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Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs longer than 200
nucleotides. Accumulating evidence demonstrates that lncRNA is a potential biomarker
for cancer diagnosis and prognosis. However, there are no prognostic biomarkers
and lncRNA models for multiple myeloma (MM). Hence, it is necessary to screen
novel lncRNA that can potentially participate in the initiation and progression of MM
and consequently construct a risk score system for the disease. Raw microarray
datasets were obtained from the Gene Expression Omnibus website. Weighted gene
co-expression network analysis and principal component analysis identified 12 lncRNAs
of interest. Then, univariate, least absolute shrinkage and selection operator Cox
regression and multivariate Cox hazard regression analysis identified two lncRNAs
(LINC00996 and LINC00525) that were formulated to construct a risk score system
to predict survival. Receiver operating characteristic analysis certificated the superior
performance in predicting 3-year overall survival (area under the curve = 0.829).
The similar prognostic values of the two-lncRNA signature were also observed in
the tested The Cancer Genome Atlas dataset. Furthermore, two other lncRNAs
(LINC00324 and LINC01128) were differentially expressed between CD138+ plasma
cells from normal donors and MM patients and were verified to be associated with
cancer stage in the Gene Expression Omnibus dataset. A lncRNA-mediated competing
endogenous RNA network, including 2 lncRNAs, 12 mitochondrial RNAs, and 103
target messenger RNAs, was constructed. In conclusion, we developed a two-lncRNA
expression signature to predict the prognosis of MM and constructed a key lncRNA-
based competing endogenous RNA network in MM. These lncRNAs were associated
with survival and are probably involved in the occurrence and progression of MM.

Keywords: long non-coding RNA, biomarkers, multiple myeloma, weighted gene co-expression network
analysis, principal component analysis, competing endogenous RNA network, prognostic long non-coding RNA
expression signature
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INTRODUCTION

Multiple myeloma (MM) is the second most common
hematological malignancy. It is caused by the clonal proliferation
of malignant plasma cells in the bone marrow (BM) (Laubach
et al., 2011). MM is characterized by renal impairment, lytic bony
lesions, anemia, and bone pain. The survival of MM patients
ranges from a few weeks to more than 10 years (Decaux et al.,
2008; Chen W. C. et al., 2017; Cowan et al., 2018).

As a newly discovered type of non-coding RNA, long non-
coding RNAs (lncRNAs) function as imperative regulators
involved in tumorigenesis, tumor suppression (Poliseno et al.,
2010; Hung and Chang, 2010), and many biological processes
(Geisler and Coller, 2013; Fatica and Bozzoni, 2014). Many
lncRNAs involved in the initiation and progression of MM have
been identified. Furthermore, lncRNAs can also regulate gene
expression by interacting with mitochondrial RNA (miRNA)
at miRNA-binding sites (MREs). For example, MALAT1 is an
lncRNA that inhibits the proliferation and adhesion of myeloma
cells by upregulating the expression of miR-181a-5p (Sun et al.,
2019a). The aberrant expression of urothelial cancer associated 1
lncRNA affords it the ability to promote proliferation and inhibits
apoptosis by regulating miR-1271-5p and hepatocyte growth
factor in MM cells (Yang and Chen, 2019). Abnormally expressed
lncRNA NR_046683 in patients of different MM subtypes and
stages indicated that it could be used as a new indicator
for potential drug target and prognosis (Dong et al., 2019).
Although several lncRNA prognostic models have been identified
in uterine corpus endometrial carcinoma (Ouyang et al., 2019),
hepatocellular carcinoma (Sun et al., 2019b), cervical cancer (Wu
et al., 2019), and lung adenocarcinoma (Zhou et al., 2019), the
clinical implication of most lncRNAs in MM remains unclear.

Weighted gene co-expression network analysis (WGCNA)
is an algorithm that is frequently used to cluster highly
synergistically altered gene sets into separate modules. This
can establish connections with clinical traits and thus screen
out candidate indicator genes or therapeutic targets (Langfelder
and Horvath, 2008; Shi et al., 2010). Principal component
analysis (PCA) is another mathematical algorithm. It is a
powerful technique that is widely applied in bioinformatics
and other fields. It can reduce the dimensionality of the data
while retaining most of the variations that are uncorrelated
in the data set. These unrelated variables are called principal
components (PCs) (Ringner, 2008). After identifying new
variables, the PCs, with a sample-like pattern and a weight
for each gene, further exploration can be done by building a
link with clinical data, and candidate genes can be obtained by
comparing component loadings. In the present study, the Gene
Expression Omnibus (GEO) public integrated database provided
an application platform of genomic sequencing data along with
the clinical information of each MM patient. WGCNA and PCA
were performed to explore public sequencing data and clinical
information of MM patients.

A few key gene modules associated with tumor stage and
PCs correlated with risk score and proliferation index were
identified, and 12 lncRNAs in the intersection were identified. We
found a two-lncRNA signature that might act as an independent

prognostic factor to identify MM patients that are at higher risk
of poor clinical outcome. Furthermore, using other datasets, we
recognized database of essential genes (DEG) and constructed a
competing endogenous RNA (ceRNA) network in MM based on
two of the 12 abnormally expressed lncRNAs. These two lncRNAs
may participate in tumorigenesis or serve as clinical indicators of
the progression of MM.

