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Abstract

Hereditary breast and ovarian cancer syndrome (HBOC) is most frequently caused by muta-

tions in BRCA1 or BRCA2 (in short, BRCA) genes. The incidence of hereditary breast and

ovarian cancer in relatives of BRCA mutation carriers who test negative for the familial muta-

tion (non-carriers) may be increased. However, the data is controversial, and at this time,

these individuals are recommended the same cancer surveillance as general population.

One possible explanation for BRCA phenocopies (close relatives of BRCA carriers who

have developed cancer consistent with HBOC but tested negative for a familial mutation) is

natural chimerism where lack of detectable mutation in blood may not rule out the presence

of the mutation in the other tissues. To test this hypothesis, archival tumor tissue from

eleven BRCA phenocopies was investigated. DNA from the tumor tissue was analyzed

using sequence-specific PCR, capillary electrophoresis, and pyrosequencing. The familial

mutations were originally detected in the patients’ first-degree relatives by commercial test-

ing. The same testing detected no mutations in the blood of the patients under study. The

test methods targeted only the known familial mutation in the tumor tissue. Tumor diagnoses

included breast, ovarian, endometrial and primary peritoneal carcinoma. None of the familial

mutations were found in the tumor samples tested. These results do not support, but do not

completely exclude, the possibility of chimerism in these patients. Further studies with com-

prehensive sequence analysis in a larger patient group are warranted as a chimeric state

would further refine the predictive value of genetic testing to include BRCA phenocopies.

Introduction

Germline mutations in BRCA1 or BRCA2 genes cause over 90% of hereditary breast and ovar-

ian cancer (HBOC) syndrome [1–3]. BRCA1 and BRCA2 proteins play a critical role in repair
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of double-stranded DNA breaks and the maintenance of the genome integrity [3, 4]. Gene

mutations result primarily in female cancers and an estrogen effect on tissue susceptibility has

been postulated [5–7]. Truncating germline BRCA1 and BRCA2 (gBRCA) mutations are called

deleterious or pathogenic and confer an extremely high risk of cancer. The lifetime risk of

breast cancer in female gBRCA mutation carriers is up to 85%; the lifetime risk of ovarian can-

cer is up to 50% [8–16]. Some data suggest that the risk of endometrial cancer is also increased

in gBRCA mutation carriers [17], especially, the risk of uterine papillary-serous carcinoma. If a

woman previously diagnosed with breast cancer has a gBRCA mutation, she has up to a 65%

risk of another breast cancer and a 16% lifetime risk of ovarian cancer [18, 19]. Female gBRCA
mutation carriers typically present with breast cancer under age 50, but may also present with

ovarian, fallopian tube, primary peritoneal, and pancreatic cancer occurring at any age.

Because the risk of cancer is so high, it is recommended that these women undergo prophylac-

tic surgery (removal of the breasts, fallopian tubes, and ovaries). If a woman declines surgery,

it is recommended to undergo increased surveillance for breast and ovarian cancers which is,

however, not as effective as prophylactic surgery at reducing cancer risk and may be not effec-

tive at all for ovarian cancer [20–25].

HBOC is inherited in an autosomal dominant pattern, meaning that affected individuals

are heterozygous for gBRCA mutations. Patients suspected of carrying gBRCA mutations

based on personal and family histories are recommended to undergo a test involving isolation

of DNA from their white blood cells (or saliva) and sequencing of their BRCA1 and BRCA2
genes with deletion/duplication analyses.

If a relative of a gBRCA carrier has a blood test that is negative for the known familial

gBRCA mutation, that individual is deemed to have a normal (wild-type) germline BRCA1 and

BRCA2 genes and is often referred to as “BRCA non-carrier” [26]. Generally, there is no rec-

ommendation to undergo prophylactic surgery or increased surveillance for cancer. However,

some BRCA non-carriers do develop breast or ovarian cancers. These individuals are referred

to as “BRCA phenocopies,” meaning that they have the same phenotype (affected by an

HBOC-associated cancer) as their relative, but do not have the same genotype (the known

gBRCA mutation as shown by blood testing). Studies report conflicting results on the relative

risk ratio (RR) of breast and ovarian cancers in BRCA non-carriers with the breast cancer RR

up to 5.1 [27, 28]. Some authors argue that their cancer risk is the same as in the general popu-

lation [29, 30], some conclude that their risk is the same as in high risk families without identi-

fied gBRCA mutations [26], but overall most authors agree that their risk is increased [31, 32].

