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and chemotherapy for treatment. Given the premium on 
preserving neurologic function during spinal cord sur-
gery, intraoperative frozen section histologic analysis has 
an important role in driving therapeutic decision-making. 
However, histologic grading can be challenging in spinal 
cord astrocytomas because of the often relatively small 
samples obtained at the time of the surgical procedure. 
Therefore, grade-defining molecular biomarkers would be 
particularly useful for the accurate diagnostic classifica-
tion of these tumors [13]. Recent genome level sequencing 
studies of supratentorial gliomas revealed discrete genomic 
alterations that discriminate pilocytic astrocytomas, WHO 
grade II and III diffuse gliomas, and WHO grade IV 

Intramedullary spinal cord neoplasms represent 2–4  % of 
central nervous system tumors, of which astrocytic glio-
mas represent 80  %. Patients presenting with spinal cord 
astrocytomas span the traditional pediatric and adult age 
divisions, having an overall age-distribution that is younger 
than cohorts with supratentorial gliomas. WHO grade I 
and II astrocytomas have better outcomes that are largely 
dependent on extent of surgical resection [10], whereas 
Grade III and IV astrocytomas are less amenable to safe 
surgical resection, and typically require adjuvant radiation 
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glioblastoma (GBM), with notable differences between 
pediatric [9, 14, 15, 20] and adult [2, 3, 6] patients. To 
address the hypothesis that genomic alterations could seg-
regate spinal cord astrocytoma histologic grades, we per-
formed sequencing of cancer-related genes in a cohort of 
17 tumors.

Spinal cord astrocytomas from children and adults were 
obtained as formalin-fixed, paraffin-embedded (FFPE) 
specimens from Massachusetts General Hospital, the Uni-
versity of Toronto, and New York University. Central neuro-
pathology review performed by a neuropathologist (DNL) 
and specimens with clear histologic diagnosis and grading 
were used for further analysis. The characteristics of the 
discovery cohort (n = 17 specimens) are listed in Table 1. 
Targeted sequencing of 560 cancer related genes and 39 
translocation events was performed on DNA extracted from 
these specimens (Supplementary Table 1) [5]. Briefly, DNA 
was sonicated to achieve an average fragment size of 250 
base pairs, size selected and barcoded. Multiplexed pools 
were hybridized with biotinylated baits (Agilent SureSe-
lect) designed to capture exonic sequences. The captures 
were sequenced on the Illumina HiSeq 2500 in Rapid Run 
Mode. Mutation analysis was performed by MuTect [4] and 
SomaticIndelDetector, copy number variant analysis was 
performed by ReCapSeg, and rearrangement analysis was 
performed by BreaKmer [1]. When applicable, statistical 
comparisons were performed by Chi squared test.

The most recurrent findings in Grade I spinal cord astro-
cytomas were a BRAF-KIAA1549 translocation (n = 3/10) 
and BRAF copy number gain (n = 5/10) (Fig. 1). Addition-
ally, WHO grade I astrocytomas were found to have non-
synonymous mutations in NF2, NTRK1, NTRK3, PDG-
FRA, and TP53 (Supplementary Table  2). WHO grade II 
astrocytomas were similarly characterized by alterations 
involved in the MAPK-ERK or PI3K pathways, including 
BRAF-KIAA1549 translocation (n = 1/3) and BRAF ampli-
fication (n = 2/3). For samples with sufficient material, low 
coverage whole genome sequencing (mean 1× depth) was 
performed revealing that the BRAF amplification resulted 
from a chromosome 7 arm level gain in three of these spec-
imens (SA-N101, SA-TL07, and SA-TL17, Supplementary 
Figure  1). Notably, no specimen in the discovery cohort 
was characterized by the BRAF V600E mutation.

In addition, we observed that all four Grade III and IV 
astrocytomas in the discovery cohort shared the H3F3A 
K27M mutation. Further targeted Sanger sequencing of 
H3F3A was performed in five additional specimens (valida-
tion cohort) and revealed the K27M mutation in 2/3 spinal 
Grade IV astrocytomas and 0/2 Grade I astrocytomas (Sup-
plementary Figure 2). The age distribution of our findings 
are consistent with prior observations that H3F3A K27M 
primarily occurs in pediatric and young adult gliomas [11, 
15, 19]. In the aggregate cohort of 22 specimens (discovery 

and validation cohorts), the presence of H3F3A K27M in 
Grade III and IV (85.7 %, n = 6/7 specimens) and absence 
in Grade I and II (n = 0/15 specimens) astrocytomas was a 
statistically significant difference (p  < 0.001, Chi squared 
test with Yates correction).