RESULTS

Weighted Gene Co-expression Network
Analysis Identification of Clinically
Significant Modules
A total of 32 MM samples with a known stage of cancer
were utilized to conduct the hierarchical clustering analysis
using the WGCNA package. The sample dendrogram and
clinical trait heatmap of GSE16791 is displayed in Figure 1A.
No obvious outlier was evident in the sample clustering. The
information of two clinical traits of 32 MM samples, including
age and cancer stage, is presented in Figure 1A. Selecting
the best soft-thresholding powers is imperative to obtain
relatively balanced scale independence and mean connectivity.
As presented in Supplementary Figure S2A, we selected β = 8
(scale-free R2 = 0.81) as a soft-threshold to construct a scale-free
network, and a total of 21 modules were detected (Figure 1B).
As the overall gene expression level of the corresponding
module, the module eigengenes were calculated to assess the
relationship between modules and clinical information by
Pearson’s correlation analysis. The results indicated that the
stage was negatively associated with blue and green modules
(Figure 1C). Scatterplots of gene significance of stage vs. module
membership in the blue and green modules revealed that they
were highly correlated (Supplementary Figure S2B). Also, we
calculated eigengenes of all modules and clustered them on the
base of their correlations. A module eigengenes dendrogram
indicated that the blue and green modules were clustered
together, and the eigengene network heatmap revealed similar
results (cor = 0.65, P = 5e-05; Supplementary Figure S2C).
Therefore, we chose blue and green modules for further analysis.

Principal Component Analysis
Determination of Interesting Principal
Components Associated With Clinical
Traits
Principal component analysis was performed on the 52 samples
in GSE17306. In this dataset, the gene expression profiling (GEP)-
risk score and proliferation index of each sample were calculated
according to the GEP (Zhou et al., 2010). Initially, PCA created
52 composite variables (PCs) by reducing the dimensionality of
numerous genes. The first 33 components, which explained 80%
of the variability among the 52 samples, were retained to correlate
clinical traits (Figure 2A). These 33 composite variables are
enough to explain the sample differences to the greatest extent.
Next, to ascertain the capability of PCs to differentiate risk score
level and proliferation index level, the pairs plot was conducted
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FIGURE 1 | Weighted gene co-expression network of multiple myeloma and module–trait relationships. (A) Cluster analysis of samples and clinical traits. All the
samples were in the clusters. (B) Gene dendrogram obtained by clustering all genes from GSE16791. Each branch in the figure corresponds to one gene, and each
color to one co-expression gene module. (C) Module clinical associations. Each row represents a module eigengene, and each column represents a clinical trait.
Each cell contains the corresponding correlation coefficient and the P-value. The blue and green modules were significantly correlated with a stage.

to compare PC1 with PC8 on a pairwise basis (Figure 2B).
Additionally, a bi-plot of PC1 versus PC6 indicated that PC6
could roughly distinguish the high-risk group from the low-
risk group (Figure 2D). Next, we correlated the PCs back to
the clinical data, including the GEP-risk score and proliferation
index, to identify interesting PCs. PC6 and PC8 were negatively
associated with risk score and proliferation index in all the
33 PCs retained (Figure 2C). PC11 and PC12 were positively
correlated with the proliferation index. For each PC of interest,
“plotloadings” determined the genes ranked in the top 20 of
the loadings range and then created a final consensus list of
these (Figure 2E).

Construction a Risk Assessment Model
To construct a lncRNA scoring system that is predictive of
survival in the MM patients, we extracted lncRNAs from the
blue and green modules and PC6 and PC8 based on the
Genecode annotation1. Finally, a total of 12 lncRNAs were
obtained from the intersection of the interesting modules
and PCs (Figure 3A). The expression levels of 12 lncRNAs
were extracted from GSE57317 to conduct the univariate Cox
regression analysis. The results of the univariate Cox analysis

1https://www.gencodegenes.org/

of 12 prognostic lncRNAs from the discovery cohort are shown
in Table 1. After this, six significant lncRNAs (P < 0.05) were
identified and were included in the least absolute shrinkage and
selection operator (LASSO) model; cross-validation was adopted
to select the penalty parameters (Figures 3B,C). Two lncRNAs
were identified based on lambda.1se values (Supplementary
Table S1). The quantitative real-time polymerase chain reaction
(qRT-PCR) results showed that the expression of LINC00525
was significantly downregulated in Roswell Park Memorial
Institute (RPMI)-8226 and KM3 cell lines, whereas LINC00996
was significantly upregulated in KM3 cell line compared with
normal plasma cells (Supplementary Figures S3A,B). We further
included expression levels of the two lncRNAs in a multivariate
Cox model. The risk score = (−0.3647) × (expression value of
LINC00996) + (−0.4266) × (expression value of LINC00525).
The details of the two lncRNAs are depicted in Figure 4B. We
used the median of the risk score as the cutoff to define the
groups of MM patients with high and low scores (Figure 4A).
The survival time and overall survival (OS) status in the
training dataset are presented in the middle panel of Figure 4A.
Compared with those in the low-risk score group, patients in
the high-risk score group displayed an obviously worse OS
(Figure 4C). The 3-year survival receiver operating characteristic
(ROC) curve was also plotted. The area under the curve of the
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FIGURE 2 | PCA of GSE17306. (A) PCs accounted for 80% of the explained variation in the dataset, and the first 33 PCs were responsible for the same. (B) A plot
comparing PC1–PC8 on a pairwise basis. PC1 is usually the most important part of PCA. (C) Correlation of the principal components (PCs) to the clinical data.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (D) A bi-plot of PC1 versus PC6. (E) Determine the variables that drive variation among each PC. Components
have a sample-like pattern with a weight called component loading for each gene. Genes ranked the top 20 of the loadings range were presented.
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FIGURE 3 | Determination of candidate lncRNAs and LASSO regression analysis. (A) Venn diagram of candidate lncRNAs in blue and green modules and PC6 and
PC8. (B) LASSO coefficient profiles of the six candidate lncRNAs. (C) Ten-fold cross-validation used to tune parameter selection in the LASSO model. A vertical line
is drawn at the value chosen by 10-fold cross-validation.