The studies are difficult to compare because they use different methods and are applied to dif-

ferent populations [33]. Currently, the only explanations offered to BRCA phenocopies on the

cause of their cancers are: 1) their cancers are sporadic; 2) they may have germline mutations

in other genes that cause HBOC which have not yet been identified; 3) there are familial envi-

ronmental factors that lead to their cancer. All of these explanations assume that cancers in

BRCA non-carriers are not related to the familial gBRCA mutation. The risk of BRCA non-car-

riers developing an HBOC is clinically important because it determines their cancer surveil-

lance and prevention recommendations [34].

An alternate explanation for BRCA phenocopies that we further explored was natural chi-

merism. We hypothesized that in at least some BRCA phenocopies, breast and ovarian cancer

are still caused by familial BRCA mutations, but the mutant genes are transmitted through an

alternative non-mendelian inheritance, via chimeric cells harboring the mutation rather than

through the germline [35, 36]. We further hypothesized that it is these BRCA-mutant cells that

give rise to breast and ovarian cancers in chimeric individuals as these cells are known to be

susceptible to malignant transformation. See Fig 1A. Therefore, the progeny of these cells (the

majority of cells in the tumor) would be BRCA-mutant as well. This hypothesis gave us a
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potential explanation for the existence of BRCA phenocopies but also, the method to test the

hypothesis by analyzing the patient’s tumor tissue for the known familial mutation. Finding

the familial mutation in the patient’s tumor would have no other explanation except for chime-

rism. Even though somatic BRCA mutations are common in breast and especially, in ovarian

Fig 1. BRCA phenocopy hypothesis. A. Maternal-fetal microchimerism. B. Tetragametic chimerism. C. A woman with BRCA-mutant chimeric cells.

https://doi.org/10.1371/journal.pone.0195497.g001
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cancer, it would be highly improbable to find the same somatic mutation in the patient’s

tumor as the germline mutation present in her first-degree relative.

Chimeric or mosaic individuals harbor two different cell populations with different genetic

compositions, arising from two different zygotes. For our purposes, “chimeric” will be pre-

ferred to “mosaic” as “mosaic” usually refers to cells arising from the same zygote with an

acquired mutation in a daughter population.

Chimerism in animals was first reported in 1917 [37]. Human chimerism has been

observed in naturally-occurring instances as well as iatrogenic cases (such as transplant recipi-

ents and rarely, following blood transfusions) [38]. Here, we focus on naturally-occurring chi-

merism which is a result of pregnancy.

Several types of naturally-occurring chimerism have been described in humans including

tetragametic chimerism (TGC), fetal-maternal microchimerism (FMMc) and maternal-fetal

microchimerism (MFMc) [39] (Fig 1). TGC has been observed in twin pregnancies. Occasion-

ally, a twin may die early in pregnancy (“vanishing twin") resulting in the singleton birth; how-

ever, his/her cells may be admixed to the body of the surviving twin [40]. The rate of twinning

and chimerism was reported to increase with the wide use of assisted reproduction techniques

[41–46]. In contrast to TGC, FMMc and MFMc are thought to be quite common if not ubiqui-

tous. These events could lead to a chimeric individual with tissues of different genotype. In the

current study, such chimerism is proposed to explain the lack of predisposing mutations by

blood tests, whereas the mutations might be present in tumor tissue.

Methods

Patients and clinical assessment

Patients for this study were selected based on the absence of a known familial BRCA mutation

found in a first-degree relative. Approval for this study was obtained by the Rush University

Medical Center Institutional Review Board. After subjects signed an informed consent form,

tumor specimens were obtained from the Department of Pathology, Rush University Medical

Center (Chicago, IL) and other respective Pathology Departments of institutions where partic-

ipants had their cancer surgery. Diagnosis of breast, ovarian or endometrial cancer was

obtained from pathology reports and histologic evaluation. Clinical data were established from

chart review. Patients were eligible if they were affected by HBOC-associated cancer and had

previously tested negative for a known familial mutation. Breast cancer patients under 45 or

women with ovarian, fallopian tube, primary peritoneal cancer at any age, any male with breast

cancer, and any patient with pancreatic cancer were all considered eligible for this study.

