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Abstract

Describing how population-level survival rates are influenced by environmental

change becomes necessary during recovery planning to identify threats that

should be the focus for future remediation efforts. However, the ways in which

data are analyzed have the potential to change our ecological understanding

and thus subsequent recommendations for remedial actions to address threats.

In regression, distributional assumptions underlying short time series of survival

estimates cannot be investigated a priori and data likely contain points that do

not follow the general trend (outliers) as well as contain additional variation

relative to an assumed distribution (overdispersion). Using juvenile survival

data from three endangered Atlantic salmon Salmo salar L. populations in

response to hydrological variation, four distributions for the response were

compared using lognormal and generalized linear models (GLM). The influence

of outliers as well as overdispersion was investigated by comparing conclusions

from robust regressions with these lognormal models and GLMs. The analyses

strongly supported the use of a lognormal distribution for survival estimates

(i.e., modeling the instantaneous rate of mortality as the response) and would

have led to ambiguity in the identification of significant hydrological predictors

as well as low overall confidence in the predicted relationships if only GLMs

had been considered. However, using robust regression to evaluate the effect of

additional variation and outliers in the data relative to regression assumptions

resulted in a better understanding of relationships between hydrological vari-

ables and survival that could be used for population-specific recovery planning.

This manuscript highlights how a systematic analysis that explicitly considers

what monitoring data represent and where variation is likely to come from is

required in order to draw meaningful conclusions when analyzing changes in

survival relative to environmental variation to aid in recovery planning.

Introduction

Effective conservation of endangered species and the

development of successful recovery plans rely on the iden-

tification of environmental and ecological factors limiting

population abundance. Small-scale, mechanistic experi-

ments typically reveal environmental parameters that have

significant influence on individual characteristics such as

growth, habitat use, or physiology (e.g., Nislow et al.

2004; Kiernan and Moyle 2012) and the characteristics

that are related to survival rates or population productiv-

ity. Subsequently, analyses of an observed time series of

abundance data relative to the identified environmental

factors are typically used to understand how these mecha-

nisms culminate into changes in survival rates at a popula-

tion level (Webster 2003; Lawson et al. 2004). However,

analyses of temporal trends in data can lack statistical

power and give conflicting or nonsignificant results (i.e.,

type II error) relative to theoretical predictions (Shenk

et al. 1998), resulting in the impression that a specific

environmental factor is not meaningfully related to popu-

lation size (and thus should not be the focus of recovery

efforts). Therefore, analyses should strive to maximize

ecological relevance (in terms of choosing variables for

analysis) and to appropriately characterize uncertainty or

sources of error to minimize the possibility that significant
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environmental variation remains undetected (Zuur et al.

2010; Frederiksen et al. 2014). Although this is self-evident

for any sound scientific inquiry, how one achieves it when

describing species–environment relationships at a popula-

tion level is equivocal at best (e.g., Hilborn and Walters

1992; Ver Hoef and Boveng 2007).

The validity of conclusions from regression analyses

depends in part on appropriately characterizing the distri-

butional form of the response, given that biased estima-

tion resulting from misspecification (i.e., modeling data

arising from one distribution with alternate distributions)

