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Frequency in peripheral
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HIV-1 infection, functional
capacity, and KIR expression
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Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a

CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated

markers expands during chronic viral infections such as HIV-1 and HCV, and, to

lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been

understudied because it requires the exclusion of other lymphocytes to

accurately identify its presence. Many questions remain regarding the origin,

development, phenotype, and function of the CD56neg NK cell population.

Our objective was to determine the frequency of this NK subset in healthy

controls and its alteration in viral infections by performing a meta-analysis. In

addition to this, we analyzed deposited CyTOF and scRNAseq datasets to

define the phenotype and subsets of the CD56neg NK cell population, as well

as their functional variation. We found in 757 individuals, from a combined 28

studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in

healthy peripheral blood, while HIV-1 infection increases this population by a

mean difference of 10.69%. Meta-analysis of surface marker expression

between NK subsets showed no evidence of increased exhaustion or

decreased proliferation within the CD56neg subset. CD56neg NK cells have

a distinctive pattern of KIR expression, implying they have a unique potential for

KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg

population exhibited different gene expression and degranulation responses

against K562 cells compared to other CD56neg cells. This analysis distinguishes

two functionally distinct subsets of CD56neg NK cells. They are phenotypically

diverse and have differing capacity for education by HLA class-I interactions

with KIRs.
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Introduction

Twelve years after the characterization of CD56 (alternatively

named NCAM-1, N901, NKH-1 and Leu-19) as a definingmarker

of human natural killer (NK) cells (1), Hu et al. found that human

immunodeficiency virus-1 positive (HIV-1+) individuals were

deficient for CD56+CD16+ (CD56dim) NK cells (2). These

individuals also exhibited an expanded subset of live

lymphocyte-sized cells having the CD3-CD5-CD14-CD19-CD33-

CD56-CD16+ surface phenotype. With this profile, these cells

were clearly not T cells, B cells, monocytes, nor dendritic cells

(DC). In addition, a decrease in CD56dim NK cell absolute count

combined with a larger CD56-CD16+ (CD56neg) population

proportion, supported Hu et al’s conclusion that CD56neg cells

comprise a distinctive subset of NK cells (2). Furthermore, the

CD56neg subset expresses killer cell immunoglobulin-like

receptors (KIRs), among other NK related markers (3–6).

Functionally, the CD56neg population exhibited a reduced lytic

response compared to CD56dim NK cells from the same donor.

This feature is consistent with reports that CD56neg cells have

poor major-histocompatibility complex (MHC)-unrestricted

cytotoxicity (7, 8). NK cell immunity is regulated by signaling

via receptors for human leukocyte antigen (HLA) class-I,

including KIRs, therefore altered expression of HLA class-I or

KIRs can disrupt NK cell immune functions (9). Lacking the

classical NK cell functional and phenotypic identifiers of the

CD56dim and CD56highCD16- (CD56bright) NK cell

subpopulations, CD56neg NK cells have yet to be studied in detail.

McKenzie and colleagues reported a population of CD56-

CD16+ large granular lymphocytes that lacked expression of

CD3, CD4, CD8, CD14, CD19, CD25 and HLA-DR in cancer

patients (10). Earlier studies by Yu, Ellis, and Lanier also

described a CD56-CD16+ NK cell subset (11–13), with the

latter estimating that it comprised <5% of CD16+

lymphocytes, although other cell populations were not

excluded in these studies. A phenotypically similar population

of cells had been noted in an exploration of NK cell development

in human fetal tissue isolates (14). Cord blood and fetal liver cells

with the CD56-CD16+ phenotype were observed following the

depletion of CD3, CD4, CD5, CD14, CD19, CD33 and CD71

expressing cells, with these authors noting that further

investigation of this population and how it relates to NK cells

was warranted (14). More recently, Bozzano et al. defined

CD56neg NK cell heterogeneity based on the expression of

perforin, CD94, NKG2C, NKp30, CD57 and DNAM-1,

whereas Hong et al. used CD122, CCR7 and CD57 expression

(15, 16). CD7 expression has been used as a marker of NK cells

that splits the CD56neg population, and NKp80 has more

recently been seen to play a similar role (17–19).

NK ontogenesis can be defined as a linear development from

precursor cells (CD122+CD34+CD38+CD123-CD45RA+CD7+

CD10+CD127-) to CD56bright cells (CD56highNKG2A/

C+NKp30+NKp46+), then CD56dim cells (CD56+CD16+), and
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ending their maturation by gaining KIRs and CD57 expression

(20). NK diversity however is more complex than this, with

6,000 to 30,000 distinct NK phenotypes being estimated to exist

in one individual (21). Infections are also associated with

deviations from linear NK ontogenesis. Cytomegalovirus

(CMV) is linked to an expansion of a CD56+CD16+NKG2C+

CD57+FceR1g- NK subset, Mycobacterium tuberculosis and

malaria associated with expanded CD45RO+ NK populations,

and Influenza A with CD49a+CD16-CXCR3+ NK cells (22).

Furthermore, Bozzano et al. identified an unconventional

CD34-CD56-CD16+perforin-CD94-CXCR4+ precursor that can

generate CD56+CD16+NKG2C+ NK cells (16).

In non-human primates the expression of CD8, NKG2A,

NKG2C, NKp30 and NKp46 are used to define NK cells and

their developmental stages instead of CD56, which is expressed

to a lesser degree than in human NK cells (23–25). Human NK

cell expression of CD56 correlates with NK cell motility,

formation of a developmental synapse, and control of

cytotoxicity (26, 27). Unlike humans, chimpanzee and

macaque CD56- cells account for a large proportion of

peripheral blood NK cells (28, 29). Despite this difference,

macaque NK cells that lack CD56 have been considered

equivalent to human CD56dim NK cells in their maturation

and function (30, 31).

The trend towards greater CD56 expression by human

peripheral blood NK cells suggests this NK phenotype is more

recently derived, indicating the CD56neg subset is more closely

related to NK cells found in ancestral primates. The extensive

divergence of the cognate MHC class-I ligands and KIRs among

humans and non-human primates demonstrates that strong

selective forces have immunologically diversified these species

(32). The concept that the genetic diversity of KIRs and MHC

class-I has been driven by a long history of viral infections, as

well as the increasing number of studies reporting associations

between CD56neg NK cells and viruses (2, 33–36), suggest that

this enigmatic NK population may contribute to the

management and amelioration of chronic infections (37–39).

