a major antioxidant in the cellular defense against
oxidative stress.[19,21] H2S redistributes GSH to mitochondria,
which generate mainly ROS. As an additional mechanism, H2S
produced by 3-MST with CAT in mitochondria might directly
reduce oxidative stress and protect cells. Kimura et al demon-
strated that H2S reduces cystine to cysteine in the extracellular
space and increases cysteine in cell to produce GSH, and that the
cysteine transport in the presence of H2S leads to GSH synthesis
to a greater extent than does cystine transport. Since H2S does not
inhibit the transport of GSH from cytoplasm into mitochondria
but efficiently increases mitochondrial GSH, the increase of
mitochondrial GSH by H2S may contribute greatly to the
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Figure 1. Potential mechanisms of antioxidation effects H2S. ER=endoplasmic reticulum, GSH=glutathione, H2S=hydrogen sulfide, Nrf2=NF-E2-related factor
2, ROS= reactive oxygen species, SR-A=scavenger receptor class A, TNF-a= tumor necrosis factor a.
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protection of cells from oxidative stress. Moreover, upon
oxidative stress caused by ischemia/reperfusion, GSH levels are
decreased. Total GSH was significantly decreased in mitochon-
dria prepared from severely ischemic focal tissue in both the
striatum and cerebral cortex,[59] while H2S can recover the GSH
levels reduced by ischemia/reperfusion in utero. This observation
also supports that H2S increases intracellular GSH concen-
trations by increasing the transport of cysteine to a greater extent
than that of cystine.
Collectively, the potential mechanisms of antioxidation effects

of H2S are summarized in Figure 1.

3. The effects of H2S in different tissues

3.1. Role of H2S as antioxidants in central nervous system

In the central nervous system (CNS), H2S participates in diverse
physiologic processes, including neurotransmission[60] and
neuroprotection.[61] H2S inhalation has a neuroprotective effect
in a mouse model of Parkinson disease.[62] H2S could protect
neurons from apoptosis and degeneration[63] by exerting anti-
inflammatory effects, upregulating antioxidant enzyme level,[60]

decreasing ROS and the aggregation of lipid peroxidation
products. Kimura et al demonstrated that H2S could protect
neurons from cell death by increasing the levels of the
antioxidant, glutathione using a model of glutamate-induced
oxidative stress. They found that H2S increased glutathione levels
by enhancing the activity of g-glutamylcysteine synthetase and
upregulating cystine transport.[19] Furthermore, H2S restrains the
3

biologic activity of ONOO formed in the reaction of NO with
superoxide anion.[64] Keszler et al reported that H2S may act as
an antioxidant by scavenging ROS directly and by reducing
glutathione disulfide.[65] Increased levels of ROS are detected at
inflammation sites. Removal of ROS can be found by supplying
homocysteine, and stimulated H2S synthesis expedites the
antioxidant activity.[66] It should be noticed that high concen-
trations of H2S cause production of ROS and RNS, whereas
lower levels of H2S could react with H2O2, ONOO�, and
O2

�.[17,67] Additionally, H2S performs a cell-signaling function
in the CNS by initiating NMDA receptors and increasing
intracellular Ca2+ by activating voltage-gated sodium channels in
neuronal cells. By doing so, it performs antioxidant functions by
upregulating generation of GSH andmitigating oxidative stresses
in cells.[68]
3.2. H2S and cardioprotection

There is substantial evidence that indicates the production of
ROS as an initial cause of injury to the myocardium following
ischemia-reperfusion. ROS formed during oxidative stress can
stimulate lipid peroxidation, oxidize proteins to inactive states,
and cause DNA strand breaks.[69] Therefore, the property of
cardiac myocytes to remain homeostasis during periods of
oxidative stress resides in the ability to activate and induce
protective enzymes.[70] Geng et al found that H2S reduces lipid
peroxidation in the heart following isoproterenol-induced
myocardial ischemic injury by scavenging H2O2 and O2

�.[35]

Zhang et al demonstrated that the novel H2S donor 8L mitigates
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oxidative stress-induced injury in H9c2 cardiomyocytes and the
mechanisms may be associated with the activation of Nrf2.[71]

Meanwhile, the generation of ROS, activation of nuclear factor
kappa B (NF-kB), increased expressions of cell adhesion
cytokines and induction of apoptosis, which were all regarded
as the key promoters of pathology, were all found suppressed by
H2S.

[72,73] This might be the potential mechanisms by which H2S
could diminish the plaques in arteries and attenuate the
atherosclerotic injury, indicating the anti-inflammation effect
of H2S is benefit for the cardiovascular protection. NaHS caused
cardioprotection, in terms of cell viability and electrically induced
calcium Ca2+ transients.[74] In cultured cardiomyocytes, NaHS
was found concentration-dependent inhibitory effects of apopto-
sis induced by hypoxia/reoxygenation.[75] NaHS also significant-
ly increased cell viability, percentage of rod-shaped cells, and
myocyte contractility.[76] More specifically, H2S increased the
nuclear localization of Nrf2 and the phosphorylation of signal
transducer and activator of transcription 3 (STAT-3) and protein
kinase C epsilon type (PKCe). Furthermore, H2S increased the
expression of HO-1 and trx-1, heat shock proteins 90 and 70, B-
cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL),
and cyclooxygenase-2 (COX-2), and also inactivated the
proapoptogen Bad.[40] Administration of H2S, either prior to
ischemia or at reperfusion, considerably recovers in vitro or in
vivo myocardial and ischemia-reperfusion injury.
3.3. H2S in diabetes