is well described in the theoretical literature (e.g., Dick

2004). Although survival values should arise from a bino-

mial process: a sequence of Bernoulli trials where an indi-

vidual is either alive or dead (Collett 2003), the

measurement and process errors contributing to estimates

of annual abundance also influence the distribution of the

relative survival estimates, making it unknown how clo-

sely relative survival matches the binomial expectation. In

addition, most ecological data exhibits overdispersion rel-

ative to the assumed distribution (McCullagh and Nelder

1989). A common way to deal with overdispersion in

regression models is to use generalized linear models

(GLM) and either the quasilikelihood or the negative

binomial family of distributions to estimate the variance

(e.g., Ver Hoef and Boveng 2007). However, this only

accounts for atypical values in the response. An alterna-

tive would be to use a regression method that estimates

the functional relationship between the predictors and

response in situations where the underlying assumptions

are violated to some extent (i.e., either the predictor or

response contains atypical values). Termed robust regres-

sion (e.g., Hampel et al. 1986; Heritier et al. 2009), these

methods offer several distinct advantages over more com-

monly used regression techniques, including an increased

ability to detect a subtle signal in noisy data as well as the

ability to produce unbiased estimates of variance around

a fitted relationship for overdispersed data (Cantoni and

Ronchetti 2001). Starting from a parametric model (i.e., a

particular model form as in a GLM), robust regression

builds in protection against outlying behavior in the data

during the estimation process, by reducing the influence

of atypical values on the objective function (Hampel et al.

1986). As such, the robust counterpart to a GLM should

not be considered a competing model per se, but rather a

method by which to (1) identify atypical values or out-

liers in a dataset (relative to what is assumed a priori by

the model) and (2) to reduce bias in the estimated coeffi-

cients (particularly the variance) which result from these

values.

The primary goal of this study was to quantitate

changes in survival relative to environmental variation for

use in recovery planning. In doing so, we explored the

implications of common assumptions and methods when

attempting to describe environmental relationships and

demonstrated how our understanding partially depends

on the statistical technique and assumed distributional

form of the response chosen prior to the analytical pro-

cess. Although the conclusions were framed relative to a

specific application, the methods are directly applicable to

recovery planning for multiple species in which observa-

tional time series of abundances are available to estimate

survival rates. Using a case study of juvenile Atlantic sal-

mon Salmo salar (Linnaeus, 1758) survival relative to

variation in hydrological flow, we demonstrated how

restricting the analyses to traditional regression techniques

would have led to the identification of multiple significant

hydrological predictors, yet low overall confidence in the

predicted relationships. However, using robust regression

to evaluate the effect of additional variation and outliers

in the data relative to regression assumptions resulted in

a better understanding of the relationships between

hydrological variables and survival that could be used for

population-specific recovery planning.

Case study

For endangered Atlantic salmon populations, there is con-

siderable interest from multiple nongovernment organiza-

tions, academics, and government departments to

implement remedial actions at a watershed scale to pro-

mote population increase. Many of the actions related to

habitat enhancement (e.g., bank stabilization, digger logs,

changing channel morphology) are proposed because of

their influence on hydrological flows, with the assumption

being that such changes will increase the productive

capacity of freshwater environments for Atlantic salmon

(Roni et al. 2002). Hydrological variation is thought to be

a key factor controlling the population dynamics of fresh-

water fishes, in that it influences the majority of physical

factors (e.g., current velocity, water depth, and tempera-

ture regime) and ecological interactions (e.g., competi-

tion, predation) experienced by fish in freshwater

environments (Bunn and Arthington 2002; Kiernan and

Moyle 2012). Five major components of flow are consid-

ered to be ecologically important across a diverse range of

riverine ecosystems: extreme low flows, low flows, high

flow pulses, small floods, and large floods (Mathews and

Richter 2007; Poff et al. 2010). Under this categorization,

low flows represent typical flow conditions which deter-

mine the amount and characteristics (e.g., temperature,

connectivity, and velocity) of aquatic habitat available for

the majority of the year. The other flow categories are

thought of as discrete events that typically trigger a

behavioral response (Mathews and Richter 2007) and thus

might be correlated with survival rates. Extreme low flows
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describe drought conditions, which are characterized by a