risk score reached 0.829 (Figure 4D), revealing that the risk
score based on the two lncRNAs is a good indicator of prognosis.
The results of univariate and multivariate Cox regression analyses

TABLE 1 | Univariate Cox analysis of 12 prognostic lncRNAs from the discovery
cohort.

lncRNA name Type HR P

LINC01128 Bad 5.324513 0.015396

LOC339803 Bad 2.530873 0.031322

LOC100507053 Bad 1.474999 0.259866

LINC01278 Bad 1.437495 0.173067

LINC00643 Bad 1.097326 0.578361

LINC00877 Good 0.876417 0.512653

LOC645485 Good 0.85804 0.474318

LINC00996 Good 0.602728 7.11E-05

LINC00525 Good 0.575173 0.001695

LOC101929759 Good 0.464721 0.040177

LINC00324 Good 0.382086 0.004307

HR, hazard ratio. Type represents bad survival lncRNAs and good survival lncRNAs.
All statistical tests were two-sided.

indicated that the risk score (P < 0.001 and P = 0.006) was an
independent prognostic indicator (Supplementary Table S2). To
further examine the accuracy of the lncRNA risk score model
developed in the training dataset, the performance of the risk
score was also evaluated in The Cancer Genome Atlas (TCGA)
dataset. The result of multivariate Cox regression analysis for
the expression level of two lncRNAs in the TCGA dataset
is presented in Supplementary Figure S4B. The risk survival
status, score distribution, and expression pattern of the two
lncRNAs in the 787 MM patients in the TCGA dataset are
displayed in Supplementary Figure S4A. Also, corresponding
to our previous conclusion, the OS was significantly shorter
in the high-risk group compared with that in the low-risk
group (Supplementary Figure S4C), and the AUC of the risk
score reached 0.584 (Supplementary Figure S4D). Univariate
Cox regression analyses were conducted to detect various
factors correlated with prognosis. The results revealed that age
(P = 0.009), tumor stage (P < 0.001), and risk score (P = 0.002)
were significantly associated with the OS of the MM patients.
A subsequent multivariate Cox regression analysis indicated that
the tumor stage (P < 0.001) and risk score (P = 0.001) were
independent prognostic indicators (Supplementary Table S3).
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FIGURE 4 | Risk score performance in the GSE57317 (training) datasets. (A) Risk score of the two lncRNAs in 55 MM patients (top); overall survival status and
duration (middle); heatmap of the two lncRNA expression in MM patients (bottom). (B) Forest plot showing the hazard ratios with 95% confidence interval of the
multivariate Cox regression results. (C) Overall survival of the high- and low-risk score groups. (D) Three-year survival receiving operating characteristic curve (ROC)
according to the two-lncRNA signature risk score (red).
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FIGURE 5 | Detection and validation of differentially expressed lncRNAs (DELs). (A) Venn plot of DELs between GSE16558 and GSE47552. (B) GSE16558 and
GSE47552 indicated the lower expression of LINC00324 in CD138+ plasma cells of MM patients compared with normal donors. (C) GSE16558 and GSE47552
indicated the higher expression of LINC01128 in CD138+ plasma cells of MM patients compared with normal donors. (D) Relationship between the two lncRNAs
and cancer stages in GSE16791. (E) GSE57317 dataset (left) and TCCA dataset (right) revealed that MM patients with low expression of LINC00324 and high
expression of LINC01128 had an obviously poorer overall survival. (F) Expression of LINC00324 (top) and LINC01128 (bottom) in human multiple myeloma cell lines
(RPMI-8226, SKO-007, KM3) as well as normal plasma cells. Data are presented as the mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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FIGURE 6 | A co-expression network of six lncRNAs and DEmRNAs in the blue module. For simplicity, only DEmRNAs with a connection with the interesting
lncRNAs in the blue module were retained to construct the co-expression subnetwork. lncRNAs are depicted by diamonds, whereas DEmRNAs are indicated by the
rounded rectangles (upregulation) or vs. (downregulation). Size of genes is related to the intra-modular connectivity, and the color is related to the weighted score of
the interactions.

Detection and Validation of Differentially
Expressed Long Non-coding RNAs
CD138+ plasma cells obtained from healthy donors in
GSE16558 and GSE47552 were analyzed. Based on the cutoff
criteria of P < 0.05, 20 DELs were detected (Figure 5A).
Surprisingly, among the 12 prognostic lncRNAs we identified
earlier, LINC00324 and LINC01128 are abnormally expressed
(Figures 5B,C). The relationship between the two lncRNAs and
cancer stages in GSE16791 is displayed in Figure 5D. Expression
levels of the two lncRNAs among patients with different
stages were compared, and statistical differences were calculated
using Student’s t-test. Corresponding to our previous WGCNA
and PCA results, patients with poorly differentiated stage III
cancer displayed significantly lower LINC00324 expression levels
compared with patients with moderately differentiated cancer
of less advanced stage I. Furthermore, increased expression