In their 2010 review, Björkström et al. framed a number of

open questions regarding the CD56neg subset of NK cells: 1) Are

CD56neg NK cells found in tissues outside of peripheral blood?

2) What is the maturation state of the CD56neg subset? 3) As

CD56neg cells express KIRs, and are thus likely educated, what

mechanism underlies their reduced functionality? 4) Are

CD56neg cells exhausted or does their phenotype reflect a

unique function? And 5), are the expanded CD56neg cell

populations present in chronic viral infections different from

the CD56neg cells in uninfected individuals (40)? In this paper

we aimed to address these questions by performing a meta-

analysis of the published literature on CD56neg NK cell studies.

Additionally, we hypothesized that, following the recent

publication describing two populations of CD56neg NK cells

by Bozzano et al. (16), we could identify phenotypically and

functionally distinct subsets of CD56neg NK cells through
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analysis of deposited CyTOF and single-cell RNA sequencing

(scRNAseq) datasets.
Methods

Meta-analysis

Methods for meta-analysis were based on the Cochrane

guidelines, and presented following the MOOSE criteria for

repor t ing meta -ana ly s i s o f obse rva t iona l s tud ie s

(Supplementary Table 1). Data were extracted from the

published studies and imported into the R package, meta (41).

Random effect model (REM) assessment, using the Sidik-

Jonkman estimator and the Hartung-Knapp-Sidik-Jonkman

method, were used for meta-analysis because they assume that

both the study methodology and the cohorts studied are highly

variable. REM analysis was undertaken on all extracted data.

Analysis was also done after excluding data extracted using

median and IQR, to determine if their inclusion affected the

results (Supplementary Table 2).
Deposited dataset analysis

The Flowrepository and Immport dataset repository

websites (flowrepository.org and immport.org) were searched

for CyTOF datasets that included NK cell markers defining

CD56neg cells, as well as those that detect and distinguish KIRs.

Datasets were chosen to include markers that met our minimum

criteria for CD56neg NK cell definition, live cells with CD3-

CD14-CD19-CD56-CD16+ phenotype. Samples were gated to

identify the CD56neg NK cells. Only samples containing 100 or

more CD56neg NK cells were analyzed further. Backgating and

different cell lineages within the datasets were used to determine

appropriate gates for the extraction of single marker expression

in Flowjo v10.4.2. The datasets analyzed and the details of

population gating are included in the supplementary materials

(Supplementary Figures 1–7).
Single cell RNAseq analysis of the NK
cells obtained from an HIV-1+ donor

Bradley et al. (33) performed scRNAseq on NK cells

obtained from an HIV-1+ donor. We accessed and analyzed

their data using the R package Seurat v3.6.3 (33, 42). Excluded

from analysis were cell doublets, dead cells, and empty droplet

outliers displaying an unusually high (>4000) RNA content, a

high content of mitochondrial genes (>10%), or a low number

(<200) of total genes detected. The data were then normalized by

dividing the number of genes by the total RNA and log

transformed. Variable features were identified, gene expression
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scaled, and dimension reduction applied. The dimensionality of

the data was determined through resampling/bootstrapping,

with the result being used to denote the expected number of

clusters for the neighbor analysis. Clusters were assessed for

expression of the markers (perforin, CD94, NKG2C, CD57,

NKp30, and DNAM-1) that Bozzano et al. (16) associated

with a specific CD56neg NK cell subset. Meta-clusters were

generated by combining CD56neg NK cell clusters with the

corresponding gene expression of these markers. The commands

used to complete this R analysis are included in the

supplementary materials (Supplementary File 1). The webtool

g:Profiler (43) (https://biit.cs.ut.ee/gprofiler/gost) was used to

determine possible identities of clusters generated by differential

gene expression analysis. The top 50 differentially expressed

genes from clusters were assessed by running an ordered g:GOSt

query using Gene Ontology biological process (BP), cell

components (CC), and KEGG biological pathway data sources.

Bonferroni correction was applied and a threshold of 0.001 set.
Statistical analysis

We treated CyTOF data as being non-parametric, making no

assumptions about the data distribution. Comparison of

between group data was done in Prism v9 with ANOVA using

Kruskal-Wallis tests corrected for false discovery rate (FDR)

with the Benjamini, Krieger and Yekutieli (BKY) method, or

Mann-Whitney where only two groups were compared. Within

group analysis was undertaken with ANOVA using Freidman

tests corrected for FDR with the BKY method. Spearman’s

correlation corrected for FDR using the Benjamini and

Hochberg method was used to generate the HLA correlation

network in R with the qgraph package (44) (Supplementary

File 2).
Results

Meta-analysis of publications including
CD56neg NK cells

Pubmed was searched for any paper that mentioned

“CD56neg NK cells” or “CD56-CD16+ NK cells”, returning 31

and 367 results respectively. We identified and assessed papers

that specifically explored the CD56neg subset, while works not

pertaining to CD56neg cells in humans, or reviews, were

excluded. One hundred and thirteen primary research papers

were found. As study definitions of CD56neg cells varied, we

excluded studies from our analysis that did not remove CD3,

CD14 and CD19 expressing cell populations through cytometric

gating or NK cell enrichment. Of the 113 studies, 50 met this

minimum definition of CD56neg cells (CD3-CD14-CD19-CD56-

CD16+), and after excluding results from cultured cells or
frontiersin.org
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transplant recipients as possible confounders for meta-analysis,

data could be extracted from 35 papers (Figure 1A) (3–6, 15, 17–

19, 33, 35, 36, 45–68). Where mean and standard deviation (SD)

were not explicitly stated in the manuscript, they were estimated

from figures using the WebPlotDigitizer tool (69). Where

median and interquartile range (IQR) were used, we treated

the data as normally distributed, with the median used as the

mean and the IQR being divided by 1.35 to estimate the SD

following published methods (70). CyTOF human datasets with

markers to define CD56neg NK cells were identified in the

Immport.org and Flowrepository.org public repositories.
The CD56neg subset is a stable
population of peripheral blood NK cells