decrease in surface area and water volume causing

extreme values of several physical and chemical water

quality parameters, such as temperature, flow velocity,

oxygen concentration, or dissolved mineral content

(Magoulick and Kobza 2003; Rolls et al. 2012). For aqua-

tic species, droughts induce stress responses and typically

increase mortality due to a reduction in habitat connec-

tivity, availability, and suitability (Lake 2003). Thus, it

might be expected that increased frequency or severity of

drought conditions experienced by juvenile Atlantic sal-

mon would result in measureable declines in survival

rates at a population level. Conversely, high flow pulses

(up to bankfull) are thought to recharge river systems by

reducing water temperatures, flushing wastes, increasing

oxygen availability, and delivering organic matter (Math-

ews and Richter 2007) and thus would be expected to be

positively correlated with survival. However, large floods

or quick changes in water level are considered to be less

directly beneficial for individuals given that they can

move significant amounts of sediment and large woody

debris, transport organisms downstream, and alter the

direction of the main channel. However, in the long term,

they also form new habitats and refresh water quality

conditions in stagnant portions of the stream (Allan

2004). Given that a decline in survival related to flood

conditions is predicted to come from sediment transport

and displacement (Caissie 2006), the rise rate of the river

could have a more direct influence on survival than flood

conditions per se. Understanding how low or high water

conditions influence juvenile survival in specific popula-

tions would be a first step toward identifying whether or

not hydrological change should be a focus of recovery

efforts, as well as which specific components of the flow

regime should be targeted in specific watersheds.

Data sources

Population monitoring data collected from the west

branch of the St. Mary’s River, the LaHave River above

Morgans Falls (both in Nova Scotia, Canada) as well the

Nashwaak River in New Brunswick, Canada (Fig. 1), were

used in this study. Of the Atlantic salmon populations

considered to be endangered by the Committee on the

Status of Endangered Wildlife in Canada (COSEWIC

2010), these rivers are the only three in the Maritime Pro-

vinces that (1) have long-term monitoring programmes

which enumerate all freshwater life stages for at least a

portion of the watershed and (2) have hydrological moni-

toring stations gauging daily water flows in a location

near to that for the population monitoring data. The

annual egg deposition and juvenile density estimates used

for analyses came from recent assessments (Gibson and

Bowlby 2012 [St. Mary’s and LaHave]; and Gibson et al.

In press [Nashwaak]) in which annual egg depositions

were estimated from the number and characteristics of

adult spawners, and age 0 densities were estimated from

electrofishing surveys. Age 0 salmon were those sampled

in the year of hatching as juveniles between June and

September. A Poisson GLM (incorporating site and year

effects) was used to predict age 0 density values for all

potential sites (from a random-stratified survey design)

k

Figure 1. Location of the study area in

Atlantic Canada showing the boundaries of

the St. Mary’s, LaHave and Nashwaak

watersheds as well as the locations of the

hydrological monitoring stations (stars).
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prior to calculating the annual mean densities. This stan-

dardization was performed to reduce annual estimation

error and account for any directional biases related to

changes in site selection (Gibson et al. 2009). For these

populations, it has been shown to produce density esti-

mates that are more consistent with data available for

other life stages when analyzed in age- and stage-struc-

tured population dynamics models (e.g., Gibson and

Bowlby 2012). All data were analyzed relative to a specific

egg cohort, with age 0 density lagged by 1 year relative to

egg deposition for calculating survival. Egg deposition

estimates were scaled by area to make them comparable

to age 0 density estimates. Although compensatory den-

sity dependence (Rose et al. 2001) would attenuate any

density-independent effect of environmental variation on

survival, previous research (Gibson 2006) found very little

evidence of density dependence from the time of egg

deposition to the time of electrofishing in the following

year (i.e., egg to age 0), but comparatively strong evidence

for density dependence from age 0 to age 1.

Environment of Canada maintains hydrological gauging

stations on the St. Mary’s River at Stillwater (45°10027″N
61°58047″W), on the LaHave River at West Northfield

(44°26050″N 64°35028″W), and on the Nashwaak River at

Durham Bridge (46°07033″N 66°36040″W) (Fig. 1). These

stations have been in operation continuously from 1915

on the St. Mary’s and LaHave Rivers and 1961 on

the Nashwaak; historical flow data can be downloaded

from the Water Survey of Canada’s HYDAT database

of archived hydrometric data (http://www.ec.gc.ca/rhc-

wsc/default.asp?lang=En&n=9018B5EC-1, Accessed May

2013). Daily values (in cubic meters per second) corre-

spond to averages of hourly recordings, and linear extrap-

olation was used to estimate values for days during which

the station was not operational (1.6%, 0.7% and 1.8% of

the time series for the St. Mary’s, LaHave and Nashwaak

Rivers, respectively; considering all years up to 2010).