Isolation of DNA

Hematoxylin and eosin-stained tissue sections cut adjacent to unstained 4 μm were examined

by a pathologist. Using the stained slide as a guide, approximately 2mm2 of tumor tissue was

manually scraped from the slides. The tissue was digested in a solution of 1.0 mg/mL protein-

ase K (Sigma) in10mM Tris, pH 8.3, 50 mM KCl. Digestions proceeded overnight at 56 oC.

The lysate was used directly for analysis.

Tumor mutation detection

Familial mutations included BRCA1 187delAG (a founder mutation in Ashkenazi Jewish pop-

ulation; 2 patients), 1793delA, IVS17+3A>G, 2841G>T, 3109insAA, 5215G>A, 8107G>A,

and BRCA2 6794 insA, 5645C>A and 6174delT (another founder mutation in Ashkenazi Jew-

ish population). Tumor tissues were tested using sensitive PCR methods to optimize detection.
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Tissue from families with the BRCA1 187delAG mutations were analyzed by amplicon size

[47] and pyrosequencing [48]. Amplicon size was also applied to detection of the BRCA1 3109

insAA, and BRCA2 6794 insA mutations using PCR with fluorescently labeled primers and

capillary electrophoresis (Table 1). Fluorescent PCR products were resolved by capillary elec-

trophoresis. Fragment size analysis was performed using GeneMapper Software. Synthetic

oligomers (Integrated DNA Technologies, Des Moines, IA) were used as controls for all

mutations.

BRCA1 187delAG, BRCA1 3109 insAA and BRCA2, 6794 insT and 6174delT were tested by

PCR with fluorescently labeled primers followed by capillary electrophoresis. The 5’ end of

one primer for amplification of each gene mutation in the reaction mix described above was

covalently bound to fluorescein. Following PCR, amplicons were diluted 1/400 in formamide

and separated by capillary electrophoresis. Peak migration compared to controls was used to

determine the presence of deletion or insertion mutations.

Detection of the BRCA1 187delAG mutation was also performed by pyrosequencing. A 110

bp region covering the BRCA1 2 bp deletion was amplified on an ABI9700 Thermal Cycler

(ThermoFisher, Waltham, MA). Single strands from the PCR products were isolated and sub-

jected to pyrosequening on a Q24 Pyrosequencer (Qiagen, Inc, Valencia, CA) using primers

and sequence to analyze as previously reported [49].

BRCA1 IVS17+3A>G, and 5215 G>A and BRCA2 8107A>T were detected using

sequence-specific PCR. Four primers were designed by public access software (http://cedar.

genetics.soton.ac.uk/public_html/primer1.html). The four primers (Table 1) were used to

amplify the isolated DNA in the following amplification reaction mix: 400 nM inner and outer

forward and reverse primers, 1X Taq Gold Buffer (Applied Biosystems), 2.5 mM MgCl2,

320 μM dNTP’s, 0.25 unit AmpliTaq Gold polymerase (Applied Biosystems) and 5μl template

DNA in a total volume of 25 μL. For some assays, primer pairs recognizing the mutant and

normal sequences were used in separate reactions. The two inner primers from each group of

four are designed to end on either the normal or mutated base. If the normal base is present,

the inner primer ending with the complement to the normal base will be extended with one of

the outer primers to yield a product of the indicated size. For example detection of the BRCA1
IVS17+3A>G, the normal sequence will yield a product of 137 bp. The other inner primer will

yield a product of 163 bp if the mutant base is present in the template (Table 1).

