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Abstract

Neuromuscular activity is suppressed during maximal eccentric (ECC) muscle contraction in untrained subjects owing to attenuated levels of

central activation and reduced spinal motor neuron (MN) excitability indicated by reduced electromyography signal amplitude, diminished

evoked H-reflex responses, increased autogenic MN inhibition, and decreased excitability in descending corticospinal motor pathways. Maxi-

mum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in

untrained individuals and not in trained strength athletes, indicating that the suppression in MN activation is modifiable by resistance training. In

support of this notion, maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or dimin-

ished suppression in neuromuscular activity. Prolonged (weeks to months) of heavy-load resistance training results in increased H-reflex and

V-wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength, indicating increased excit-

ability of spinal MNs, decreased presynaptic and/or postsynaptic MN inhibition, and elevated descending motor drive. Notably, the use of supra-

maximal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction, demonstrating that

adaptive changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in

response to heavy-load resistance training.

� 2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

During eccentric (ECC) muscle contraction, myofibers pro-

duce force while simultaneously being lengthened that, for elec-

trically innervated muscle preparations in vitro, results in

markedly greater (�60% increased ) contractile force and work

production compared with that observed during isometric (ISO)

or shortening (concentric (CONC)) contraction conditions1�3

(Fig. 1). This phenomenon was first verified (extrapolated back-

wards) for intact human muscle by Abbott et al.4 In terms of

intact human skeletal muscles, a marked deviation (»50% force

deficit) can be observed between the shape of the contractile

force�velocity relationship when obtained in vivo in untrained

subjects during maximal voluntary ECC contraction con-

ditions5�12 versus that recorded for isolated muscle and myo-

fiber preparations in situ2,3 (Fig. 1). Notably, however, highly
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strength-trained individuals seem to be capable of producing

substantially higher ECC muscle forces (larger joint moments)

compared with untrained subjects,10 suggesting that maximal

ECC muscle strength capacity is trainable.

ECC contractions play a crucial role in the production and

control of movement13 and have been suggested to be uniquely

controlled by the central nervous system,14�17 typically char-

acterized by a more variable motor output compared with

CONC contraction conditions.18 Suggesting the presence of

inhibitory neural mechanism(s), electrical muscle stimulation

superimposed onto maximal voluntary contractions has been

observed to selectively increase active force production

during ECC but not CONC muscle actions,10,19,20 causing

the resulting force�velocity relationship to more closely

resemble that observed for isolated muscle or myofiber

preparations21 (Fig. 1).

High levels of ECC muscle strength are required in many

types of sports, because this strength provides an enhanced

capacity to decelerate movements in very short time and
port. This is an open access article under the CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:paagaard@health.sdu.dk
https://doi.org/10.1016/j.jshs.2018.06.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jshs.2018.06.003&domain=pdf
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jshs.2018.06.003&domain=pdf
https://doi.org/
https://doi.org/
http://www.jshs.org.cn


Fig. 1. Contractile force�velocity relationships obtained for shortening (CONC)

and lengthening (ECC) contractions in isolated in vitro preparations of whole

muscle2 and single muscle fibres3 obtained from the frog (Rana Temporaria,

m. sartorious at 11.5˚C2; anterior tibialis muscle fibers at 1.4˚C�1.5˚C3). On the

vertical axis (muscle force) a unit of 100 corresponds with a maximal ISO

contraction force in vitro. On the velocity axis, 100% corresponds with Vmax.

Positive and negative velocities denote CONC and ECC muscle actions,

respectively. Superimposed curves show muscle strength measured in vivo during

maximal voluntary activation and/or when percutaneous electrical stimulation

was applied to the knee extensors.19 In vivo muscle strength was obtained by use

of isokinetic dynamometry as the maximal knee extensor torque generated at

60˚ knee joint angle (0˚ = full knee extension), during (a) maximal voluntary mus-

cle activation (triangles), (b) electrical muscle stimulation (open boxes), and (c)

electrical stimulation superimposed onto maximal voluntary contraction (closed

boxes). To scale isokinetic knee joint angular velocity, a maximal angular velocity

of 800˚/s was assumed for maximal unloaded knee extension115,116 with a force

unit of 100, corresponding with the maximal voluntary ISO strength (MVC).