We undertook meta-analysis of published studies and of

analyzed deposited CyTOF datasets, with the aim of defining the

average frequency of CD56neg cells in healthy blood and in
Frontiers in Immunology 04
tissues, determining the extent of HIV-1-mediated expansion of

the subset, and confirming the variation in functional response

to HLA-negative target cells. Our analysis exploring published

studies shows that the CD56neg subset represents 5.65% of NK

cells in the peripheral blood (CI ± 1.21, I2 = 97%) (Figure 1B),

7.40% (CI ± 5.00, I2 = 93%) when assessing analyzed CyTOF

datasets (71–77), and 5.67% (CI ± 1.22, I2 = 96%) when

combining published and CyTOF data (Figure 1B). High study

heterogeneity was observed, which we expected from these

observational studies on a variety of cohorts. Our results are

consistent with the individual findings of both the Müller-

Durovic and Forconi studies (35, 47). The former found

Cytomegalovirus and Epstein-Barr virus dual infected

(CMV+EBV+) >60 year old individuals had increased

frequencies of CD56neg NK cells compared to age matched or

younger groups with single EBV or CMV infection status (35).

This group was similarly found to have a higher CD56neg subset

frequency than the combined REM mean. Likewise, Kenyan

donors in the Forconi et al. study had a higher frequency of
BA

FIGURE 1

Meta-analysis of CD56neg subset frequency in NK cells from published studies and deposited datasets. Results from the meta-analysis of
published and extracted data from CyTOF datasets on CD56neg NK cells. (A) 35 papers met the minimum CD56neg NK cell definition and had
extractable data. Year of publication, first author’s last-name, the publication focus, and CD56neg definition are listed. The last columns show if
mean/SD or median/IQR were extracted, and if data values were estimated from figures. The # column provides a key for identifying the papers
in the graphs. Analyzed CyTOF datasets are also shown. (B) CD56neg subset % of NK cells in the peripheral blood from published studies (REM
mean 5.65%, CI ± 1.21, I2 = 97%; study n = 28, combined sample n = 653), from CyTOF datasets (REM mean 6.11%, CI ± 5.92, I2 = 93%; dataset
n = 6, combined sample n = 104), and combined published and CyTOF datasets, the mean and range of which are shown as a dashed line and
blue shaded column respectively (REM mean 5.67%, CI ± 1.22, I2 = 96%, combined sample n = 757). CD56neg subset frequency in tissue
resident NK cells is shown, including both healthy tissue and tumors (REM mean 12.38%, CI ± 5.32, I2 = 97%; study n = 2, dataset n = 2,
combined sample n = 96).
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CD56neg NK cells than the combined REM mean, whereas

participants from the USA did not (47), suggesting that

differences in environment and genetics could be influential in

this variation.

Data for tissue resident CD56neg NK cells is limited. We

found two papers and two publicly available datasets with

extractable non-peripheral blood CD56neg NK cell frequencies

(5, 53, 75, 76). The CD56neg cell subset comprises 12.38% (CI ±

5.32, I2 = 97%) of NK cells in tissues and tumors (Figure 1B).

One question raised by the Björkström review (40) asked if

CD56neg NK cells are present outside of peripheral blood. Our

analysis here suggests that this is the case. CD56neg cell

frequency in tonsils was very variable, a limitation due to the

small sample number and possibly of the tissue disaggregation

process. However, proportions of CD56neg NK cells in skin and

lung were higher than in blood, indicating that CD56neg NK

cells may be found in increased proportion at sites of greater

exposure to externally derived antigens. This is also the case in

cord blood where maternal immune responses are finely

balanced to tolerate fetal antigens. Whether CD56neg NK cells

are involved in tolerance, promoting or inhibiting responses to

external antigens, or have a role in tissue maintenance is

not known.
Frontiers in Immunology 05
NK cell marker frequency is lower in the
CD56neg subset compared to
CD56dim cells

We performed a meta-analysis of cell marker expression

frequency, and the associated marker expression intensity,

comparing CD56neg cells to the baseline set by CD56dim NK

cells. Figures 2A, B show the REM results of data extracted from

published studies and from CyTOF marker data combined

(Supplementary Table 3). The NKG2, NKp30, NKp44, and

NKp46 receptors all showed reduced expression frequency on

CD56neg cells compared to the CD56dim NK subset, as did

DNAM-1, the KIRs, LILRB1, 2B4, CD8, CD69, CD94, CXCR6,

FcRg, CD161, NTB-A, Syk, Tactile, TNFa, CD57, Siglec-7, and
perforin (Figure 2A). We included the CD57+NKG2C+

phenotype in our analysis which corresponds to the adaptive

NK cell profile (22), finding a reduced frequency of CD56neg

cells with this phenotype compared to CD56dim NK cells. In

contrast, Granzyme B, CD2, CD38, CD62L, FAS-L, HLA-DR,

Ki-67, PD-1, and TIGIT expression frequency was comparable

between subsets. Regarding marker expression intensity, the

CD56neg population showed significantly lower standardized

expression of NKG2A, NKG2C, NKG2D, NKp44, KIR2DL1/S1,
B

C D

E

A

FIGURE 2

Meta-analysis of CD56neg subset frequency in HIV-1+ individuals, and variation in phenotype and function. (A) combined mean difference in
CD56neg subset frequency of markers compared to paired CD56dim cells are shown at zero. (B) combined standardized mean difference in
expression intensity for marker expressing CD56neg cells in comparison to the CD56dim subset. (C) mean difference of CD56neg % NK cells
in peripheral blood in HIV-1+ groups from HIV-1- controls (REM mean difference 10.69%, CI ± 3.34, I2 = 95%; study n = 15, dataset n = 1,
combined HIV-1+ samples n = 751, combined HIV-1- samples = 354). (D, E) show the standardized mean difference (SMD) in CD56neg NK cell
CD107a and IFNg responses to HLA-negative target cells compared to CD56dim cells (CD107a REM SMD -0.74, CI ± 0.42, I2 = 54%, IFNg REM
SMD -1.29, CI ± 0.54, I2 = 73%; study n = 4, combined sample n = 182). Data are presented as mean and 95% CI.
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KIR2DL3, KIR2DL5, KIR2DS2, KIR2DS4, KIR3DL1, LILRB1,