of LINC01128 was correlated with advanced MM stage. Also,
to determine the prognostic value of these two lncRNAs
in MM, the survival data of MM patients were obtained
from the TCGA database and GSE57317. As presented in
Figure 5E, patients with high LINC01128 expression exhibited
a significantly poorer OS rate compared with patients with
high LINC01128 expression. On the contrary, we observed
that patients with higher LINC00324 expression had better OS
than those with lower LINC00324 expression. These results
indicate that LINC00324 may be a tumor suppressor gene,
whereas LINC01128 may be a cancer gene. The qRT-PCR
results also showed that the expression pattern of the two
lncRNAs in MM cells and normal plasma cells was similar to
the microarray results (Figure 5F). LINC01128 was upregulated,
whereas LINC00324 was significantly downregulated in the
three MM cell lines.
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FIGURE 7 | Functional annotation analysis of DEmRNAs co-expressed with LINC01128. (A) Gene ontology (GO) terms enrichment analysis was performed using
the Database for Annotation, Visualization, and Integrated Discovery and visualized by GOplot. Significance of a term is indicated by the adjusted P-value (adj_p-val).
logFC of selected genes is taken from GSE16558. z-score provided a hint if the biological process (/molecular function/cellular components) was more likely to be
decreased (negative value) or increased (positive value). z-score is assigned to the x-axis and the negative logarithm of the adjusted P-value to the y-axis. Area of the
displayed circles is proportional to the number of genes assigned to the term, and the color corresponds to the category. A threshold for the labeling is set as
log(adj_p-value) > 2.8. (B) Plot of the enriched KEGG pathway. Outer circle shows a scatter plot for each term of the logFC of the assigned genes. Red circles
display upregulation and blue ones downregulation by default. There were no upregulated DEmRNAs co-expressed with LINC01128 enriched.

Co-expression Network of Key Long
Non-coding RNAs and Differentially
Expressed Messenger RNAs in the Blue
Module
Based on the previous results, we recognized six lncRNAs
(LINC00525, LINC00996, LINC01128, LINC00324,
LINC101929759, and LINC339803) as potential biomarkers
or prognostic indicators. These lncRNAs were all in the
blue module. To further dissect the role of six lncRNAs in
MM, we created a gene co-expression subnetwork for the

genes in the blue module according to their topology overlap
matrix similarity; messenger RNAs (mRNAs) connected to
six lncRNAs are too much to display perfectly; thus, we
selected only differentially expressed mRNAs (DEmRNAs) to
construct a network. Our lncRNAs may potentially regulate
these co-expressed DEmRNAs through the ceRNA mechanism.
DEmRNAs were obtained from GSE16558 and GSE47552 based
on the cutoff criteria of a P-value < 0.05; | log (FC)| > 1.680
DEmRNAs that overlapped in GSE16558 and GSE47552 were
identified (Supplementary Table S4). Finally, the connections
between the six lncRNAs and DEmRNAs are displayed in
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FIGURE 8 | Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of two lncRNAs in GSE16791. (A–G) GSEA results of c2 reference gene
sets for high LINC01128 expression groups in GSE16791. (H–L) GSEA results of c2 reference gene sets for high LINC00324 expression groups in GSE16791.
(M) GSVA-derived clustering heatmaps of differentially expressed pathways for LINC01128 in GSE16791.

Frontiers in Genetics | www.frontiersin.org 10 August 2020 | Volume 11 | Article 934

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00934 August 25, 2020 Time: 17:45 # 11

Zhou et al. Prognostic Prediction in Multiple Myeloma

FIGURE 9 | Global view of the ceRNA network in MM. Network consists of two lncRNA nodes, 12 miRNA nodes, and 103 mRNA nodes. Diamonds indicate
lncRNAs, triangles indicate miRNA, and ellipses indicate mRNA. Pink and blue represent up- and downregulation, respectively.

Figure 6. LncRNAs are shown by diamonds, whereas DEmRNAs
are represented by round rectangles (upregulation) or vs.
(downregulation). The size of the nodes reflects the strength of
connectivity, and the color is related to the weighted score of
the interactions.

Functional Annotation
The preceding findings indicated that the LINC00324 and
LINC01128 were potentially involved in the occurrence and
progression of MM. To more precisely understand the biological
relevance and function of these two lncRNAs, we uploaded
DEmRNAs, which were co-expressed with key lncRNAs in the
blue module into the Database for Annotation, Visualization,
and Integrated Discovery to conduct Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
The results were visualized using the GOplot R package. The