CONC= concentric; ECC = eccentric; ISO = isometric; MVC=maximum volun-

tary contraction; Vmax =maximal unloaded contraction velocity. Adapted from

Aagaard et al.21 with permission.
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Fig. 2. Raw tracings of isokinetic knee joint moment and (EMG signals

obtained in an untrained male subject during maximal CONC (left) and ECC

(right) knee extensor contraction during joint movements performed at slow

(A) and fast (B) joint angular speeds (30˚/s and 240˚/s, respectively). Range of

joint motion was from 90˚ to 10˚ during CONC contraction and from 10˚ to

90˚ during ECC contraction (0˚ = full knee extension). Note the appearance of

large EMG amplitude spikes separated by short interspike periods of no or low

neuromuscular activity during ECC contraction conditions, indicating a more

nonuniform pattern of muscle activation during maximal ECC compared with

CONC muscle actions in untrained individuals. CONC = concentric;

ECC = eccentric; EMG = electromyography; VL = vastus lateralis, VM = vasus

medialis, RF = rectus femoris. Adapted from Aagaard et al.7 with permission.
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thereby perform fast stretch�shortening cycle actions (e.g.,

rapid jumping),22 while also allowing rapid shifts in move-

ment direction (e.g., fast side-cutting movements).23 Fur-

thermore, high ECC strength in antagonist muscles

provides an enhanced capacity to decelerate and break

movements at the end of the range of motion, thereby

potentially protecting against injury to ligaments (e.g., the

anterior cruciate ligament ((ACL)) and joint capsule struc-

tures.6,24 High ECC strength in specific antagonist muscles

also plays an important role for performing rapid limb

deceleration at end of the range of motion in fast ballistic

movements, thereby yielding a longer time for limb accel-

eration and thus allowing the attainment of higher move-

ment speeds.25 Finally, high levels of ECC muscle strength

may be desirable in older individuals to decrease the risk

of falls during stair descent.

Signs of nonuniform muscle activation typically can be

observed during maximal voluntary ECC muscle contrac-

tions in untrained subjects (Fig. 2),7,26 and it has been sug-

gested that such neural strategies may serve as a protective

mechanism against cytoskeletal damage induced by repeti-

tive ECC muscle actions,7,27 which typically is observed

when more uniform patterns of myofiber recruitment are

evoked by means of electrical percutaneous or motor nerve

stimulation.28,29
2. Mechanical muscle function during ECC muscle actions

of maximal voluntary effort

Untrained individuals typically demonstrate a levelling off

(plateauing) in maximal muscle strength during slow CONC or

ECC muscle actions, whereas strength-trained individuals do

not.5,6 Notably, this plateauing in maximal muscle strength can

be removed in response to heavy-load resistance training

(HLRT).5,30,31 Furthermore, no plateauing seems to be present

in highly resistance-trained athletes exposed to years of

HLRT.6,9 Conversely, resistance training using low external

loads and high contraction speeds seems to have no effect on

the plateauing phenomenon,5 suggesting that heavy-load resis-

tance exercise (>80% 1 repetition maximum) should be used to

diminish or fully remove the influence of this force-inhibiting

mechanism. HLRT (i.e., resistance training using exercise loads

»80%�85% 1 repetition maximum) consistently has been

reported to result in marked gains in maximal ECC muscle

strength.5,12,26,31�43 Moreover, resistance training using maxi-

mal ECC muscle contractions or coupled ECC�CONC contrac-

tions (i.e., involving stretch�shortening cycle muscle actions)

seems to evoke greater gains in maximal ECC muscle strength

than CONC training alone.32�35,42,44 In contrast, maximal ECC
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muscle strength seems to remain unaffected in response to low-

load resistance training,5,33,41,45 suggesting that the exertion of

high muscle forces during training is a key stimulus to inducing

adaptive changes in maximal ECC muscle strength.

3. Neuromuscular aspects related to maximal ECC muscle

actions

Aagaard et al.7 reported marked increases in normalized

electromyography (EMG) signal amplitudes during maximal

ECC muscle actions in response to 14 weeks of HLRT, dem-

onstrating for the first time that the suppression (“inhibition”)

in neuromuscular activity that normally is observed during

maximal voluntary ECC muscle actions in untrained individu-

als can be removed by resistance training.7 This observation

helps explain the substantial gain in ECC muscle strength typi-

cally observed with HLRT,5�7,9,26 as well as the absence of

ECC moment deflection (“plateauing”) in athletes exposed to

many years of HLRT.6,9 The strong neural influence on the

expression of maximal ECC muscle strength in vivo and its

adaptability to training are discussed in detail herein.