2B4, CD2, CD62L, CD69, CD94, CXCR6, NTB-A, CD57, Siglec-

7, and perforin compared to CD56dim NK cells (Figure 2B). The

comparable expression of PD-1 and Ki-67 between the two NK

cell subsets suggests that the CD56neg population does not

contain a larger proportion of cells with an exhausted

phenotype, nor reduced proliferation. The lower perforin and

maintenance of FAS-L expression in the CD56neg NK cells

could indicate a functional preference towards cell regulation via

receptor-mediated suppression over cytotoxicity (78).
CD56neg NK cell frequency increases
with HIV-1 infection

We confirmed that HIV-1 infection correlates with an

increased CD56neg subset frequency within NK cells. Loss of

other NK subsets could be the cause. However, several studies

that found increased CD56neg NK cell frequencies did not

observe a corresponding reduction in total NK frequency

within lymphocytes, and instead saw increased absolute counts

of CD56neg NK cells (2, 4, 33, 45, 60, 65). This implies the

CD56neg population is diluting the CD56+ populations either

through proliferation, or phenotype switching of CD56+ cells to

CD56neg. Compared to HIV-1- donors, CD56neg NK cell

frequencies in HIV-1+ individuals were expanded, showing an

increase in mean of 10.69% over study controls (CI ± 3.34, I2 =

95%; Figure 2C). Cohorts of HIV-1+ virological controllers were

included; long-term non-progressors (LTNP) who control HIV-

1 in the absence of antiretroviral therapy (ART), and elite

controllers (EC) who regulate HIV-1 without ART and show

no immunological damage associated with HIV-1 infection.

These individuals do not demonstrate the same increase in

mean CD56neg NK cell frequency (50, 57, 58). This suggests

that the immunological mechanism that promotes the subset’s

expansion during chronic infection no longer acts when

infection is controlled. While there are few studies

investigating CD56neg NK cells in other chronic virus

infections, our analysis of the available data (3, 4, 15, 19, 33,

35, 36, 45, 47, 48, 50–52, 54–58, 72, 79) indicates individuals

with chronic viruses show an increase in mean of 10.05% (CI ±

3.11, I2 = 94%) in CD56neg NK cell frequency compared to

controls (Supplementary Figure 8).
CD56neg NK cells have reduced
responses to HLA-negative targets
compared to CD56dim cells

While several studies have reported that CD56neg NK cells

have reduced responsiveness to HLA-negative target cells,

variable methods were used. We combined the most widely
Frontiers in Immunology 06
used method, in which NK cells within PBMCwere stimulated at

a 5:1 effector-to-target ratio for a median of 6 hours, with HLA-

negative target cells: K562 and 721.221 cells. We compared the

CD107a and IFNg expression of CD56neg cells to paired

CD56dim responses (Figures 2D, E). Although CD56neg cells

were responsive to HLA-negative targets, the combined

standardized mean differences for both CD107a and IFNg
showed a reduction in response compared to CD56dim cells

(-0.74, CI ± 0.42, I2 = 54% and -1.29, CI ± 0.54, I2 =

73% respectively).
NK cell stimulation with IL-2 and IL-15
reduces the frequency of CD56neg
NK cells

NK cell survival, maturation, and proliferation can be

promoted through culture in the presence of both IL-15 and

IL-2 (80, 81). Additionally, IL-2 stimulation of sorted CD56neg

NK cells from healthy donors promotes surface expression of

CD56 following 5 days in culture (60). We used CyTOF datasets

to analyze the response of CD56neg NK cells to cytokines, their

KIR expression, their phenotypic heterogeneity, and their

regulation by interaction with HLA class-I. We compared the

proportion of CD56neg NK cells within total NK cells (CD3-

CD14-CD19-CD7+ cells expressing CD56 and/or CD16) in the

FR-FCM-ZYZ3 dataset between unstimulated cells, and cells

stimulated either with IL-2 or IL-15 for 2.5 days (Figure 3A).

Both cytokines decreased the proportion of CD56neg NK cells.

As the NK proportion of live cells did not change, this suggests

that a subset of the CD56neg NK cells are upregulating CD56 as

described by Gonzalez et al. (60), as opposed to IL-2 and IL-15

stimulation specifically not promoting the proliferation of

CD56neg NK cells.
KIR expression and repertoire diversity
are reduced in CD56neg NK cells
compared to CD56dim NK cells

HIV-1 infection increases the frequency of CD56neg NK

cells in the peripheral blood. Control of HIV-1 and the

regulation of CD56neg subset frequency have both been linked

to KIR expression (34, 37, 82, 83). We therefore sought to assess

the difference in KIR repertoire between CD56neg cells and

CD56dim cells, and between HIV-1+ and HIV-1- groups. First,

we confirmed that CD56neg cells had increased frequency in the

HIV-1+ ART-treated and untreated groups compared to the

HIV-1- cohort in the SDY1535 CyTOF dataset (Figure 3B).

Gates for positive KIR staining were set and Boolean gating was

used to determine the presence of the possible KIR combinations

in the CD56dim and CD56neg NK subsets. Figure 3C shows a
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plot visualizing the frequencies of possible KIR combinations

among the KIR expressing cells. This plot emphasizes the higher

proportion of CD56neg cells expressing no KIRs compared to

CD56dim NK cells, as well as the larger proportion of CD56neg

cells that express only one type of KIR. Figure 3D shows that in

both the HIV-1+ and HIV-1- groups, the KIR repertoire of the

CD56neg cells is significantly different from that of the

CD56dim subset, with the CD56neg population having a

higher proportion of cells expressing a single KIR. Between

group variation was similarly assessed (Figure 3E), finding that

HIV-1 status, and treatment, influenced CD56neg NK cell KIR

repertoire. HIV-1 status and treatment also impacted on KIR

expression in CD56dim NK cells (Supplementary Figure 9).

Functional analysis of CD56neg cells has shown a reduced

responsiveness to target cells lacking HLA class-I. This could

be explained by our observation of reduced KIR expression on

these NK cells, and thus their lack of KIR-mediated education.