Survival-hydrology analyses

Hydrological variables describing flow conditions were

calculated from the environmental flow components

module of the indicators of Hydrologic Alteration soft-

ware (Mathews and Richter 2007). This module catego-

rizes daily flows into the five ecologically important

components identified earlier (extreme low flows, low

flows, high flows, small floods, and large floods) based on

user-defined thresholds. From these categories, four

annual variables were calculated: (1) the minimum flow

value (i.e., the lowest flow value recorded), (2) the fre-

quency of extreme low flows (i.e., the number of days

categorized as having extreme low flows), (3) the timing

of extreme low flows (i.e., the median ordinal date of all

the days classified as extreme lows), and (4) the rise rate

(i.e., the median of all positive differences between two

daily flow measurements). This value represents how

quickly water levels increase following precipitation events

or snowmelt and does not depend on the initial water

conditions in the river (i.e., the classification of each flow

measurement as extreme low, low, or high flows; small or

large floods). The lowest 20% percentile (of all flow mea-

surements regardless of year) was used as the cutoff

between extreme low flows and low flows to ensure that a

value could be calculated for all parameters for all years.

For high water conditions, all flows categorized as high

flows, small floods and large floods would have had to be

combined in order to calculate values for all parameters

for all years, even though these would be expected to have

opposing relationships with survival. Instead, the rise rate

was used as an indicator of the flashiness of the river sys-

tem and the potential for bedload transport (Caissie

2006), with the expectation that faster rise rates would

negatively affect survival. Based on Kendall’s tau, correla-

tions among predictor variables were <0.6. To ensure that

the hydrological conditions corresponded to the time per-

iod between autumn egg deposition and juvenile sampling

the subsequent summer, a year was considered to begin

on November 1 and end at the start date of the summer

electrofishing survey (July to September).

Survival or mortality can be thought of multiple ways,

leading to different response variables and model struc-

tures for regression analyses. Here, hydrological relation-

ships with the estimated density of age 0 juveniles could

be modeled directly, assuming a Poisson distribution for

age 0 abundance (appropriate for count data), a log link,

and including an offset for starting population size (egg

deposition) in a GLM (McCullagh and Nelder 1989). A

second alternative would be to calculate a survival rate

(age 0 density divided by the previous year’s egg deposi-

tion), which could be modeled as a binomial process with

a logit link using a GLM (McCullagh and Nelder 1989).

The third option would be to model the instantaneous

mortality rate assuming a normal error distribution as in

a linear regression. Survival is related to mortality by

S = e�Zt so the instantaneous mortality rate (Z) is:

Z = �ln (S) (Ricker 1975). Fitting a linear regression

model to a log-transformed response (i.e., the instanta-

neous mortality rate) is equivalent to fitting a multiplica-

tive model with lognormal errors (Dick 2004). It is

important to note that the lognormal model would be

expected to have a slope estimate opposite in sign as

compared to the other regressions. Starting from these

three models (count data with Poisson errors, a survival

rate with binomial errors, and the instantaneous mortality

rate with lognormal errors), we used two different meth-

ods to account for potential overdispersion in the GLMs.
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One was to substitute the quasibinomial and quasi-Pois-

son family into the GLMs described above, which esti-

mates a dispersion parameter for the variance. The

second was to assume a negative binomial distribution

when modeling age 0 density (with an offset for the pre-

vious year’s egg deposition) in a GLM (Ver Hoef and

Boveng 2007). The results in this manuscript are pre-

sented for the lognormal, quasibinomial, quasi-Poisson,

and negative binomial models, as detailed in Table 1. For

the 2 years in which estimated survival was >1 on the St.