4. Neural regulation of ECC muscle force

Neural regulatory mechanism(s) that limit the recruitment

and/or discharge rate of motor units (MUs) have previously

been suggested to exist during maximal voluntary ECC muscle

contraction.7,46�49 Indirect evidence of such mechanisms(s)

is given by the marked suppression in neuromuscular

activity (reduced EMG amplitude) often observed during

ECC vs. CONC contractions of maximal voluntary

effort7,11,12,26,46,50�52 (Fig. 2). Moreover, maximal ECC mus-

cle force (measured as knee extensor torque) was seen to

increase by »30% when transcutaneous electrical muscle

stimulation was superimposed onto voluntary contractions
A. Moment of force (N·m)

/

Fig. 3. (A) Maximal CONC and ECC quadriceps muscle strength (moment of force

and displayed as a function of knee joint angle (averaged in 10˚ intervals) and joint a

cle contraction, respectively. As seen in (B), a marked suppression in VL EMG ap

EMG amplitudes recorded during fast CONC contraction. Thus, VL EMG was 26%

contraction compared with fast CONC contraction when averaged at 60˚�90˚ knee

knee joint positions, e.g., at 10˚�40˚ joint angle. CONC = concentric; ECC = ecce

from Aagaard et al.7 with permission.
in untrained individuals; similar findings failed to be observed

in resistance-trained athletes,9 indicating that the suppression

in motor neuron (MN) activation is modifiable by resistance

training. Furthermore, using direct femoral nerve stimulation53

or superimposed muscle-twitch analysis54,55 during maximal

ECC vs. ISO contraction conditions, it was estimated that cen-

tral activation was reduced by »20%�50% when performing

ECC muscle actions of maximal voluntary effort (knee exten-

sors), at least in untrained individuals.

Although a selective recruitment of type II muscle fibers

(and de-recruitment of type I fibers) has been suggested to exist

during ECC contractions,56,57 a majority of studies have shown

that type II muscle fibers are not selectively activated during

ECC muscle contractions in humans and that MU recruitment

generally follows the Henneman size principle during voluntary

ECC muscle actions.58�63 Thus, at least in humans, potential

inhibitory mechanisms related to ECC muscle actions are

unlikely to reside in a de-recruitment of type I fibers.

Based on the 3-dimensional relationship between neuro-

muscular activity (EMG amplitude) vs. knee extensor moment

expressed as functions of knee joint angle (muscle length) and

angular velocity (contraction speed) and contraction mode

(ECC vs. CONC)7 (Fig. 3), respectively, it was possible to test

the hypothesis that spinal MN inhibition originated owing to

afferent inhibitory inflow from the ACL to the central nervous

system. About 1%�3% of the ACL ligament consists of

mechanoreceptors (Ruffini end organs, Pacinian corpuscles)

that mainly are located at the tibial and femoral insertion

sites.64,65 Using intra-articular electrical stimulation, evidence

of a reflex pathway from the ACL that modulates the activity

of the knee musculature has been observed in cats,66 as well as

in intact humans,67 although no afferent function of the ACL

could be detected after ACL reconstruction (8 months to

12 years after surgery).68 Given that forceful quadriceps
  B. VL EMG (μV)

/

) and (B) neuromuscular activity (VL EMG) obtained in 15 untrained subjects

ngular velocity. Negative and positive velocities denote ECC and CONC mus-

peared during maximal ECC and slow CONC contraction, compared with the

�31% lower in slow ECC and CONC contraction and 47% lower in fast ECC

joint angle. In contrast, no suppression in EMG was observed at more extended

ntric; VL EMG = vastus lateralis electromyography amplitude. Data adapted
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Fig. 4. Spinal evoked H-reflex responses recorded in the soleus muscle during

ISO, CONC, and ECC plantar flexor contractions of maximal voluntary effort.

Note the depression in H-reflex amplitude during maximal ECC contraction,

suggesting reduced spinal motorneuron excitability and/or increased presynaptic

or postsynaptic inhibition. The Mmax remained unchanged across contraction

modes (bottom) to verify that the depressed H-reflex response during ECC con-

traction was not a recording artifact. CONC = concentric; ECC= eccentric;

Hmax =maximal H-wave; H-reflex =Hoffman reflex; Mmax =maximal M-wave;

ISO = isometric. Adapted from Duclay and Martin46 with permission.
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contraction can result in significant tensile stress force genera-