Other possibilities include contamination of the CD56neg

population by non-cytotoxic cells, or CD56neg cells containing

subsets of different function.
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The perforin-CD94-NKG2C-NKp30-

CD57- subset of CD56neg cells accounts
for differences in the CD56neg and
CD56dim populations

Bozzano et al. have indicated that the CD56neg NK population

has its ownsubsetsdefinedbyexpressionofperforin,CD94,NKG2C,

NKp30, CD57 and DNAM-1 (16). We exported the CD56neg

population from the SDY517 CyTOF dataset and ran a tSNE

dimensionality reduction on these cells. As shown in Figure 4A,

the CD56neg cells comprise two subpopulations, distinguished by

their expression of perforin and CD94. By analyzing the SDY517,

SDY1535, and FR-FCM-ZYZ3datasets we defined a perforin-CD94-

NKG2C-NKp30-CD57- subset of CD56negNK cells (Subset-A).We

then used Boolean gating to define the remainingCD56neg subset of

NK cells that lacks the Subset-A phenotype and expresses one or

more of the perforin, CD57, NKG2C, NKp30 and CD94 markers

(Subset-B) (SupplementaryFigures 1–3).ThroughREMcomparison

of marker expression frequency between CD56neg cell subsets and

the CD56dim NK cells, we found the CD56neg Subset-B cells are
B C

D

E

A

FIGURE 3

CD56neg subset frequency with IL-2 or IL-15 stimulation, frequency in HIV-1 dataset, and subset KIR repertoire comparison. (A) reduced
CD56neg % NK when stimulated by IL-2 or IL-15 (FR-FCM-ZYZ3). CD56neg populations with under 100 events were excluded from analysis. (B)
the frequency of the CD56neg subset within NK cells in HIV-1- and HIV-1+ individuals on/not on ART (SDY1535). Kruskal-Wallis tests corrected
for FDR were used for both analyses. (C) combinations of KIRs expressed by CD56dim and CD56neg cells in HIV-1- group (SDY1535). The
central pie chart shows proportion of subset expressing no KIR, one KIR, or combinations of KIRs. Surrounding bars denote the presence of KIRs
corresponding to the legend color. The smaller orbiting pie charts show proportion of subset KIRs when KIR-negative cells were excluded. (D)
comparison of KIR repertoire frequency between CD56dim and CD56neg subsets within each of the HIV-1-, HIV-1-ART, and HIV-1-NoART
groups (SDY1535), with significantly larger (p < 0.05) KIR combination proportions on CD56neg (red) and CD56dim (blue) shown using two-way
ANOVA. (E) impact of HIV-1 and ART status on KIR combination frequency within the CD56neg subset through between study group
comparisons (HIV- – purple, HIV-ART – orange, HIV-NoART – green).
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phenotypically closer to the CD56dim cells than to Subset-A cells

(Figure 4B). Expression frequency of NKG2A, NKp30, NKp46,

CD94, CD57, NTB-A, and CXCR6 was significantly lower in the

CD56neg Subset-B population than in the CD56dim cells, thus

resembling a less mature CD56dim NK phenotype (20). While

expression frequency of NKG2A, NKG2D, NKp44, NKp46, 2B4,

CD2, CD8, NTB-A, CXCR6, and IFNg was lower on the CD56neg

Subset-A cells than CD56dim cells, they had higher HLA-DR

expression frequency than either the CD56neg Subset-B or

CD56dim populations. To confirm that the larger proportion of

theHLA-DR+CD56negSubset-Acells areNKcells andnotdendritic

cells (T and B-cells being already excluded through gating), we

compared their KIR expression to that of HLA-DR- CD56neg

Subset-A cells. Some KIR were more highly expressed in HLA-

DR+ cells and others were more highly expressed in the HLA-DR-

subset. Thus there was no consistent variation in KIR expression

related to HLA-DR expression in the CD56neg Subset-A NK cells

(Supplementary Figure 10). Overall, these results suggest that much

of the phenotypic variation distinguishing CD56neg and CD56dim

NK cells is due to the CD56neg Subset-A population, which could

also include a population of NK cell progenitors (16).
CD56neg Subset-B NK cells and
CD56dim NK cells respond similarly to
HLA class-I-deficient target cells

NK cells challenged with the HLA class-I-deficient K562

cells were also included in the SDY517 dataset. CD56dim cells
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and the small CD56neg Subset-B population exhibited

comparable increases in CD107a expression following

coculture with K562 cells. In contrast, no increase in CD107a

expression was observed for CD56neg Subset-A cells

(Figure 4C). Direct unpaired comparison of K562 stimulated

subsets using an FDR corrected Kruskal-Wallis test found that

CD56neg Subset-A cells express significantly less CD107a than

the CD56dim cells (q-value < 0.0001), whereas Subset-B cells did

not vary significantly (q-value = 0.0905). Thus CD56neg Subset-

B NK cells respond to HLA-negative target cells as well as the

CD56dim cells. The IFNg, TNFa, IL-10, IL-17a, and GM-CSF

responses did not significantly change on stimulation with K562

for any of the NK cell subsets (Supplementary Figure 11). To

determine if KIR-mediated NK cell education contributed to

differences in the “missing-self” response, we compared the KIR

repertoire of CD56dim, CD56neg Subset-A, and Subset-B NK

cells (Figure 5A). No significant differences in KIR repertoire

were observed between CD56dim and CD56neg Subset-B NK

cell responses (Figure 5B). In contrast to CD56dim cells, Subset-

A NK cells demonstrated a decreased proportion of cells

expressing a single KIR type. Furthermore, NK cells expressing

KIR2DL1 as their only KIR were at higher frequency in CD107a+

CD56neg Subset-B NK cells than in CD107a+ CD56dim cells

(Figure 5C), whereas CD107a+ CD56neg Subset-A cells had

fewer cells expressing a single KIR than the CD56dim

population. Similarity in KIR expression and response to K562

targets by the CD56dim and CD56neg Subset-B cells indicates

these subsets are similarly regulated by KIR-mediated NK

cell education.
B CA

FIGURE 4

CD56neg cell analysis indicates distinct subset presence. (A) these tSNE plots were generated from exported CD56neg cells from the SDY517
dataset using the R cytofkit package, and show the main markers found to be significantly different in the Bozzano study that identified two
subsets within the CD56neg NK cell population (32). Two subsets could be similarly defined through predominantly the expression of perforin,
as well as surface expression of CD94 and other markers, to identify perforin-CD94-NKG2C-NKp30-CD57-DNAM-1- (Subset-A) cells, and all
other CD56neg NK cells (Subset-B). (B) this plot shows the combined mean difference of Subset-A and -B CD56neg cell frequency marker
expression from CD56dim NK cells from the datasets SDY517, SDY1535, and FR-FCM-ZYZ3. (C) this graph shows the change in CD107a+