BRCA1 2841G>T and BRCA2 5645C>A were analyzed by dye terminator sequencing (Illu-

mina). 50 ng of tumor DNA was subjected to a first round of target selection by PCR, followed

by a second round of indexing. Pooled samples were cleaned with magnetic beads, and 12

Table 1. Mutation primer sequences. Primers used to detect point mutations by sequence specific PCR, Inner primers end on the indicated variant bases. The size of the

resulting product of the extended inner primer and its opposite outer primer will indicate the mutation status.

Mutation Primer Sequences (5’- 3’) Product Size (bp)

BRCA1 IVS17+3A>G • ACTACTCATGTTGTTATGAAAACAGTTG (Forward inner G allele)

• GCAAGGTATTCTGTAAAGGTTCTTGGGAT (Reverse inner A allele)\

• TATTTGATTTAATTTCAGATGCTCGTGT (Forward outer primer)

• GTCTCGATCTCCTAATCTCGTGATCT (Reverse outer primer)

163, 137

BRCA2
8107 A>T

• GAATTTGGGTTTATAATCACTATAGATCGA (Forward inner A allele)

• TCCATAGCTGCCAGTTTCCATATCAA (Reverse inner T allele)\

• GGTGTGGATCCAAAGCTTATTTCTAGA (Forward outer primer)

• AGGCATCTATTAGCAAATTCCTTAGGAA (Reverse outer primer)

92, 80

BRCA1
5215G>A

• AAACAGATGCTGAGTTTGTGTGTGACCA (Forward inner A allele)

• CGCAATTCCTAGAAAATATTTCAGTGGCC (Reverse inner G allele)\

• TGACCCCAGAAGAATTTATGCTCGTGTA (Forward outer primer)

• TCTAGCCCCCTGAAGATCTTTCTGTCCT (Reverse outer primer)

227, 155

https://doi.org/10.1371/journal.pone.0195497.t001
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pmol was loaded into the Illumina MiSeq. Sequence results were screened for coverage (500X)

and variant frequency.

Results. The eleven patients studied carried diagnoses of infiltrating ductal carcinoma,

ductal carcinoma in situ, invasive lobular carcinoma, ovarian adenocarcinoma as well as endo-

metrial and primary peritoneal carcinoma. Patient ages at diagnosis ranged from 26 to 66

years. None of the eleven patient tumors tested displayed the familial BRCA mutation alleles

(Table 2). In addition to testing for gBRCA mutations, four patients underwent gene panel test-

ing and were negative for mutations in other cancer-associated genes. Patients 2 and 9 under-

went gene panel testing that included 23 genes: ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH,

CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NFN, NF1, PALB2, PMS2, PTEN,

RAD50, RAD51C, RAD51D, STK11, and TP53. Patient 3 underwent a more comprehensive

gene panel test due to her significant personal and family history of cancer that included 49

genes: APC, ATM, BAP1, BARD1, BRCA1, BRCA2, BRIP1, BMPR1A, CDH1, CDK4, CDKN2A,

CHEK2, EPCAM FH, FLCN, GREM1, MAX, MEN1, MET, MITF, MLH1, MRE11A, MSH2,

MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, POLE, PTEN, RAD50, RAD51C, RAD51D,

RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, SMAD4, SMARCA4, STK11, TMEM127, TP53,

TSC1, TSC2, and VHL. Patient 7 underwent a gene panel specific to breast cancer risk that

included 14 genes: ATM, BARD1, BRIP1, CDH1, CHEK2, MRE11A, MUTYH, NBN, PALB2,

PTEN, RAD50, RAD51C, STK11, and TP53. Patient 10 underwent Lynch syndrome testing

(MLH1, MSH2, and MSH6) in addition to BRCA1/2 due to a personal history of early onset

endometrial cancer. None of the patients had a pathogenic mutation in the other genes tested.

Patient 3 underwent genetic counseling following her sister was found to have a deleterious

BRCA1 mutation and was found to be a non-carrier. Despite these findings, she underwent

prophylactic bilateral salpingo-oophorectomy with hysterectomy and pathology was negative

for occult malignancy. She was diagnosed with primary peritoneal carcinoma 12 months after

her prophylactic surgery. See Fig 2 for this patient’s pedigree. Families of patients 1 and 5 car-

ried the BRCA1 187delAG mutation. Assessment of the tumor tissue from the two phenocopy

patients by PCR/capillary electrophoresis and by pyrosequencing revealed no evidence of the

mutation (Fig 3A).