tion in the human ACL within the distal knee extension range

of motion69�71 (see Aagaard et al.24 for a more detailed

review), it was hypothesized by Aagaard et al.7 that the exis-

tence of an inhibitory reflex pathway excited by increased

ACL stress forces would result in a greater suppression in neu-

romuscular activity during high-force contractions (assumed

to result in greater ACL strain) compared with low-force con-

tractions at more extended knee joint positions. However, the

3-dimensional EMG�angle�velocity relationships reported

by Aagaard et al.7 failed to confirm this hypothesis, which

prompted the authors to suggest that the mechanism(s) of neu-

ral inhibition would originate from a pathway of force-nega-

tive neural feedback from the contracting muscle itself (i.e., Ib

afferent input to spinal MNs) or via other sources of spinal reg-

ulatory mechanisms (presynaptic inhibition of muscle spindle

Ia afferents, postsynaptic inhibition of MNs) that theoretically

could include autogenic spinal inhibition mechanisms (recur-

rent Renshaw inhibition).27 However, although recurrent

Renshaw inhibition is considered a factor limiting the dis-

charge frequency of spinal MNs,72,73 discharge rates did not

differ between low-intensity ECC and CONC contractions in

the human tibialis anterior muscle,74 suggesting that recurrent

inhibition may not play a strong role for the inhibition of spi-

nal MN activity during ECC muscle contraction, at least dur-

ing low-force contraction conditions. In a very recent study,

however, Barru�e-Belou et al.75 for the first time measured the

magnitude of recurrent Renshaw inhibition during maximal

ECC muscle actions in humans, demonstrating that autogenic

recurrent Renshaw inhibition was significantly increased dur-

ing maximal ECC muscle actions compared with maximal

ISO and CONC contraction conditions.
5. Neural regulation of ECC muscle force—Spinal evoked

responses

The Hoffmann reflex (H-reflex) can be used to assess

human spinal circuitry function in vivo,76 although the tech-

nique presents methodological advantages as well as potential

limitations.77�79 Recording of evoked spinal H-reflex and V-

wave (also an H-reflex variant) responses during maximal and

submaximal muscle contraction have previously been used to

examine the adaptive plasticity in neuromuscular function

with training.50,80�82 In direct support of a neural inhibitory

mechanism during ECC muscle actions in vivo, attenuated

evoked spinal MN responses (reduced H-reflex amplitudes)

have been observed during maximal ECC muscle contraction

in untrained individuals46,48�50,83 (Fig. 4). In contrast, the size

of the V-wave response that, among other factors reflects the

magnitude of descending supraspinal motor drive to spinal

MNs,81,84 does not seem to differ between ECC and CONC

contraction conditions,46,50 indicating that central nervous sys-

tem site(s) of inhibition are mainly of spinal origin. Owing to

its relatively low intensity of peripheral nerve stimulation, the

H-reflex is expected to mainly recruit the pool of spinal MNs

of smaller soma size (presumably dominated by low-threshold

MUs primarily innervating type I fibers),85,86 whereas the
V-wave owing to its maximal intensity of stimulation recruits

both small- and large-sized MNs. Consequently, the differen-

tial modulation in H-reflex vs. V-wave amplitude during ECC

muscle actions may suggest inhibitory synaptic inputs to spinal

MNs to be more dominant in MUs of smaller size (as reflected

by the preferential reduction in H-reflex amplitude) than in

large-sized MUs (included in the V-wave response).
6. Neural regulation of ECC muscle force—Corticospinal

excitability

Reflecting a decreased excitability in corticospinal path-

ways during ECC muscle actions, motor evoked potentials

(MEPs) elicited by transcranial magnetic stimulation (TMS)

have been reported to be decreased during maximal ECC con-

tractions compared with CONC contractions when examined

in the biceps brachii and brachioradialis muscles,47 as well as

in the soleus48,49,83 (Fig. 5). Likewise, MEP amplitudes

recorded in the biceps brachii and brachioradialis muscles

were 50%�70% reduced during submaximal (30% maximum

voluntary contraction (MVC) ECC vs. CONC contraction con-

ditions87 (Fig. 6). In contrast with these observations, no con-

traction-specific differences in MEP amplitude were observed

for the medial gastrocnemius muscle, suggesting that the neu-

ral mechanisms responsible for the magnitude of maximal

ECC muscle force production in vivo may differ between

monoarticular (soleus) and biarticular (gastrocnemius) syner-

gist muscles in the lower limbs.48,49 Combined TMS and H-

reflex experiments indicate a differential relative influence of

cortical vs. spinal mechanisms in the modulation of neural

activation during maximal ECC muscle contraction in

vivo.47�49,83 For example, Gruber et al.47 observed that MEPs
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Fig. 5. Modulation in corticospinal excitability during maximal ECC, ISO, and CONC contractions. (A) MEP and SP evoked in the soleus muscle by TMS and the

associated input�output relation for 1 representative subject. The graph displays the amplitude of the MEP recorded in the target muscle expressed relative to
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stim. = stimulus artifact; TMS = transcranial magnetic stimulation. Data from Duclay et al.48 and adapted from Duchateau and Baudry16 with permission.
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were diminished during maximal ECC elbow flexor contrac-

tions when elicited by TMS (MEP amplitude 16% reduced)