Mary’s River, survival was set at 1 in order to be able to

fit the quasibinomial, quasi-Poisson, and negative bino-

mial models.

Atypical values (outliers) and points with high leverage

are known to bias parameter estimation using maximum

likelihood as in GLMs (Graham 2003). Additionally, the

specific data points contributing to such biases as well as

the magnitude and direction of the bias cannot be

assessed statistically from the output of GLM regressions

(Richards 2008; Zuur et al. 2010), although several ad

hoc methods of identifying outliers exist (e.g., visual

examination of residual plots). Robust regression provides

a statistical framework from which to both identify and

limit the influence of extreme values or leverage points

on parameter estimation. Depending on the specific

method used, up to half of the data can take atypical val-

ues and still have limited influence on coefficient esti-

mates (e.g., Hampel et al. 1986; Yohai 1987). Therefore,

we used robust regression more as an extension of the

traditional linear and GLMs, both to evaluate the pres-

ence of outliers and to obtain less biased estimates of

regression coefficients for use in recovery planning.

Robust regression uses Mallows- or Huber-type robust

estimators (typically called M-estimators; Jajo 2005; Can-

toni and Ronchetti 2001) to estimate model parameters.

Although the postulated model (i.e., the assumed distri-

bution of the response and associated linear predictor)

used in robust analyses is analogous to that used in tradi-

tional regressions or GLMs (Table 1), estimation of the b
parameters proceeds in a different manner. As a simple

example, it is useful to compare the familiar least-squares

estimator with an M-estimator to appreciate the main dif-

ferences among the two techniques. For a linear model,

the least-squares estimator for b minimizes the objective

function:
Pn

i¼1

r2i , where each residual (ri) is: ri ¼ yi�

b0 �
Pp

j¼1

xi;jbj for each value of the response variable, yi,

and each value of p hydrological predictors (xi,j). An

M-estimate of b minimizes the objective function:
Pn

i¼1

qðri=sÞ, where s is an estimated scale parameter and q

is called the psi function. Note that if the weighting func-

tion q(ri/s) is equivalent to ri
2, the parameter estimates

will be the same as from ordinary least squares (Jajo

2005). The influence of individual residuals on model fit-

ting is controlled by the derivative of the psi function: w
Multiple functions can be chosen for w, but each has the

common characteristic of limiting the contribution of

data points that deviate substantially from the fitted rela-

tionship. The scale parameter can be thought of as a mul-

tiplier on the error term, representing deviation from the

assumed error distribution. A simple M-estimate (as

above) was not appropriate for this application given that

the levels of the predictor were not fixed a priori

(Maronna et al. 2006). Here, we used MM-estimation in

the lmrob function for fitting a robust lognormal model

(Yohai 1987) and the Mqle method in the glmrob

function for fitting robust binomial and robust Poisson

models (Cantoni and Ronchetti 2001), as implemented in

the readily available R package “robust base” (Rousseeuw

et al. 2013). We followed recommendations for the tun-

ing constants from Koller and Machler (2013) for the

robust lognormal and robust binomial models (k = 4.685

for the redescending w used in lmrob; k = 1.345 for the

Huber w in glmrob). We increased the tuning constant

used for the robust Poisson model slightly (k = 1.8) for

both rivers. Given that there are no robust counterparts

to the quasifamily GLMs, we employed the newly avail-

able “glmrob.nb” function (Aeberhard et al. 2014) to

allow for overdispersion in the response for a robust

model. Here, we used the redescending Tukey’s biweight

Table 1. Description of the lognormal and generalized linear model (GLM) forms considered for analyzing egg to age 0 survival data for Atlantic

salmon from three populations, detailing the response variable, response distribution, parametric model, and variance estimator. Terms used are

as follows: hydrological predictors (Xn,i), mean value (li), probability of being alive (pi), age 0 density (ki), egg density (ni), a and bnare the regres-

sion coefficients, h is an overdispersion parameter, and j is the scale parameter from a gamma distribution.