Testing for the BRCA1 IVS17+3A>G, 5215 G>A and 8107A>T mutations (tumors from

patients 6, 7, 8) was performed by sequence-specific PCR. Peak height patterns of the resulting

pyrograms were analyzed to detect the 187 delAG mutations (Fig 3B). In all three cases, the

mutation would be detected as the intermediate sized band of three bands on the gel. The

BRCA2 8107 A>T mutation (tumor from patient 7) was tested using sequence-specific PCR

(Fig 3C). This method was originally designed as a multiplex PCR, however, due to primer

competition, individual primer sets for mutant and wild type alleles were used in separate reac-

tion mixes. The amplicons of the two separate reactions for each sample were then mixed and

loaded into a single well for electrophoresis. While the product of the A allele was present in

the patient sample, the 92 bp T allele seen in the positive control was not. The results in Fig 3B

and 3C show no detection of mutations in the phenocopy tumor tissue.

BRCA1 3109 insAA and BRCA2, 6794 insA (tumors from patients 10, 11) were assayed

using PCR with fluorescently labeled primers and capillary electrophoresis (Fig 3D). These

analyses yielded some equivocal results. As shown in Fig 3D, PCR products from the patient

DNA migrated in a pattern different from the positive controls (shifted 1–2 bp to the right

from the negative control from 74 to 75 or 82 to 84 bp). Migration was partially consistent

with the negative control, however, an additional (n-1) product was apparent in both speci-

mens. Subsequent reversible dye terminator sequencing (Illumina) did not detect the respec-

tive mutations in either sample.
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Table 2. Patient clinical characteristics and family history.

Patient Age Cancer Stage Ethnicity Family History Family

Mutation

Patient Mutation

identified on additional

blood testing

Panel Testing

1 47 Infiltrating ductal

carcinoma,

ER/PR-, HER2+

2 Ashkenazi • Mother, breast (40s),

ovarian (?): BRCA+

• Sister, breast (47): BRCA+

• MGF, stomach

• 2 first cousins: BRCA+

BRCA1

187delAG

No

2 58 Ovarian cancer 1 Mexican • Sister, breast (55), ovarian

(56): BRCA+

• Sister, breast (40)

• Sister, leiomyosarcoma

(67)

Brother, lymphoma (72)

• Brother, melanoma (48)

• M aunt, breast (68)

Niece (sister), breast (22)

BRCA1

1793delA

No

3 57 Primary peritoneal

cancer

4 German, Irish • Mother, breast (42)

• Sister, breast (36), ovarian

(47): BRCA+

• Sister, breast (39), ovarian

(56)

• Brother, LGL leukemia

(48)

• MGF, breast

• Niece (brother), breast

(25)

BRCA1

2841G>T

VUS (MSH2- p.S87C) Yes

4 57 Ductal carcinoma

in situ

0 Ashkenazi • Mother, colon (61)

Father, colon (73)

• Sister, breast (61): BRCA+

M uncle, colon

• P cousin, breast, ovarian

(60)

BRCA2

6174delT

No

5 66 Ductal carcinoma

in situ

0 Ashkenazi • Mother, breast (70)

• Sister, ovarian (67), breast

(69), lung (71): BRCA+

• Niece (sister), ovarian

(47): BRCA+

• Unaffected niece (sister):

BRCA+

BRCA1

187delAG

No

6 61 ILC, ER/PR+,

HER2-

1 Danish, Polish,

English, Welsh,

German

• Sister, ovarian (62):

BRCA+

• Father, unknown primary

(70s)

• PGF, colon

• Aunt, breast (80s)

BRCA1

5215G>A

No

7 51 Infiltrating ductal

carcinoma,

ER/PR+, HER2-

2 Unknown • Father, prostate: BRCA+

• Sister, breast, BRCA+

• M cousin, colon (48)

• M cousin, breast (50)

• PGM, breast

• P great aunt, breast

• P 2nd cousin, ovarian

• P greatGM, GI cancer

BRCA1

8107G>A

VUS (ATM- c.496

+4T>C)