and cervicomedullary stimulation (28% reduced), respec-

tively. The significantly greater decrease in cervicomedullary

stimulation was suggested to reflect elevated inhibition at the

spinal level along with enhanced excitability at the cortical

level, the latter evidenced by a significantly increased

(+10%�20%) MEP/cervicomedullary stimulation ratio during

maximal ECC muscle actions compared with ISO muscle

actions.47 Similarly, during maximal ECC contraction conditions,

H-reflex excitability seemed to be more depressed (¡29%) than

MEP amplitude (¡19%) (soleus muscle),49 indicating that the

neural control of maximal ECC muscle force production com-

prises a stronger modulatory influence on the excitability of the

spinal pathway than on the corticospinal tract.17

In addition to the above observations, poststimulus silent

EMG periods induced by TMS were shortened to a greater

extent during ECC contractions than during CONC contrac-

tions (compared with resting conditions) (Fig. 5), which was

interpreted to reflect reduced amounts of intracortical inhibi-

tion during maximal ECC contraction conditions.48,49 Collec-

tively, these data suggest that the reduction in corticospinal

excitability during ECC muscle contraction depend mainly

on presynaptic or postsynaptic inhibitory circuitry pathways

acting at the spinal level.47�49 In turn, these spinal mecha-

nisms most likely are modulated by regulatory inputs from
supraspinal pathways15,17 (discussed in detail elsewhere in

this article).

As suggested by Duclay et al.,48 the decrease in spinal

excitability (suppressed H-reflex amplitude) observed with

passive muscle lengthening (m. soleus) potentially could be

attributed to presynaptic inhibitory mechanisms88,89 induced

by enhanced activity in muscle spindle Ia afferents them-

selves90 or to result from reduced spinal efficacy caused by

homosynaptic postactivation depression.91 Although the spinal

inhibitory mechanisms responsible for the modulation in MEP

and H-reflex excitability may not be identical,92 the primary

mechanism(s) that could explain the reduced H-reflex response

observed during ECC muscle contractions could operate at

both presynaptic and postsynaptic levels, at least for submaxi-

mal contraction intensities.74,87 Because presynaptic inhibition

seems to be lacking for corticospinal tracts synapsing onto spi-

nal MNs,92 the lower recruitment gain of the MEP response

observed during maximal ECC contraction in the soleus mus-

cle48 could result from a decreased responsiveness of spinal

MNs to the descending input.47 The observation of an »50%

reduced MEP slope for the medial gastrocnemius muscle dur-

ing maximal ECC compared with ISO MVCs (Fig. 6), despite

a similar H-reflex response, suggests that at least in certain

muscles spinal MN excitability is controlled also by postsyn-

aptic inhibitory mechanisms.48 Intermuscular comparisons

(soleus vs. medial gastrocnemius) of the differential



Fig. 6. MEPs elicited in the elbow flexors by use of TMS during lengthening (ECC) and shortening (CONC) contractions performed at submaximal contraction

intensity (1.5�5.0 kg loads, »20%�30% 1 RM). Note that MEP size is markedly decreased during ECC compared with CONC contraction conditions, even at

comparable levels of prestimulus EMG activity. 1RM= 1 repetition maximum; CONC = concentric; EMG = electromyography; MEP =motor evoked potential;

TMS = transcranial magnetic stimulation. Data adapted from Abbruzzese et al.87 with permission.
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modulation in MEP and H-reflex amplitude led Duclay

et al.48,49 to conclude that the suppression in corticospinal

excitability observed during maximal ECC muscle contraction

was mainly caused by peripheral inhibition at the spinal level
induced by muscle lengthening, potentially including both pre-

synaptic and postsynaptic inhibitory mechanisms.48,49

Not all studies have been able to verify that corticospinal

excitability is decreased during maximal ECC compared with
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ISO or CONC contraction conditions.93 Furthermore, signs of

force plateauing and reduced surface EMG activity during

ECC compared with ISO and CONC muscle actions also have

failed to be observed in a number of studies. Thus maximal

ECC strength (joint torque) obtained for the plantar flexors,93

adductor pollicis,94 quadriceps femoris,95 and tibialis

anterior96 muscles were reported to exceed ISO MVC by

»10%�50% and to be accompanied by comparable levels of

EMG during ECC compared with ISO contraction conditions.