Model Dependent variable Response distribution Parametric model Variance

Lognormal �ln (S) Yi � N(li, ri) a + b1X1,i + . . .bnXn,i r2

Quasibinomial (with offset) S ¼ k
n Yi � B(ni, pi) ni

expðb0þb1X1;iþ...bnXn;i Þ
1þexpðb0þb1X1;iþ...bnXn;iÞ hnipið1� piÞ

Quasi-Poisson (with offset) k Yi � P(li) ln (ki) - ln (ni) = b0 + b1X1,i + . . .bnXn,i hli
Negative binomial (with offset) k Yi � NB(li, j) ln (ki) - ln (ni) = b0 + b1X1,i + . . .bnXn,i li(1 - lij)
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function for w in the M-estimates of the regression

parameters and the same tuning constant as above (e.g.,

k = 0.4685).

In total, we evaluated 4 potential hydrological predic-

tors using the 4 parametric models (Table 1) as well as

the two different regression types (robust and traditional)

and presented the results from eight models (lognormal,

quasibinomial, quasi-Poisson, negative binomial, robust

lognormal, robust binomial, robust Poisson, and robust

negative binomial). Model selection proceeded in three

general steps: (1) simplification of the initial multivariate

model using traditional linear regression or GLMs, (2)

evaluation of regression assumptions from diagnostic

plots (all traditional models) and estimated overdisper-

sion parameters (quasifamily models), and (3) evaluation

of the effect of atypical values on the predicted coeffi-

cients using robust regression. Hydrological predictors

were both sequentially added and dropped from each

regression based on the significance of individual terms in

the fitted model (P-value) as well as a comparison of

nested models using ANOVA (for lognormal models),

Likelihood ratios (for GLM models; Zuur et al. 2009),

and the Robust Wald test (for robust lognormal or robust

GLMs; Sommer and Huggins 1996). In all regressions, the

final model included a single predictor. Diagnostic plots

of the residuals, quantiles and fitted versus observed val-

ues were examined visually for each model to assess the

appropriateness of model assumptions (Zuur et al. 2009,

2010). If significant autocorrelation was detected in the

residuals, we used AIC to compare the fit from a general-

ized least squares (GLS) model with a residual first-order

correlation structure (ar1) to the GLM fit (Zuur et al.

2009) and re-evaluated the significance of the hydrologi-

cal predictors. For the results presented, model diagnos-

tics were similar (i.e., there was no compelling reason to

reject individual models based on diagnostic plots), so the

assumptions underlying each model appeared to be

appropriate.

Traditionally, model selection for regression analyses

uses an information theoretical approach such as the

Akaike information criterion (AIC) or the Bayesian infor-

mation criterion (BIC); both of which assess fit from

maximum-likelihood scores that are penalized for model

complexity (Johnson and Omland 2004). This presents a

problem when attempting to compare among the GLMs

presented here (i.e., to compare the best-supported mod-

els for each distributional form of the response after vari-

able reduction) because the quasifamily is characterized

by a mean and variance but not a specified distributional

form, which means that the log-likelihood is not defined

(Ver Hoef and Boveng 2007). Therefore, it is not possible

to use a statistical criterion such as AIC to evaluate model

fits from all 4 traditional regressions (lognormal, quasibi-

nomial, quasi-Poisson, and negative binomial). However,

the lognormal and negative binomial models could be

directly compared with the Akaike information criterion

for small samples (AICc), and the quasifamily models

could be compared using a quasi-AIC for small samples

(QAICc) (e.g., Young et al. 2009). Further to this, it is

possible to assess the appropriateness of the quasifamily

models via the variance inflation factor (model deviance

divided by residual degrees of freedom) (Collett 2003),

where values are expected to be less than ~4 when the

data structure is well specified (Anderson et al. 1994). In

relation to the robust models, the estimated coefficients

would be essentially identical to those estimated from tra-

ditional regressions if model assumptions were true (i.e.,

provided that variation in the response conformed exactly

to the assumed distribution and the predictors did not

contain atypical values). However, as compared to GLMs

assuming the same distribution of the response, robust

regressions have greater statistical efficiency (reduced vari-

ance) and can produce unbiased estimates of coefficients

if assumptions are violated to some extent (Hampel et al.