Yes

8 51 Infiltrating ductal

carcinoma

U German, Polish • Mother, ovarian (64)

Unaffected sister: BRCA+

• MGM, ovarian/stomach

• M aunt, ovarian (60s)

P uncle, kidney

BRCA1 IVS17

+3A>G

No

(Continued)
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Discussion

The current study addresses the presence of the disease phenocopy in the absence of a familial

gene mutation. Genetic testing is most often performed on blood which is an easily accessible,

abundant source of high quality DNA. Blood is thought to provide a genotype representative

to all other tissues. Rare genetic events early in embryonic development could theoretically

result in an individual with different genotypes in different tissues (chimera). In this case,

mutations in tissue may not be present in blood. If these mutations are cancer-associated, risk

of malignancies in the tissue would be increased, without the presence of the genetic mutation

in the blood.

Our study included patients with ovarian, primary peritoneal and endometrial cancers

which are uncommon in the general population and less likely to develop sporadically, espe-

cially, in families with known HBOC syndrome suggesting an underlying cause for these phe-

nocopies. We tested DNA from eleven tumors from women who come from families carrying

BRCA1 and BRCA2 mutations, but who do not carry the familial mutation themselves (pheno-

copies) as defined by blood testing. Phenocopies are rare but their exact incidence is unknown.

Their personal and family history of cancer may suggest a genetic cause for the phenotype and

we postulated that they may represent a genetically chimeric state. To investigate this, we

looked for the familial mutation for each patient in the tumor tissue. Tumor tissue is not com-

monly tested for familial mutations. We used highly sensitive PCR methods to determine if the

familial mutations might be present in the affected tissues. None of the eleven samples dis-

played these mutations. This observation does not support that chimerism is responsible for

the phenocopies.

This result is concordant with the result of a recent study by Azzollini et al. However, there

are significant differences between the studies. Specifically, in their study [49], the authors test

the hypothesis of spontaneous reversal of germline BRCA mutations to the wild-type in blood

Table 2. (Continued)

Patient Age Cancer Stage Ethnicity Family History Family

Mutation

Patient Mutation

identified on additional

blood testing

Panel Testing

9 61,

73

Infiltrating ductal

carcinoma and

primary peritoneal

U Unknown • Mother, lung (89)

• Father, breast, larynx

• Sister, breast (42), breast

(62): BRCA+

• Brother, pancreatic (62)

• PGM, ovarian (51)

• P cousin, pancreatic (64)

BRCA2

5645C>A

Yes

10 43 Endometrial cancer 3 Filipino • Father, colon (60s)

• Unaffected sister: BRCA+

• Sister, ovarian (40)

• M aunt, breast (60s)

• M cousin, breast (29):

BRCA-

• M cousin, breast (50)

• P aunt, sarcoma (40s)

• P uncle, lung (60s)

BRCA2

6794insA No, but had additional

testing for Lynch

syndrome

11 26 Ovarian cancer 3 Unknown • Mother, breast (38)

• Unaffected brother:

BRCA+

• MGM, ovarian

BRCA1

3109insAA

No

U—unknown stage

https://doi.org/10.1371/journal.pone.0195497.t002
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Fig 2. Patient 3 pedigree. This pedigree represents the family history of cancer in patient number 3. The proband, or original patient, is denoted by the arrow. The

type of cancer each relative has a history of is denoted below their pedigree symbol. If a relative had genetic testing and was found to carry the known familial BRCA1
mutation, this is also denoted below their pedigree symbol. If a relative tested negative for the known familial BRCA1mutation, this is also denoted below their
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cells which may account for the negative result of genetic testing performed on blood. To our

knowledge, this phenomenon was observed in malignant tissue from germline BRCA carriers

not randomly, but rather due to their exposure to cytotoxic chemotherapy (most commonly,

platinum agents) [50–52] This reversal is believed to account for developing platinum resis-

tance in some gBRCA carriers with cancer treated with Carboplatin. In addition, spontaneous

reversal of the germline mutations is unlikely to lead to the wild-type gene sequence in the

majority of white blood cells. Since genetic testing has a sensitivity of 99% [53] for detection of

a mutation, the germline mutation present even in 1% of blood cells should have been still

detected. In contrast to the study Azzollini et al, our study analyzed only tumor samples from

BRCA phenocopies but not other tissues. Also, for the purpose of our study, BRCA phenocop-

ies were defined as the first-degree relatives of the known BRCA carriers as opposed to less

closely related family members.