results of the differential analysis were used to calculate a z-score
for presenting enriched KEGG pathways (Supplementary
Table S4). Regarding enriched GO terms, DEmRNAs co-
expressed with LINC01128 were mainly enriched in the
endoplasmic reticulum to Golgi vesicle-mediated transport,
protein transport, mitotic nuclear division, cytosol, Golgi
membrane, nucleoplasm, and protein binding (Figure 7A).
Regarding the enriched KEGG pathways, there were no
upregulated DEmRNAs co-expressed with LINC00324 enriched,
and other downregulated DEmRNAs were significantly enriched
in the cell cycle, propanoate metabolism, B-cell receptor signaling
pathway, protein processing in the endoplasmic reticulum,
chronic myeloid leukemia, human T-cell lymphotropic virus type
1 infection, and beta-alanine metabolism (Figure 7B). There were
no significant results for LINC00324 because too few mRNAs are
connected with it.
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Gene Set Enrichment Analysis and Gene
Set Variation Analysis Reveal a Close
Relationship Between Key Long
Non-coding RNAs, Multiple
Cancer-Related Pathways, and
Metabolic Pathways
To further investigate the potential functions of LINC01128
and LINC00324, we performed gene set enrichment analysis
(GSEA) and gene set variation analysis (GSVA) on the GSE16791
dataset. We divided these samples into two groups based
on the expression levels of these two lncRNAs. As shown in
Figures 8A–G, samples in GSE16791 with high expression of
LINC01128 were enriched in multiple cancer-related pathways,
including the P53 signaling pathway, cell cycle, mismatch repair,
nucleotide excision repair, and several metabolic pathways,
including cysteine and methionine metabolism, peroxisome,
and beta-alanine metabolism. Also, our previous finding that
the DEmRNAs co-expressed with LINC01128 were enriched
in beta-alanine metabolism was, surprisingly, verified by
GSEA and GSVA results (Figures 8G,M). The expression level
of LINC00324 was also extracted for enrichment analysis.
Genes in the high expression groups of LINC00324 were
mainly involved in multiple metabolic pathways, including
propanoate metabolism, selenoamino acid metabolism,
aminoacyl-tRNA biosynthesis, tyrosine metabolism, and
lysine degradation (Figures 8H–L).

Long Non-coding RNA-Mediated
Competing Endogenous RNA Network
Revealed Potential Mechanisms of
LINC01128 and LINC00324
To investigate the interaction between the lncRNA and mRNAs,
the lncRNA–miRNA–mRNA network was constructed according
to the ceRNA hypothesis by integrating expression profile data
and their regulatory relationships. We obtained DEmRNAs,
DEmiRNAs based on the criteria mentioned in section “Materials
and Methods.” The interaction between the two lncRNAs and
miRNAs were first predicted through Starbase3.0 and the RNA22
tool. We then predicted that the potential DEmiRNAs can target
LINC01128 and LINC00324 co-expressed DEmRNAs in the
blue module using DIANA TOOLS (Supplementary Table S5).
Finally, a total of 12 miRNAs overlapped in our prediction
results; 2 lncRNAs and 103 mRNAs were included in the
ceRNA network (Supplementary Table S6), and their regulatory
relationships were visualized by Cytoscape (Figure 9). In this
network, different shapes represent different RNA types, with
pink and blue denoting up- and downregulation, respectively.

DISCUSSION

Multiple myeloma is the most common primary bone cancer
among 70-year-old and older American adults (Reisenbuckler,
2014). Although genetic and epigenetic events contributing to
the occurrence and progression of MM have been increasingly

identified, the diagnosis, treatment, and clinical outcome of
MM remain mostly unclear (Prideaux et al., 2014). More
recently, aberrant lncRNA expression in MM was observed and
further validated to be involved in epigenetic, transcriptional,
and posttranscriptional regulation (Meng et al., 2018). Several
lncRNA prognostic models have been identified in multiple
cancers, including hepatocellular carcinoma (Zhang et al.,
2020), bladder cancer (Zhou et al., 2020), non-small cell lung
cancer (Zhou et al., 2015a; Sun et al., 2020), breast cancer
(Shen et al., 2020), glioma (Wang et al., 2018), glioblastoma
(Zhou et al., 2018), and diffuse large B-cell lymphoma (Zhou
et al., 2017). These studies had highlighted the diagnostic and
prognostic roles of lncRNAs, and the lncRNA signatures they
constructed had an imperative value for survival predicting for
different cancer patients. Therefore, identifying new and effective
prognostic biomarkers and establishing a reliable prognostic
model based on lncRNA expression signature are critical for
patients with MM.