CD56dim, Subset-A and -B CD56neg NK cell frequencies, comparing unstimulated expression to K562 stimulated levels (SDY517).
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Gene expression signatures associated
with Subset-A and -B CD56neg NK cells

CyTOF dataset analysis showed there are phenotypic and

functional differences between the CD56neg Subset-A and

Subset-B NK cells. We therefore examined if gene expression

differences in the CD56neg population defines similar subsets,

using the scRNAseq dataset from Bradley et al. (33) where

CD56bright, CD56dim, and CD56neg NK cells were sorted

prior to sequencing. We performed meta-clustering of

unbiased CD56neg cell clusters that resulted in the generation

of a perforin-CD94-NKG2C-NKp30- population (PRF1-KLRD1-

KLRC2-NCR3-) corresponding to CD56neg Subset-A, and a

population corresponding to Subset-B, which we then

incorporated with paired scRNAseq data for CD56bright and

CD56dim cells (Figure 6A). CD57 (B3GAT1) expression which

we previously used in cytometry data for Subset-A and -B

definition was not observed in any NK cell subset (Figure 6A).

The CD56neg Subset-B cells closely associated with a CD56dim

UMAP population, whereas the Subset-A NK cells clustered

separately (Figure 6B).

To assess if the Subset-A meta-cluster consisted of only NK

cells we assessed the differentially expressed genes within the

CD56neg Subset-A meta-cluster (Figure 6C). Five clusters were

identified by differential gene expression analysis, and informed

by g:Profiler. One of them, called the Subset-A CD56neg NK Cell

Cluster, was defined by expression of CD7, NKG7, GNLY, and
Frontiers in Immunology 09
granzyme. Two clusters expressed myeloid cell-associated genes,

one expressed B-cell genes, and the remaining cluster

demonstrated expression related to ribosomal translation

without a distinctive immune cell profile (Supplementary File

3). This adds transcriptional evidence for the presence of a

perforin-CD94-NKG2C-NKp30- CD56neg subset of NK cells.

We compared gene expression between the Subset-A

CD56neg NK Cell Cluster and CD56neg Subset-B NK cells

(Figure 6D). Gene expression associated with CD56neg Subset-

B NK cells included NKG7, GNLY, CTSW, HLA-A, B2M, HLA-C,

KLRD1, CST7, CD7, RPL3, PRF1, RPS3, RPL31, UBB, RPL23A,

CD247, RPL37, RPS27A, RPS26, andHCST, whereas the CD56neg

Subset-A population had greater expression of CPPED1,

SIGLEC10, LY96, NCF2, CYBB, PHACTR1, C19orf38, HCK,

MNDA, SLC7A7, LILRA1, MARCKS, TCF7L2, C5AR1, CFP,

CTSL, CDKN1A, SLC11A1, PILRA, and KLF4. Significantly,

more highly expressed genes in CD56neg Subset-B cells were

associated with ribosome translation and protein trafficking

pathways, as well as viral gene expression and translation, while

the more highly expressed genes in CD56neg Subset-A cells were

associated with pathways of cell activation and innate immune

responses (Supplementary File 3). This suggests that the two

CD56neg NK subsets have varying transcriptional responses to

the donor’s ongoing HIV-1 infection.

The Bozzano et al. study (16) suggested the Subset-A cells

were progenitor cells, so we investigated gene expression

di ffe rences assoc ia ted wi th NK ce l l deve lopment
B

C

A

FIGURE 5

KIR repertoire comparison of CD56neg NK subsets. (A) these charts show the combinations of KIRs being expressed by CD56dim cells,
CD56neg cells, and CD56neg Subset-A and -B from the SDY517 Immport.org dataset. The central pie chart with the encircling bars shows the
proportion of either the CD56dim or CD56neg cell subsets that express no KIR, a single KIR, or combinations of KIRs. The bars around the plot
denote the presence of a specific KIR corresponding to the legend color, and the smaller pie charts orbiting the central plot show the
proportion of subset KIRs when KIR-negative cells were excluded. (B) this heatmap shows a comparison of KIR repertoire frequency between
CD56dim and the CD56neg, Subset-A and -B cells (SDY517). (C) this heatmap shows cells that express CD107a+ following K562 stimulation,
comparing the KIR repertoire of CD107a+ CD56dim to CD56neg cells, and CD56neg Subset-A and -B (SDY517). Significantly varying KIR
repertoire frequency between subsets (p < 0.05) are shown as red based on two-way ANOVA results with multiple comparisons corrected using
the Sıd́ák method.
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(Supplementary Figure 12); NOTCH1 expression is associated

with common lymphoid progenitor cells, ID2 and RUNX

expression with NK progenitor cell differentiation, E4BP4

(NFIL3) and ETS1 expression mark the development of NK

progenitors to immature NK cells, and the presence of EOMES is

linked to developing NK cells that then gain T-bet (TBX21) as

they mature (84). Previous studies show that CD56neg NK cells
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express similar levels of EOMES and T-bet as CD56dim cells (35,

85). Each defined NK subset showed expression of these genes,

and although expression of ID2, RUNX3, and ETS1 were lower

in the CD56neg Subset-A than Subset-B cells, differential gene

analysis showed it was not a significant difference. With the

limited cell number and their transcriptional variation, we

cannot conclude if this subset contains progenitor cells.
B

C

D
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FIGURE 6

Distinct CD56neg subset gene expression. These graphs show the CD56neg cell population from the Bradley 2018 scRNAseq dataset on NK
cells from an HIV-1+ donor (24). (A) histograms of NK cell subset gene expression of perforin (PRF1), CD94 (KLRD1), NKG2C (KLRC2), CD57
(B3GAT1), and NKp30 (NCR3). (B) UMAP of CD56bright, CD56dim, and CD56neg meta-clusters. (C) top fifteen differentially expressed genes for
the 5 clusters identified within CD56neg Subset-A. One cluster demonstrated NK cell gene expression including CD7, NKG7, GNLY, and
granzyme genes. Other clusters had myeloid, B-cell, or ribosome-associated transcriptomes. (D) variation in gene expression of Subset-B
CD56neg cells compared to the NK cell cluster within the Subset-A CD56neg subset. Adjusted p-values for differential gene expression level are
shown on the x-axis, and the fold difference in expression of Subset-B cells to Subset-A on the y-axis. Gene name sizes correspond to their fold
difference in expression, and the level of significant difference between subsets is shown by increasing red coloration.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.992723
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cocker et al. 10.3389/fimmu.2022.992723
CD56neg subset frequency is associated
with HLA-E expression, whereas
CD56neg Subset-B proportion associates
with HLA-C expression