This apparent discrepancy between studies might be caused by

differences in the methodologic setup (e.g., using supine test-

ing),93 differences in the specific training status or background

of study participants, or differences in participant familiariza-

tion with the experimental procedures, among other reasons.
Fig. 7. (A) Maximal contraction strength and neuromuscular activity mea-

sured during maximal ECC (negative velocities) and CONC (positive veloci-

ties) muscle contractions before (full lines) and after (broken lines) 14 weeks

of HLRT. All values are normalized relative to fast CONC contraction. (*after

vs. before, p < 0.05). Note that the suppression in neuromuscular activity dur-

ing ECC and slow CONC contraction before training was reduced after train-

ing (more details given in text). (B) The training-induced gain in maximal

ECC muscle strength is strongly related to parallel elevations in normalized

neuromuscular activity (DEMG). CONC = concentric; ECC = eccentric;

EMG = electromyography; HLRT = heavy-load resistance training. Graph

adapted from Aagaard, 97 data from (A) Aagaard et al.7 and (B) Andersen

et al.26 with permission.
7. Effects of resistance training on the neural regulation of

ECC muscle strength

Several studies have demonstrated that resistance training

can be effective for inducing adaptive changes in neuromuscu-

lar function in both young and old adults, which include an

increased efferent neural drive to myofibers (for review, see

Aagaard27,97 and Aagaard et al.98). Substantial neuroplasticity

also seems to exist for the inhibitory mechanism(s) present

during ECC muscle contraction. Thus, as reported by Aagaard

et al.,7 the suppression in neuromuscular activity (normalized

EMG amplitude) for the knee extensors measured during max-

imal ECC contraction conditions was partially removed

(vastus lateralis: 29% reduced EMG activity before train-

ing! 21% reduced EMG activity post training = 25%

removed EMG suppression; vastus medialis: 35% reduced

EMG activity! 18% reduced EMG activity = 49% removed

suppression) or fully abolished rectus femoris (RF): 23%

reduced EMG activity! 5% reduced EMG activity = 78%

removed suppression; averaged across muscles: 30% reduced

EMG activity! 15% reduced EMG activity = 50% removed

suppression) in response to long-term (14 weeks) HLRT, in

turn resulting in a significant gain in maximal ECC muscle

strength7 (Fig. 7). These findings were verified in subsequent

experiments, where a strong positive relationship (r = 0.90)

was observed between the increase in neuromuscular activity

induced by HLRT and the corresponding gain in maximal ECC

muscle strength of the knee extensors26 (Fig. 7). Similar but

more moderate relationships (r = 0.50) between the gain in mus-

cle EMG activity and maximal ECC muscle strength induced

by resistance training have been observed for the shoulder

abductors in patients with trapezius myalgia after 10 weeks of

HLRT intervention.12 Collectively, these data indicate that the

increase in the ECC strength capacity of human skeletal muscle

in vivo induced by resistance training is strongly governed by a

parallel gain in neuromuscular activity, altogether representing

a highly important aspect of neural adaptation to exercise.

As discussed elsewhere in this article, the specific neural

pathways responsible for the suppression in neuromuscular

activity during ECC muscle contraction remain to be fully

identified. During maximal voluntary muscle contraction,

efferent motor output of spinal MNs is influenced by a
multitude of synaptic inputs, including descending cortical

pathways, afferent inflow from Ib Golgi organ afferents, group

Ia and II muscle spindle afferents, group III muscle afferents,

and recurrent Renshaw inhibition.7,21 It has been suggested

that a number of these pathways and spinal circuitry inputs

affect the expression of ECC muscle strength in vivo16�17 (cf.

the Fig. 5 in Ref. 17). All of these pathways may exhibit adap-

tive plasticity with training.27,99 Thus evoked V-wave and H-

reflex responses recorded during maximal ECC plantar flexor

contraction were found to increase (»60% and »40%,



Fig. 8. Maximal H-reflex (A, B) and V-wave responses (C) obtained before

(pre), during (mid), and after (post) 7 weeks of resistance training. Data are

expressed as peak-to-peak amplitude normalized to the maximal M-wave

while recorded at rest (A) and during MVC (B, C). MVC conditions comprised

separate ISO, CONC, and ECC plantar flexor trials. Training consisted of max-

imal ECC plantar flexor exercise performed in 2�3 sessions per week for 7

weeks (18 sessions in total). *ECC vs. CONC and ISO (p < 0.01); xpost vs.
pre (p < 0.01); ymid vs. pre and post (p < 0.01); #pre vs. mid and post

(p < 0.05). Note the marked increase in H-reflex and V-wave amplitudes dur-

ing ECC MVC efforts after training. Furthermore, the depression in H-reflex

amplitude during ECC vs. ISO and CONC MVC trials observed at baseline

(pre) was removed after the period of training (post). Also note that training-

induced gains in evoked reflex responses were observed during MVC efforts

only (B, C) while absent in resting conditions (A). CONC = concentric;

ECC = eccentric; Hmax = H-reflex amplitude at rest; H-reflex = Hoffman

reflex; Hsup = maximal H-reflex at MVC; ISO = isometric; Mmax = maximal

M-wave amplitude at rest; Msup = maximal M-wave amplitude at MVC;