WGCNA is a powerful algorithm that has not yet been utilized
to analyze the expression profile of MM samples. Presently, a
total of 32,216 genes, which were not all DEGs, were selected
to conduct WGCNA analysis in case of missing significant
information. Furthermore, we applied PCA for the first time
to correlate PCs with clinical traits to find key lncRNAs. Then,
12 key lncRNAs that were associated with cancer stage, risk
score, and proliferation index were identified in the intersection
of key modules and PCs. Univariate Cox regression analysis
retained six significant lncRNAs (P < 0.05) for further analysis.
A co-expression network of six lncRNAs and co-expressed
DEmRNAs in the blue module was constructed to present the
co-expression pattern and the relationship between key lncRNAs
and DEmRNAs. This network can provide insights for identifying
possible targets of key lncRNAs. After the LASSO and Cox
proportional hazard regression analysis, we detected a prognostic
formula for predicting survival based on the two lncRNAs,
including LINC00525 and LINC00996, and verified it in the
testing set. The patients were ultimately divided into high- or low-
risk patients according to the median risk value. Kaplan–Meier
analysis showed that the patients in the high-risk score group
displayed obviously worse OS compared with those in the low-
risk score group. Furthermore, ROC curve analysis revealed the
stability and accuracy of the two-lncRNA signature in predicting
patient prognosis. Further analysis showed that the two-lncRNA
risk score signature is an independent predictor of MM patient
prognosis. Indeed, prior studies had established several lncRNA
prognostic signatures that can provide a comprehensive clinical
assessment of MM prognosis (Zhou et al., 2015b; Samur
et al., 2018). Significantly, instead of simply utilizing survival
associated lncRNAs to construct lncRNA prognostic signatures,
it Is our first time to combine WGCNA and PCA to select
prognostic lncRNAs that could be further used to establish
a survival model. Subsequently, we performed a series of
rigorous analyses, including univariate, LASSO Cox regression,
and multivariate Cox hazard regression analysis to realize exact
survival prediction. Additionally, in contrast to the earlier
lncRNA model in MM (Zhu et al., 2020), we utilized an external
dataset to examine the accuracy of our lncRNA signature.
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Many recent studies have indicated that lncRNAs can
regulate gene expression by interacting with the miRNA via
MREs in MM (Sun et al., 2019a; Yang and Chen, 2019).
Thus, it is imperative to recognize MM-specific lncRNAs as
biomarkers and determine their potential mechanisms. These
lncRNAs may be essential in the initiation and development
of MM. Firstly, we identified 12 interesting lncRNAs, which
may participate in the development of MM. To further
select MM-specific lncRNAs, we screened DElncRNAs that
overlapped in GSE16558 and GSE47552. Surprisingly, our PCR
and microarray results indicated that 2 of the 12 lncRNAs
(LINC01128 and LINC00324) were differentially expressed.
LINC00324 can promote proliferation and metastasis but
can inhibit cell apoptosis of lung adenocarcinoma cells by
sponging miR-615-5p to promote AKT1 expression (Pan et al.,
2018). Similar results were also found where LINC00324 can
promote gastric cancer cell proliferation by binding with HuR
and stabilizing FAM83B expression (Zou et al., 2018). It
can also be used to predict the prognosis in patients with
thymoma (Gong et al., 2018). There are no references for
LINC01128. Its potential function remains to be determined.
Next, GO analysis revealed that those LINC01128 co-expressed
DEmRNAs were associated with protein transport and protein
binding processes. KEGG pathway analysis demonstrated that
they were enriched in cancer-related pathways, including cell
cycle, chronic myeloid leukemia, small cell lung cancer, and
metabolism-related pathways, including propanoate metabolism
and beta-alanine metabolism. To further explore the underlying
mechanism of LINC00324 and LINC01128, we formulated
a ceRNA network based on predicted interactions between
DEmiRNAs and DEmRNAs. Based on our network and the
ceRNA mechanism, we speculated that LINC01128 might act
as a tumor suppressor in MM through multiple mechanisms,
including miR-142-5p/PARP9 or FAM133A axis, and the miR-
299-3p/estrogen-related receptor gamma axis. The cancer–testis
antigen FAM133A is a downstream target of miR-155 and is
a negative regulator of glioma invasion and migration (Huang
et al., 2018). Estrogen-related receptor gamma is a tumor
suppressor as well as an activator of multiple cancers, including
gastric cancer (Kang et al., 2018), breast cancer (Kumari et al.,
2018), laryngeal squamous cell carcinoma (Shen et al., 2019),
and liver cancer (Kim et al., 2016). LINC00324 may exert
tumor-promoting functions in MM through targeting the miR-
512-3p/ZNF566 axis. However, this remains to be verified.
Finally, GSEA revealed that samples with high expression of
LINC01128 were in multiple cancer-related pathways, including
the P53 signaling pathway, cell cycle, mismatch repair, nucleotide
excision repair, and several metabolic pathways, including
cysteine and methionine metabolism, peroxisome, and beta-
alanine metabolism. Several studies have reported that the cell
cycle, P53 signaling, and DNA repair-related pathways are
important tumor biological mechanisms (Balint and Vousden,
2001; Jackson and Bartek, 2009). Also, high beta-alanine
concentrations are linked with cancer (Pine et al., 1982;
Nishimura et al., 2012). Our findings suggested that the high
expression of LINC01128 may be crucial in tumorigenesis and
progression of MM, probably by regulating the cell cycle,

DNA damage, or amino acid metabolism. Corresponding with
our predicted mechanism of LINC01128, the mutation of the
NAD+ binding site in PARP9 has been reported to increase
the DNA repair activity of the heterodimer (Yang et al.,
2017). On the other hand, genes in high expression groups
of LINC00324 were mainly involved in multiple metabolic
pathways, including propanoate metabolism, selenoamino acid
metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism,
and lysine degradation. These observations can be explained
by the hypothesis that LINC00324 suppresses tumorigenesis of
MM by interfering with carbohydrate metabolism, amino acid
metabolism, and protein translation.

In conclusion, WGCNA and PCA were performed to correlate
the gene expression profile of patients with MM to the
corresponding clinical traits. We identified lncRNAs that may
potentially be involved in the initiation and development of MM.
Finally, a two-lncRNA risk score model was formulated, and its
precise prediction value was demonstrated. We also identified
two lncRNAs as biomarkers and predicted their possible function
as ceRNAs. These findings provide fundamental insights for
further basic studies.

MATERIALS AND METHODS

Gene Expression Profile Data and
Clinical Characteristics
The overall design and workflow of this study are presented
in Supplementary Figure S1. The RNA expression profiles
of MM patients and normal donors were identified from
the GEO database2 (Table 2). GSE16791 was utilized to
conduct a WGCNA analysis for this study. This series of
microarray experiments include 16,325 mRNA and 1,137 lncRNA
expression profiles of purified plasma cells (PCs) obtained
from 32 newly diagnosed MM. GSE17306 is a microarray
analysis that contains 16,401 mRNA, 556 miRNA, and 1,146
lncRNA expression profiles of MM patients with corresponding
clinical information, including mRNA-based GEP-risk score
and proliferation index (Shaughnessy et al., 2007). It was used
here to implement the PCA algorithm to correlate clinical
traits with gene expression patterns. Corresponding clinical
information, including survival time and vital status, was
obtained from the GSE57317, including 16,325 mRNA and 1,137
lncRNA expression profiles of 55 MM patients, and TCGA
RNA-Seq dataset contains 56,753 mRNA, 1,881 miRNA, and
14,142 lncRNA expression profiles of 765 MM patients to
construct lncRNA risk score system. GSE16558, including 18,966
mRNA, 382 miRNA, and 431 lncRNA expression profiles of
60 MM patients and 5 healthy donors, GSE47552, including
18,966 mRNA and 431 lncRNA expression profiles of 41 MM
patients and 5 healthy donors, and GSE17498, including 722
miRNA expression profiles of 40 MM patients and 3 healthy
donors, were used to screen DEGs including DElncRNAs,
DEmiRNAs, and DEmRNAs. Microarray annotation information
was utilized to match probes with corresponding genes, and