Further analysis of the SDY1535 dataset showed that Subset-

B NK cells comprise a significantly larger proportion of the

CD56neg cells in HIV-1+ donors (Figure 7A). This suggests that

the expansion of the CD56neg subset during HIV-1 infection

could be a consequence of positive selection for the Subset-B

population. Using matched dataset samples with HLA class-I

staining we exported the HLA expression data for total live cells,

and generated a correlation network of the HIV-1+ donors. With

this network we explored the potential influence of HLA class-I

expression and donor age on the expansion of the CD56neg
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subset of NK cells, and on the proportion of Subset-A and -B

CD56neg cells (Figure 7B). Both the frequency of PBMC

expressing HLA-E, and the intensity of HLA-E surface

expression, were positively associated with CD56neg cell

frequency within the NK population (Figures 7B–D). Age did

not correlate with CD56neg cells, nor with Subset-A or -B

frequencies, but did correlate positively with HLA-E

expression intensity (Figure 7B). The frequency and expression

intensity of HLA-G were inversely correlated with the frequency

of Subset-A cells within the CD56neg NK cell population

(Figures 7B, E). HLA-C expression has been previously

associated with the CD56neg cell subset frequency (83),

although our result lacked statistical significance (Figure 7F).

However, our regression analysis implicates HLA-C as a

promotor of the Subset-B NK cells (Figure 7G).
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FIGURE 7

HLA-C expression associates with Subset-B frequency within CD56neg NK cells in HIV-1+ donors. (A) frequency of the Subset-B population
within CD56neg NK cells, comparing HIV- and HIV-1+ donors (SDY1535) using two-tailed Mann-Whitney analysis. Median and IQR shown. (B)
Spearman’s correlation network corrected using the FDR method, with significant (p < 0.05) relationships between the frequency and expression
intensity of leukocyte HLA class-I molecules and the frequency of CD56neg and CD56dim subset within NK cells, and of Subset-A and -B
frequencies within CD56neg cells of HIV-1+ donors (SDY1535). Blue lines show positive associations while red lines show inverse correlations,
with correlation coefficients included above the lines. The plot was generated using qgraph (36). (C, D) show linear regression of CD56dim
(maroon diamonds) and CD56neg (green squares) frequencies within NK cells to (C) HLA-E expression intensity on live cells, and (D) HLA-E
expression frequency. (E) shows linear regression of Subset-A (blue diamonds) and Subset-B (red squares) frequencies within CD56neg NK cell
gate with the median HLA-G expression intensity for the live cells from the same samples. (F, G). show linear regression analysis of with HLA-C
expression intensity on live cells, of (F) CD56dim and CD56neg cells, and (G) CD56neg Subset-A and -B frequencies.
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Discussion

We set out to address outstanding questions pertaining to

the subset of human NK cells that lack CD56 expression

(CD56neg cells). Combining meta-analysis of published

investigations and deposited CyTOF datasets, we demonstrate

that CD56neg cells comprise a stable population of peripheral

blood NK cells. To a varying degree the CD56neg cells are also

present in tissues. Furthermore, they divide into a perforin-

CD94-NKG2C-NKp30-CD57- subset (Subset-A) and a subset

consisting of all other CD56neg cells (Subset-B), and these two

cell groups have distinct phenotypic and transcriptomic

signatures. The KIR repertoire, functional response against

HLA-lacking targets, and regulation by HLA class-I expression

were all determined to vary between the two CD56neg NK cell

subpopulations. Subset-A was the least like classical CD56dim

NK cells, whereas Subset-B more closely resembles CD56

expressing NK cells and constitutes a greater proportion of

CD56neg NK cells in HIV-1+ individuals.

While this work sheds light on the CD56neg NK cells, key

questions remain unanswered. Do the CD56neg NK cells have a

common ontogeny with the CD56dim NK cells? Are CD56neg

Subset-A cells a precursor for CD56 positive NK cells (16), and

does their higher expression of HLA-DR confer a unique

function? What is the role of CD56neg cells in chronic viral

infections, and what is the mechanism expanding their

population? Do they restrict viraemia or slow immune

exhaustion and/or damage? Are CD56neg cells promoted in

other chronic infections, such as HTLV or syphilis? What cells

are the CD56neg subsets interacting with in blood and tissues?

How do they affect immune function? And how do human

CD56neg cells compare to non-human primate NK cells in

development and function?

During NK cell development, CD56bright and CD56dim

cells are considered to originate from a common innate

lymphoid progenitor that also gives rise to various classes of

innate lymphoid cells (ILCs) (86). From the NK cell progenitor,

it is then possible to define linear stages of NK development

using cell surface molecules that ends with mature CD56dim

CD16+CD57+KIR+NKp80+ cells (20). However, NK cells are a

highly diverse population (21) and the influence of pathogens

and immune factors can promote variation in development (22).

We found that the CD56neg Subset-B cells are phenotypically

close to CD56dim cells. If we assume the linear development

from CD56bright cells into CD56dim NK cells, then Subset-B

corresponds to the mature CD56dim population that expresses

CD16, has decreased NKG2A expression and has yet to express

CD57 (20). However, CD56neg Subset-B cell KIR expression

reflects the KIR expression of CD56dim NK cells. KIR

expression is considered stochastic (87), implying that the

CD56neg cells have a similar range of maturation states as the

CD56dim subset. This similarity between the subsets suggests

either that Subset-B CD56neg cells develop separately from
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CD56+ NK cells but are subject to similar influences, leading

to similar maturation and KIR expression, or that CD56

expression can be lost or gained and the CD56dim and

CD56neg populations have a common ontogeny.