MVC =maximum voluntary contraction; SOL = soleus; V = V-wave ampli-

tude. Data adapted from Duclay et al.50 with permission.
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respectively) after a period of HLRT conducted in form of

maximal ECC resistance training50 (Fig. 8), suggesting that

modulations in supraspinal and/or spinal neuronal pathways

can indeed be achieved with resistance training to produce

substantial gains in maximal ECC muscle strength. It is also

notable that the depression in H-reflex amplitude that was

present during maximal ECC vs. ISO or CONC muscle actions

in untrained individuals46,49,50,83 was abolished in response to

7 weeks (18 sessions) of ECC resistance training50 (Fig. 8),

indicating a decreased (removed) inhibitory input to spinal

MNs during maximal ECC muscle contraction.
Interestingly, using TMS techniques, Kidgell et al.100

recently reported that unilateral ECC HLRT resulted in

increased corticospinal excitability accompanied by decreased

intracortical inhibition when assessed in the contralateral

untrained limb, thus revealing important neural mechanisms

responsible for the cross-transfer effect with unilateral ECC

resistance training.

In previous studies7,26 it has been suggested that the

removal of neural inhibition and the corresponding increase in

maximal ECC muscle strength observed after resistance train-

ing could be caused by downregulated spinal inhibitory inter-

neuron activity, possibly modulated via central descending

pathways. One potential mechanism for the marked increase

in ECC muscle strength induced by HLRT could be a downre-

gulation in inhibitory interneuron input on spinal MNs from

Golgi organ Ib afferents.7,27 Also, the observation of reduced

H-reflex responses during both active and passive muscle

lengthening compared with shortening10,46,50,76,101 suggests

that presynaptic inhibition of Ia afferents, potentially as a

result of Golgi Ib afferent inflow,99 may be present during

ECC muscle contraction, although presynaptic inhibitory input

may originate from numerous other spinal and supraspinal net-

works as well.76,102 In terms of potential sites for a training-

induced change in postsynaptic inhibitory MN input, spinal Ib

inhibitory interneurons are modulated by descending corticospinal

pathways and in turn receive excitatory and inhibitory synaptic

input from reticulospinal and rubrospinal tracts, respectively103,104

(for a brief review, see Aagaard and Thorstensson21). Notably, the

magnitude of Ib inhibition of homonymous MNs is reduced dur-

ing voluntary contractions, likely owing to presynaptic gating

from supraspinal center.104 This depression in Ib afferent inhibi-

tory action increases with the force of contraction,104 causing

the gain of the Ib force feedback to vary during voluntary con-

traction. Thus voluntary muscle force exertion is influenced by

input from the inhibitory disynaptic Ib pathway, which in turn

is the target of dynamic gating control via central descending

pathways. In terms of adaptive plasticity, the possibility exists

that resistance training would result in increased inhibitory input

to spinal Ib interneurons as a result of increased rubrospinal

activity, thereby causing a disinhibition of spinal MNs during

high-force contraction conditions that would lead to increased

ECC force production.7

In contrast, as elaborated by Duchateau and Enoka,17 the

magnitude of modulation (suppression) of spinal and cortico-

spinal responsiveness during ECC compared with CONC mus-

cle contractions seems to be similar across contraction

intensities (MVC vs. 50% MVC),47,49 which argues against

the hypothesis of an adaptive change in a tension-regulating

inhibitory mechanism linked to Ib afferent inflow from Golgi

tendon organs after resistance training. Furthermore, although

a role for Golgi tendon organs in the modulation of spinal

excitability during ECC contractions was not entirely

excluded, Duclay et al.49 suggested that other neural mecha-

nisms, located at both spinal and supraspinal levels, may be

involved in the specific neural adjustments associated with

ECC contractions. However, it may be argued that, given the

greater intrinsic force capacity of single isolated myofibers
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during ECC vs. CONC contractions,3 it is likely that a lesser

number of MUs were activated during ECC compared with

CONC contractions when performed at the same absolute level

of submaximal muscle force (i.e., corresponding with 50%

ISO MVC)49 owing to a reduced requirement for efferent spi-

nal MN activity in the former condition, which would be

expected per se to result in reduced H-reflex and MEP

responses in ECC compared with CONC contraction condi-

tions. Thus, the observation that evoked H-reflex and MEP

responses were not decreased to a greater extent between sub-

maximal ECC vs. CONC contractions performed at fixed abso-

lute submaximal force magnitude (corresponding with 50%

ISO MVC)47�49 indirectly suggests that a reduced magnitude

of inhibitory MN input (presynaptic or postsynaptic) might

have been present during ECC test contractions performed at

submaximal effort.