Diabetes, a serious chronic metabolic disorder, results from the
absolute or/and relative deficiency of insulin. The pathogenesis of
diabetes is related to decreased functional b-cell mass and
increased activities of ATP-sensitive potassium channel (KATP) in
pancreatic b cells.[77,78] Jain et al found that H2S levels in blood
are significantly lower in type 2 diabetes patients than in age-
matched healthy subjects. Low blood H2S levels may cause the
vascular inflammation observed in diabetes because treatment
with H2S can inhibit inflammatory factor monocyte chemo-
attractant protein 1 and interleukin-8 (IL-8) secretion by
monocytes cultured in high-glucose medium.[79] Administration
with NaHS (50mol/L) could prevent high-glucose-induced
apoptosis in endothelial cells by upregulating SOD activity,
reducing ROS generation and malondialdehyde levels, and
downregulating the Bax/Bcl-2 ratio.[80] It has been reported that
H2S could also ameliorate diabetes nephropathy by acting as an
ACE inhibitor.[81] These researches suggest that H2S may have
beneficial effects on the control of diabetes owing to its anti-
inflammatory and antioxidative functions. Therefore, supple-
mentation with H2S could be considered as a potential access to
maintain diabetic blood vessel potency.[82]
3.4. Role of H2S in skin disorders

The NaHS promoted the viability, induced the differentiation,
and enhanced autophagic activity in a dose-dependent manner in
HaCaT cells but had no effect on cell apoptosis. Blockage of
autophagy by ATG5 siRNA inhibited NaHS-induced cell
proliferation and differentiation.[83] This prosurvival effect of
H2S is in line with the results reported by Yang et al who found
that H2S help HaCaT cells recover from CoCl2 and methyl-
glyoxal induced injuries and behavior dysfunction through
improvement of mitochondrial function and oxidative status,
indicating H2S may benefit the delayed wound healing in
diabetes.[84,85]
4

Proliferation and differentiation of keratinocytes are indis-
pensable process of wound repair and are dysregulated under
pathologic conditions such as psoriasis, epidermal cancers, and
atopic dermatitis.[86,87] Thus, the identification of H2S as a
stimulus for keratinocyte proliferation and differentiation
provides essential information for understanding epidermal
repair and disease, and also offers potential targets for therapy.
Recent studies have demonstrated that H2S can accelerate
diabetic wound healing by promoting angiogenesis and restoring
endothelial progenitor cell function.[88] In addition, H2S could
restore a normal morphologic phenotype in Werner syndrome
fibroblasts, attenuates oxidative damage, and modulates mTOR
pathway.[89]

Psoriasis is a common T-cell-chronic inflammatory skin disease
characterized by circumscribed, red, thickened plaques with an
overlying silver-white scale. Ammar KH Alshorafa found that
psoriatic patients exhibited lower serum levels of H2S compared
to healthy individuals, suggesting that H2S may play a protective
role in the pathogenesis of psoriasis. Exogenous H2S inhibited the
TNF-a-mediated upregulation of NO, IL-6, and IL-8 in a dose-
dependent manner. In addition, H2S inhibited TNF-a-mediated
activation of p38, extracellular-signal-regulated kinase (ERK),
and NF-kB, making H2S-releasing agents promising therapeutics
for psoriasis.[90] It was also suggested that supplementation with
H2S may represent an alternative for psoriasis, because it greatly
reduced signs and symptoms of a psoriasis-like skin model.[91]

Additionally, a sulfur-rich balneotherapy has been suggested to
be an effective treatment of psoriasis.[92] Therefore, it would be
particularly interesting to explore whether H2S plays a
therapeutic role by mediating keratinocyte proliferation and
differentiation in psoriasis in vivo.
Other researches also demonstrated that H2S donors confer

protective effect against histamine-induced acute pruritus and
cutaneous inflammation. These effects can be mediated by
stabilizingmast cells, known to contain various mediators, and to
be primary initiators of allergic processes, thus making of H2S
donors a potential alternative/complementary therapy for
treating inflammatory allergic skin diseases and related pruri-
tus.[93] Exogenous H2S elicits cutaneous vasodilatation mediated
by intermediate calcium-dependent potassium channel (KCa) and
has a functional interaction with both NO and COX vaso-
dilatatory signaling pathways.[94] Further advancement of pH,
oxygen and free radical-sensitive donors will be helpful to achieve
selective delivery of H2S.
4. Conclusion

Experiments performed in recent years have shed light on the
biologic and pharmacologic roles of H2S in a wide range of
physiologic and pathologic conditions, an increasing number of
therapeutic potentials of H2S also have been revealed. This gas
has been found to be cytoprotective in oxidative stress in many
organ systems. H2S-donating drugs have been synthesized and
tested in vivo and in vitro.[95] Chattopadhyay et al showed that
H2S releasing nonsteroidal anti-inflammatory drugs (HS-
NSAIDs) inhibited proliferation, induced apoptosis, and caused
G0/G1 cell cycle block of HT-29 colon cancer cells.[96] John et al
established that HS-NSAIDs inhibited cycloxygenase-1 and
cyclooxygenase-2 activity as effectively as NSAIDs, and reduced
the prostaglandin synthesis. In addition, HS-NSAIDs did not
induce leukocyte adherence while NSAIDs did.[97] Agents which
specifically stimulate various H2S-producing enzymes (CSE, CBS,
and 3MST) are promising therapeutic candidates to study.
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However, there is still much debate on the clear mechanism of
action of H2S, so that the mechanisms of cell signaling that
promote cellular survival and organ protection need to be further
investigated across a wide array of disease states in a number of
animal species. It is also of extreme importance to reach an
understanding of the mechanism of H2S release, modulation of
synthesis and broken down, to provide an avenue for future
benefits of how H2S can be used as clinical therapeutic
applications.
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