A proteomic comparison of CD56dim and CD56neg NK cell

subsets demonstrated that they were phenotypically

homogenous, with the only differences being that CD56dim

cells had increased FcRL6 and CD319 expression, while

CD56neg cells had higher levels of surface CD127 and

CD172g (85). Absence of CD56 and presence of CD127 is

associated with an ILC phenotype. However, ILCs do not

express CD16 or KIRs, nor do they produce perforin or

degranulate in the presence of K562 targets (86). The case for

CD56neg Subset-A cells is uncertain, due to their reduced KIR

expression and lack of response to K562 cells. Bozzano et al.

characterized this CD56neg perforin-CD94-NKG2C-NKp30-

CD57- population as an intermediate between CD34+DNAM-

1brightCXCR4+ lymphoid progenitors that can give rise to mature

NKG2C+ NK cells that are functionally effective and potent

regulators of CMV replication (16). However, they did not

conclude whether the other CD56neg cells were also produced

by the same progenitor population (16). This suggests CD56neg

Subset-A cells are an alternative progenitor to NK cells,

specifically related to ongoing CMV infection if not other

chronic virus infections. The transcriptomic profile of

CD56neg NK cells has been described as similar to that of

CMV associated adaptive CD56dim cells, further supporting this

theory (47).

If we look to gene expression for guidance, CD56neg Subset-

B cells expressed similar levels of development associated genes

to the CD56dim subset, which with their similarity in KIR

expression and functional response towards K562 cells,

supports these cells being a mature NK population. While not

significant, CD56neg Subset-A cells expressed lower levels of

ID2, RUNX3, and ETS1 in comparison to CD56neg Subset-B

cells and other NK populations, suggesting they could be in an

earlier stage of development (84). This fits with the notion of

them being a progenitor population.

Direct comparison of Subset-A and -B cells using scRNAseq

indicated that the populations have distinct gene expression

profiles. Subset-A demonstrated variation from other NK cell

subsets as evidenced by the grouping of the Subset-A CD56neg

NK Cell Cluster with myeloid and B cell clusters, being

distinguished from these non-NK cells by the expression of

CD7, NKG7, and GNLY. The expression of APOBEC3A and

HLA-DQB1 in the two myeloid populations indicates that a

small number of monocytes and/or dendritic cells were not

excluded by the CD3-CD14-CD19- flow cytometry cell sorting.

The expression of CD79A and immunoglobulin genes similarly

suggests the presence of B cells. The Subset-A cells were most

likely clustered with the myeloid and B cell populations due to

their distinction from other NK subsets instead of being more

related to these non-NK cells. If Subset-A is a progenitor
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population it may contain gene expression homologous to

lymphocyte and myeloid subsets that would group it with

monocytes, dendritic cells, and B cells. However, our

investigation could not confirm that Subset-A cells were a

progenitor population.

The development of CD56neg NK cells is clearly affected by

chronic viral infections. The most studied, HIV-1, demonstrates

significant expansion of the CD56neg proportion in NK cells.

We found that this expansion is associated with CD56neg

Subset-B, indicating that HIV-1 infection promotes this

population’s generation either through expansion or through

loss of CD56 expression from CD56dim cells. It has been

suggested that the change in CD56neg frequency in NK cells

in chronic infection is due to loss of CD56dim NK cells instead

of CD56neg expansion. However, a number of studies have

demonstrated growth in the CD56neg NK cell population while

NK frequency within lymphocytes remains stable, or directly

through increased CD56neg absolute cell counts (2, 4, 33, 45,

60, 65).

Altered cytokine signaling during chronic infections may

promote this NK cell phenotype, as a case study of a Janus

kinase-3 deficient donor with altered cytokine signaling capacity

identified an expanded population of CD3-CD56-CD16+KIR+ cells

(88). Changes in HLA class-I expression likely play a role as well.

Increased HLA-C surface expression has been found to negatively

correlate with CD56neg cell frequency in NK cells in HIV-1+

individuals, and that this was exaggerated by HLA-C1+/C1+

KIR2DL3+KIR2DL2- genotypes, suggesting that while chronic

infection expands this population there is a genetic mechanism

also regulating CD56neg NK cell development (83). This implies

that HLA-C2+ education of NK cells may preferentially expand the

CD56neg population, which is supported by the greater proportion

of CD56neg and CD56dim cells expressing KIR2DL1 alone that we

observed with HIV-1+ status in the SDY1535 dataset. Our analysis

found a positive but non-significant relationship between HLA-C

expression level and CD56dim frequency in NK cells. However,

within CD56neg cells, Subset-B frequency positively correlated with

both HLA-C and HLA-G expression levels, supporting the notion

that interactions between HLA-C and KIRs regulate these NK cells.

The increased HLA-C expression observed on CD3-CD19-CD33-

CD56-CD16+ cells associated with CMV reactivation may even be a

method of self-promotion (89).

HLA-E expression positively correlated with CD56neg

frequency in NK cells. Compared to CD56dim cells, CD56neg

NK cells showed minor variation in NKG2C and reduced NKG2A

expression, indicating that their association with HLA-E reflects a

reduced capacity for HLA-E:NKG2A inhibition. This mechanism is

similar to the greater response to HLA-E expressing CMV infected

endothelial cells found in NKG2C+ versus NKG2A+ CD56dim cells

(90). HIV-1 reportedly stabilizes HLA-E surface expression to

reduce NK cell activation and reduce lysis of infected CD4 T cells

(91). HLA-E maintenance in CMV infected cells has also been

demonstrated (92), suggesting that at least the CD56neg Subset-B
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expansion is an adaptation to this immune evasion strategy. Due to

its reduced NKG2A expression, it is likely that the CD56neg Subset-

B population is more capable of lysing virally infected cells

expressing increased levels of HLA-E.

Humans seem to have gained greater expression of CD56 on

NK cells than our primate cousins (23–25, 28, 29). We hypothesize

that this gain of CD56, in addition to the changes in KIR expression

and expansion of NK subsets, such as adaptive or CD56neg cells

observed in HIV-1, HCV, EBV and CMV, were driven by historical

chronic infections that acted as selective pressures on human

evolution, driving the genetic diversity of HLA and KIRs in our

species. In evolutionary terms, the emergence of HIV-1 and HCV

infections is relatively recent (~100 and ~3000 years) (93, 94),

whereas CMV and EBV have an intimate relationship with

primates measured in millions of years (95–97). Consequently,

these herpesviruses have had a greater influence on the evolution of

the immune system. Their association with adaptive NK cells and

CD56neg NK subsets implies these diverse innate lymphocytes

represent biological adaptations to control or limit the pathogenicity

of chronic viral infections.
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