Finally, our hypothesis is in fact quite different from the hypothesis of Azzollini et al as it is

based on the suggestion that an individual can develop a tumor originating from the cells of

pedigree symbol. The proband had full gene sequencing and deletion/duplication analysis of the BRCA1/2 genes; therefore, ‘BRCA1/2-‘ is listed below their pedigree

symbol. The proband was also found to carry a variant of uncertain significance in MSH2.

https://doi.org/10.1371/journal.pone.0195497.g002

Fig 3. Molecular testing in tumor tissue. A. The BRCA1 187del AG deletion heterozygote (families 1 and 5) is detected as an n-2 product by capillary electrophoresis

(left) and by an indicative peak pattern by pyrosequencing (top right). Neither the deletion product nor the mutant peak pattern was detected in the patient tumors

(bottom panels). B. The heterozygote detected as a 163 bp product by gel electrophoresis. The synthetic oligomer carrying the mutation confirmed the detection of the

mutation by mutation sequence specific primers. This band is not present in the negative control nor family 8 DNA (left four lanes). The 137 bp band specific to the

normal A allele was detected by primers specific to that allele in the patient sample. Tumor DNA tested for the familial mutation 5215G>A gave similar results (not

shown). C. The BRCA2 8107 A!T mutation was tested by sequence-specific PCR. The 92 bp product (T allele, positive) is not present in the patient’s tissue where only

the A allele (80bp) is observed. Reagent blanks for the A and T allele primer sets (Bl A, Bl T) are shown. D. BRCA1 3109 insAA (left), and BRCA2 6794 insA (patients 10

and 11, respectively; right) mutation analysis by PCR-capillary electrophoresis. Amplified products from DNA without (negative control, top) and with (positive control,

middle panels) demonstrate the expected right shift in migration for the BRCA1 3109 insAA n+2 product (76 bp) and the BRCA2 6794 insA n+1 product (82 bp)(bottom

panels). Patient samples show an unexpected left shift (n-1) product.

https://doi.org/10.1371/journal.pone.0195497.g003
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another individual. Cancers, allogeneic in origin, have been observed in other species such as

an aggressive devil facial tumor disease in Tasmanian devils and an indolent transmissible

venereal tumor in dogs [54]. In humans, rare cases of allogeneic tumors were observed in

infants born to mothers with a metastatic malignancy (maternal tumors) [55] and in transplant

recipients with suppressed immunity (tumors of donor origin) [56–62]. Even more intriguing

is the recent research on the role of fetal-maternal and maternal-fetal microchimerism in

human cancers [63–66]. According to these studies, fetal cells are found in maternal tumors

many years after pregnancy as low-abundancy cells. Their role in carcinogenesis remains

unknown. Some studies suggest their protective role in breast [64, 67] and other maternal can-

cers, while others point towards their unfavorable role in promoting tumorigenesis [66]. How-

ever, so far no studies showed that fetal cells can directly give rise to cancer by forming a

malignant clone in a mother, although some research suggests that it is possible [68]. Given

these considerations, we were planning to test our study participants for chimerism using

STR-based (Short tandem repeat genotyping) methods had we demonstrated the presence of

the mutation from the family member in their tumor.

Potentially, germline mutations in other cancer-associated genes may account for cancers

in BRCA non-carriers. However, in our study, some of the participants underwent multi-gene

panel testing looking for mutations in other genes commonly associated with predisposition to

breast and ovarian cancers. We did not find any pathogenic germline mutations to explain the

HBOC phenotype in BRCA phenocopies. Even though we found two variants of unknown sig-

nificance (VUS) in the ATM and MSH2 genes, they are likely to be eventually re-classified into

benign polymorphisms like most of other VUSes. Pathogenic mutations in the MSH2 gene are

associated with Lynch syndrome. Lynch syndrome is known to cause colorectal, endometrial,

gastric, ovarian, and urinary tract cancers. Lynch syndrome does not currently have a defini-

tive link to increased risk for breast cancer [69]. Case 3 who had a MSH2 VUS does not have a

family history consistent with Lynch syndrome which makes the VUS finding less concerning.