2https://www.ncbi.nlm.nih.gov/geo/
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TABLE 2 | Summary of included datasets.

Dataset ID Sample size Age (year) Gender Tumor stage Vital status

Multiple myeloma Normal Male Female I II III Alive Dead

GSE16791 32 0 40–65 – – 3 7 22 – –

GSE17306 52 2 – – – – – – – –

GSE57317 55 0 – – – – – – 43 12

GSE16558 60 5 – – – – – – – –

GSE17498 40 3 39–85 23 17

GSE47552 41 5 – – – – – – – –

TCGA 765 0 27–88 449 316 266 276 223 609 156

lncRNA expression was obtained based on the annotation of
Genecode (see footnote 1).

Weighted Co-expression Network
Analysis
A total of 32,216 genes identified in each sample of GSE16791
were utilized to construct a gene co-expression network
using the WGCNA R package (Langfelder and Horvath,
2008; Chen L. et al., 2017). Sample clustering of all genes
was applied to check if they were good genes and good
samples. A scale-free co-expression network was achieved
when the soft-threshold power was set as 8 (scale-free
R2 = 0.81), cut height as 0.25, and minimal module size as 30.
Then, to evaluate co-expression levels between genes, Pearson
correlations were performed and then weighted by raising their
absolute value to a power. Hierarchical clustering dendrograms
visualized gene modules in different colors. Modules with
the highest correlation with cancer stage were selected for
further analysis.

Principal Component Analysis
Principal component analysis compresses all the original
variables into a smaller subset of composite variables (PCs)
instead of ignoring or discarding variables. PCA tools, a useful
R package that provides functions for data exploration, were
applied to analyze GSE17306 dataset3. At first, PCA helped
us to determine PCs, accounting for 80% of the explained
variation. Secondly, we correlated the PCs back to the clinical
data, including mRNA-based GEP-risk score and proliferation
index, to gain interesting PCs. Finally, the plotLoadings function
could contribute to determining the variables ranked top 5% of
the loadings range.

Identification and Evaluation of a Risk
Assessment Model
The prognostic value of 12 lncRNAs in the intersection of blue
and green modules, and PC6 and PC8, were evaluated by a
univariate Cox model with a statistical level of significance set at
P < 00.05. Critical prognostic lncRNAs were further identified
by the LASSO regression method (Gao et al., 2010). LASSO

3https://github.com/kevinblighe/PCAtools

regression is a penalized regression method that is often used
in machine learning to select the subset of variables. The R
glmnet software package was adopted to carry out the LASSO
Cox analysis (Tibshirani, 1997). Also, lncRNAs obtained in these
steps were then enrolled into a multivariate Cox regression model
using a survival R package, and prognosis-associated lncRNAs
were selected. The risk score of each patient was calculated
based on the summation of each lncRNA and its coefficient, and
we distinguished high- from low-risk patients according to the
median risk score. The Kaplan–Meier method was applied to
analyze the difference of OS between two groups, and a ROC
analysis was adopted to estimate the predictive power of this
lncRNA risk score system. The TCGA dataset served as a testing
set for further validation.

Construction of Co-expression Network
of Key Long Non-coding RNAs and
Differentially Expressed Messenger
RNAs in the Blue Module
The multivariate Cox regression analysis identified six lncRNAs
with P < 0.05, which were considered as key lncRNAs. We
created a gene co-expression subnetwork for the genes in
the blue module according to their topology overlap matrix
similarity; DEmRNAs connected to key lncRNAs were selected to
construct a co-expression network using Cytoscape. DEmRNAs
that overlapped in GSE16558 and GSE47552 (n = 680) were
identified based on the cutoff criteria of P < 0.05 and | log (FC)|
> 1. The size of the nodes reflected the strength of connectivity,
and the color was related to the weighted score of the interactions.