Because voluntary ECC contractions involve increased

excitatory drive to spinal MNs from muscle spindle Ia affer-

ents90,105 and assuming that postsynaptic inhibitory modula-

tion of MN activity by Golgi organ Ib afferent feedback plays

little or no role (as discussed elsewhere in this article), spinal

modulatory mechanisms during ECC contraction perhaps

should be mainly attributed to the presynaptic side of MNs,17

although postsynaptic recurrent Renshaw inhibition75 also

seems to play an important role (as discussed elsewhere in this

article). Consistent with a significant role of presynaptic inhi-

bition by primary afferent depolarization during ECC contrac-

tions,17 Grosprêtre et al.83 used H-reflex stimulation that was

conditioned by subthreshold TMS applied to the motor cortex

area to demonstrate that spinal inhibition during ECC contrac-

tion (tested at 20% MVC) was controlled by descending corti-

cal pathways. In terms of potential changes evoked by

resistance training on spinal inhibitory circuitry, postsynaptic

inhibitory mechanisms may also influence spinal MN excit-

ability48 to some extent (discussed in detail elsewhere in this

article), potentially involving diminished levels of Ib inhibi-

tion from Golgi tendon organs, reciprocal inhibition, and

recurrent Renshaw inhibition, respectively. In addition, it may

be speculated that the neuroplasticity in ECC muscle force

expression with resistance training might involve adaptive

modulation in the excitatory monoaminergic drive106 vs. inhib-

itory serotonergic drive107 to the pool of spinal MNs, which

overall would be expected to affect the relationship (specifi-

cally the gain) between synaptic MN input and efferent motor

drive to active myofibers, in turn affecting the magnitude of result-

ing muscle force production106 (cf. the Fig. 4 in Ref. 106).

It is notable that, in using surface EMG analysis, a consis-

tent decrease in the median power frequency during maximal

ECC and CONC contractions was observed in the vastus later-

alis muscle after 16 weeks of resistance training.7 Spectral

(power frequency) analysis of bipolar single-surface EMG sig-

nals during MVC is not generally likely to reflect fiber-type

composition108,109 or overall MU firing frequency.110 How-

ever, given that median and mean EMG power frequency are

strongly influenced by the degree of MU syn-

chronization,111�113 it might be speculated that the observed

decrease in median power frequency27 reflects a more
synchronized pattern of MU firing during maximal ECC mus-

cle contraction, potentially as a result of increased recruitment

of high-threshold MUs and/or arise from an increased common

synaptic input to the spinal MN pool114 owing to a decreased

presynaptic inhibition of Ia afferents after training. The latter

mechanism would per se contribute to the observed gains in

efferent neural drive (elevated V-wave response) and maximal

ECC muscle strength, respectively.
8. Conclusion

Neuromuscular activity seems to be suppressed during

maximal ECC muscle contraction in untrained subjects owing

to decreased levels of central activation, increased autogenic

MN inhibition, and decreased MN excitability, as indicated by

observations of decreased excitability in descending cortico-

spinal motor pathways, reduced EMG amplitude, enhanced

recurrent Renshaw inhibition, and diminished evoked H-reflex

responses. Maximum ECC muscle strength can be effectively

increased by use of HLRT, which seems to result in full or par-

tial removal of the suppression in neuromuscular activity. Pro-

longed (weeks to months) HLRT results in increased H-reflex

and V-wave responses during maximal ECC muscle actions,

along with marked gains in maximal ECC muscle strength,

indicating increased excitability of spinal MNs, decreased pre-

synaptic or postsynaptic inhibition, and elevated descending

motor drive. Notably, use of supramaximal ECC resistance

training can lead to selectively elevated V-wave responses

during maximal ECC contraction, demonstrating that adaptive

changes in spinal circuitry function and/or gains in descending

motor drive can be achieved during maximal ECC contraction

in response to HLRT.

The improvement in maximal ECC muscle strength

induced by resistance training has important implications,

because it provides a basis for enhanced neuromotor perfor-

mance both in athletes5,6 and nontrained individuals,7 includ-

ing older adults40 and clinical populations such as chronic

stroke patients.43 Specifically, increased ECC muscle strength

enables more rapid performance of deceleration and stretch-

shortening cycle movements, side-cutting, and jumping

actions. Furthermore, an increased maximal ECC strength of

antagonist muscles represents an important mechanism to pro-

tect ligaments (e.g., the ACL) and other passive joint struc-

tures against excessive force and strain impacts during sports

and exercise. In addition, an increased maximal ECC muscle

strength in elderly individuals induced by resistance training40

is likely to allow specific activities of daily living, such as stair

descent, to be performed in a safer manner, hence decreasing

the risk of falls.
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