Of note, while variants in IDH1 and IDH2 were noted 
in four specimens (Supplementary Table 2), none of these 
represented the recurrent mutations previously described 
in adult glioma. Loss of heterozygosity analysis of variant 
allele frequency [17] did not reveal co-deletion of chromo-
somes 1p and 19q (Supplementary Figure 3), further con-
firming that the tumors analyzed in the discovery cohort 
were astrocytic.

The distribution of mutations observed may partially 
underlie the well-established demographic differences 
between patients with spinal cord gliomas compared to 
their supratentorial counterparts. For instance, whole 
genome analyses of pediatric intracranial gliomas have 
been reported recently with convergence of alterations in 
Grade I and II gliomas on MAPK-ERK and PI3K path-
ways [9]. Pediatric high grade gliomas, on the other hand, 
have been characterized by recurrent mutations in chro-
matin remodeling genes H3F3A, ATRX, and DAXX in 
44  % of sequenced tumors [15]. Similarly, seminal work 
revealed that H3F3A K27M is found in 71  % of pediat-
ric diffuse intrinsic pontine glioma, the presence of which 
correlated with worse outcomes [11]. Across pediatric and 
young adult GBM, H3F3A K27M mutations occur mutu-
ally exclusive of other category-defining recurrent muta-
tions (such as mutations in IDH1 and TERT promoter) 
and are found predominantly in midline lesions bearing 

Table 1   Baseline characteristics of discovery cohort

Specimen Age (years) WHO grade Gender

SA-TL04 5.2 I Female

SA-TL13 4.5 I Male

SA-TL11 13.6 I Female

SA-TL19 5.4 I Female

SA-TL20 5.8 I Male

SA-TL14 5.9 I Male

SA-TH04 17.2 I Female

SA-TL02 8.3 I Male

SA-TL12 9.0 I Male

SA-TL17 13.4 I Female

SA-TL10 1.5 II Male

SA-N101 82.0 II Female

SA-TL07 2.2 II Female

SA-TL03 14.6 III Female

SA-N103 25.0 IV Male

SA-TH01 2.9 IV Male

SA-TH02 12.3 IV Male
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the transcriptomic profile of the proneural GBM subtype 
[18]. A recent report noted positive H3F3A K27M immu-
nohistochemical staining in 11 spinal glioblastomas, 3 ana-
plastic astrocytomas, and 2 anaplastic gangliogliomas [7]. 
Together with our observation of H3F3A K27M occurring 
in 86 % of Grade III and IV spinal cord astrocytomas, this 
supports the concept of a shared teleology between aggres-
sive astrocytic gliomas arising in midline structures of the 
craniospinal axis. Future transcriptional analysis of spinal 
cord astrocytomas can assess whether these lesions share 
similar changes noted in H3F3A K27M mutant supratento-
rial gliomas.

The BRAF alterations in a high percentage of WHO 
grade I and II spinal cord astrocytomas point towards a 
potential therapeutic approach, as BRAF–MEK inhibitors 
have demonstrated success in BRAF-mutant cancer types. 
Accordingly, targeting the BRAF–MEK pathway in pedi-
atric gliomas is under active evaluation [12]. Our findings 
suggest that patients with spinal cord astrocytomas could 
be considered for enrollment in clinical trials targeting 
these pathways. From a surgical management standpoint, 
the hotspot H3F3A K27M mutation has the potential to 
be genotyped within an intraoperative timeframe, to guide 
the aggressiveness of surgical resection by balancing the 
neuromonitoring-based potential for postoperative neuro-
logic deficit with the predicted natural history defined by 
H3F3A K27M mutation status [16]. Detection of this muta-
tion could ultimately guide novel adjuvant treatment strate-
gies, as inhibition of histone deacetylase and histone dem-
ethylase has demonstrated in vivo efficacy in xenografts of 
H3F3A K27M mutant gliomas [8].

While our findings do not indicate alterations specific to 
spinal cord astrocytomas versus supratentorial disease, larger 
cohort studies performing deep coverage whole genome or 
transcriptome may reveal unique copy number alterations or 
translocations in these infiltrative tumors. In summary, the 
findings described here indicate that BRAF alterations and 
histone H3F3A K27M mutations are grade-related features 
of spinal cord astrocytomas that should enter routine initial 
evaluation of spinal cord gliomas, and provide a potential 
foundation for adjuvant therapeutic strategies.
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