Screening of Database of Essential
Genes and Survival Analysis
The Limma package in R (Ritchie et al., 2015) was used to
identify the DEGs from GSE16558 and GSE47552. We identified
DElncRNAs and DEmiRNAs according to the criterion that
adjusted P < 0.05. Abnormally expressed miRNAs in GSE17306,
GSE16558, and GSE17498 were all selected for constructing the
ceRNA network. The two DElncRNAs were utilized to perform
Kaplan–Meier analysis and log-rank test to identify whether they
were correlated with OS using the GSE57317 and TCGA datasets.
Log-rank test with P < 0.05 was set as statically significant.
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Cell Lines and Clinical Specimens
The RPMI-8226, SKO-007, and KM3 MM cell lines were a
generous gift of Prof. Yumin Huang, Department of Hematology,
First Affiliated Hospital of Zhengzhou University. Cells were
maintained in RPMI-1640 medium (Sigma-Aldrich, St. Louis,
MO, United States) with 10% fetal bovine serum at 37◦C in an
atmosphere of 5% CO2. BM was obtained from three healthy
controls from a pool of volunteers without any diseases. All
volunteers provided written informed consent, and the research
ethics committee of the First Affiliated Hospital of Zhengzhou
University approved the study (2019-KY-357). Flow cytometry
was performed using the CD138 antibody (PE, BD Bioscience,
United States) to isolate CD138-positive PC from BM samples
according to the manufacturer’s protocol.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). A NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, United States) was utilized to detect RNA purity and
concentration. RT-PCR was performed using a FastStart
Universal SYBR Green Master (Servicebio, Wuhan, China) Kit.
Actin was used as an internal control. Primers were synthesized
by Servicebio (Wuhan, China). Primer sequences were:
LINC01128: Forward 5′-AGGACATAGGCCAGCCAGTAC-3′,
Reverse 5′-GTCTTTGGTCCCAGATCACTCC-3′; LINC00324:
Forward 5′-ACCTACGGTTTCTGGTCAGCG-3′, Reverse
5′-GACGACGGCAGCCATTACTTT-3′; ACTIN: Forward
5′-CACCCAGCACAATGAAGATCAAGAT-3′, Reverse 5′-
CCAGTTTTTAAATCCTGAGTCAAGC-3′. LINC00525:
Forward 5′-GCTTTGGAAACTTACTCAGGGTG-3′, Reverse
5′-CTTGAGGCACCAGTGCAAATAC-3′; LINC00996: Forward
5′-GAGGGCACTTTGTCTTACTTGGC-3′, Reverse 5′-
ATTCTTCATGCCAATCCTCTCAC-3′. Relative expression
was calculated using the 2-MMCt method. Student’s t-test
was conducted by SPSS 25.0 software (SPSS Inc., Chicago,
IL, United States) to determine the significance of the
differences in mean values.

Construction of Interesting Differentially
Expressed Long Non-coding RNA-Based
Competing Endogenous RNA Network
The ceRNA hypothesis posits that lncRNAs can regulate gene
expression by interacting with miRNA at miRNA-binding sites
(MREs). It is vital to match the DEmRNAs, miRNAs, and
lncRNAs to figure out a novel molecular mechanism involved in
the development of MM. The MIRanda database4, Starbase3.05,
and RNA22 tool6 were used to predict the interactions between
DElncRNAs and miRNAs. The miRNAs that potentially target
DEmRNAs were predicted by DIANA Tools7. DElncRNAs,

4http://www.microrna.org/
5http://starbase.sysu.edu.cn/index.php
6https://cm.jefferson.edu/
7http://diana.imis.athena-innovation.gr/DianaTools/index.php

DEmRNAs, and DEmiRNAs that overlapped with the predicted
miRNAs were selected to construct a ceRNA network and were
visualized with Cytoscape version 3.6.1.

Functional Annotation of Long
Non-coding RNA Target Genes
The GO and KEGG enrichment analyses for DEmRNAs, which
were co-expressed with LINC00324 and LINC01128, were
analyzed using the Database for Annotation, Visualization, and
Integrated Discovery database (Huang et al., 2007) and visualized
by the GOplot R package (Walter et al., 2015). The z-score is
a value that can be easily calculated and reveals whether the
biological process (molecular function/cellular components) is
more likely to be decreased (negative value) or increased (positive
value). It is calculated as z-score = (up-down)/

√
count. Up or

down represents the number of upregulated or downregulated
genes, respectively. The count represents the number of genes
that belong to each term. A threshold for the labeling is set as
log (adjust p-value) > 2.8.

Gene Set Enrichment Analysis and Gene
Set Variation Analysis
The GSE16791 dataset was used to conduct GSEA according
to expression levels of two lncRNAs (high expression vs. low
expression) (Subramanian et al., 2005). Annotated gene sets
c2.cp.kegg. v 7.0.symbols.gmt was chosen as the reference gene
sets8. The nominal P-value estimates the statistical significance of
the enrichment score, and a nominal P-value ≤ 0.05 was set as
the cutoff criterion.
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FIGURE S1 | Overall design and workflow of this study.

FIGURE S2 | Soft threshold determination and the relationship between these two
modules and clinical traits. (A) Determination of soft-thresholding power in Wgcna.
(B) Scatter plot of module eigengenes in blue and green modules. (C) Module
eigengene dendrogram and interactions among different gene coexpression
modules.

FIGURE S3 | Relative quantification of Linc00525 and Linc00996 expression by
qRt-Pcr. The expression of Linc00525 (A) and Linc00996 (B) in human multiple
myeloma cell lines (Rpmi-8226, Sko-007, Km3) as well as normal plasma cells.
Data are presented as the mean ± standard deviation. The ns represents not
significant, ∗ represents P < 0.05, ∗∗ represents P < 0.01, ∗∗∗ represents
P < 0.001 and ∗∗∗∗ represents P < 0.0001.

FIGURE S4 | The risk score performance in the Tcga (testing) datasets. (A) Risk
score of the 2 lncRnas in 787 Mm patients (top); overall survival status and
duration (middle); heatmap of the 2 lncRnas expression in Mm patients (Bottom).
(B) The forest plot showed the hazard ratios (Hr) with 95% confidence interval
(95%Ci) according to the multivariate Cox regression results. (C) The overall
survival of high-risk score group and low-risk score group. (D) The 3-year survival
receiving operating characteristic curve (Roc) of according to 2 lncRna signature
risk score (red).
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