Mutations in the ATM gene are associated with an increased risk for many of the same cancers

associated with BRCA mutations, such as breast, pancreatic, and prostate. While case 7 has a

personal and family history of cancers that could be associated with a germline ATM mutation,

most affected relatives tested positive for the familial BRCA mutation, explaining the cancer

history in these individuals.

It has been observed that individuals who test negative for a known familial mutation in

other cancer-associated genes may still be at an increased risk to develop certain types of can-

cer. One example is the CHEK2 gene. It has been well-established in multiple studies that

germline CHEK2 mutations are associated with an increased risk for breast, colon and other

cancers. Current research has shown discrepancies in the level of breast cancer risk in families

with CHEK2 mutations suggesting that there are additional factors that influence the risk of

breast cancer in these families in addition to the CHEK2 mutation. Therefore, even when a

person tests negative for a known familial CHEK2 mutation previously identified in a blood

relative, they are still considered to be at an increased risk to develop breast cancer. On the

other hand, in Lynch syndrome, the study of non-carrier relatives did not demonstrate an

increased cancer risk [70].

Aside from other pathogenic gene mutations in other high or moderate penetrance genes,

single nucleotide polymorphisms (SNPs) could be an additional explanation for BRCA pheno-

copies. A SNP occurs when a single nucleotide differs from the nucleotide seen at this locus in

the genome of the general population [71]. SNPs are normal and occur approximately once in

every 300 nucleotides. They are population-specific. Typically they are thought to have no

effect on a person’s health. However, more recent studies have shown a potential link between

certain SNPs and an increased risk of breast cancer. Combinations of SNPs have been
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proposed to assess a woman’s risk of breast cancer if she has a family history of breast cancer

but no identifiable pathogenic mutation in a cancer-associated gene [72–75]. Penetrance of

gBRCA mutations vary in families and populations. Some SNPs have been reported to modify

cancer risk in gBRCA mutation carriers [76–77]. It is possible that the same SNPs that increase

cancer risk in gBRCA carriers can increase the cancer risk in their non-carrier relatives and

thus, account for the phenomenon of BRCA phenocopies.

The BRCA phenocopy phenomenon undermines the value of genetic testing for HBOC for

some health care providers and patients alike. Accordingly, some women from the BRCA posi-

tive families affected by HBOC make the decision for prophylactic surgery even in the absence

of the known familial mutation. Our case 3 is one of the most striking examples. This patient

decided to undergo risk-reducing bilateral-oophorectomy and hysterectomy despite of the

negative blood test for the familial mutation. Nonetheless, she was diagnosed with primary

peritoneal carcinoma within a year after the prophylactic surgery.

Conclusion

Hereditary breast and ovarian cancer syndrome most frequently occur through inheritance of

mutations in the BRCA1 and BRCA2 genes. Non-carriers in a family with a known mutation

in either gene could be at higher risk for cancer but the current recommendations are for that

of the general population. Our hypothesis and the hypothesis of Azzollini et al, presumed a

link between a familial BRCA mutation and HBOC in BRCA phenocopies, albeit through dif-

ferent mechanisms (chimerism and mosaicism, respectively). Although both studies were neg-

ative, which strengthens the conclusion that there is no association between the familial

mutation and cancer development in BRCA phenocopies, full tumor sequencing is now possi-

ble on tumor cells which may provide further insight into the pathogenesis of the tumors. Cur-

rently, the ultimate cause of this phenomenon of phenocopies remains unknown. Further

investigation on these tumor specimens with comprehensive sequence analysis of additional

five hundred cancer-associated genes by next-generation sequencing is underway. We believe

that different approaches to study phenocopies are warranted including investigation of

genome-wide associations (GWAS) and SNPs.
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