1986; Jajo 2005; Heritier et al. 2009). Therefore, we con-

sidered the robust regressions to be the way in which we

could reduce the potential for type II error and obtain

better estimates of coefficients for use in recovery plan-

ning, relative to the equivalent traditional model (c.f. log-

normal with robust lognormal, binomial with robust

binomial, Poisson with robust Poisson, and negative

binomial with robust negative binomial).

Results

For the St. Mary’s River, the lognormal and GLM regres-

sions did not consistently simplify to the same hydrologi-

cal predictor. Survival was found to be negatively

associated with the frequency of extreme low water events

(xlow.freq) from the lognormal and negative binomial

models, while the quasi-Poisson model identified a posi-

tive relationship with the timing of extreme low water

events (dist.low) and the quasibinomial model revealed

no significant predictors (Table 2). The lognormal model

had a significantly better fit than the negative binomial

(AICc = 64 and 147, respectively) using xlow.freq as the

predictor. For the quasi-Poisson model of survival relative

to dist.low, the estimated overdispersion parameter

(12.05) was substantially >4, indicating that this model

was not an adequate characterization of the data (Ander-

son et al. 1994), even though the predictor was retained

as significant. Recalculating the response to be a survival

rate and comparing the fits of the 4 traditional regressions

with xlow.freq revealed only minor deviations in the pre-

dicted mean slope (Fig. 2). As above, the estimated

overdispersion parameters for the quasi-Poisson and qua-
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sibinomial models of survival relative to xlow.freq were

unacceptably high (16.16 and 12.05, respectively). Overall,

the lognormal model was considered to be the best model

structure with which to describe the relationship between

hydrological change and survival for the St. Mary’s River.

When the data were re-examined in the robust analyses,

all four robust models found survival to be negatively

associated with the frequency of extreme low water events

(Table 2). This suggests that the weak relationship pre-

dicted between survival and dist.low from the quasi-Pois-

son GLM was spurious and caused by outliers or points

with high leverage in the data. The lognormal and robust

lognormal models had identical slope estimates (c.f. 0.064

and 0.064; Table 2), indicating that atypical values had

no influence on this parameter estimate. However, the

95% confidence intervals (based on the normal approxi-

mation) are much smaller for the robust model, particu-

larly at lower survival values (e.g., compare the lognormal

and robust lognormal fits; Fig. 2). The robust lognormal

model identified three of 21 data points that were con-

tributing substantially to this difference, in that they were

given a weighting (a robustness weighting that corre-

sponds to the w function of the residual divided by the

residual) of <0.7.
For the Nashwaak River, the different model forms were

more consistent in that they all identified a negative rela-

tionship between egg to age 0 survival and the rise rate of

the river (Table 2). Slope estimates from the quasibino-

mial, quasi-Poisson, and negative binomial GLMs were

very similar (�0.299, �0.247, and �0.256, respectively;

Table 2), although there was minimal support for the two

quasifamily models based on their P-values. As was the case

for the St. Mary’s River, the estimated overdispersion

parameters for the quasibinomial and quasi-Poisson mod-

els were quite high (8.10 and 7.68, respectively), again indi-

cating that these models do not adequately describe the

data. Based on AICc, the lognormal model gave a signifi-

cantly better fit to the data as compared to the negative

binomial GLM (AICc = 74 and AICc = 298, respectively)

and was considered to be the best model structure with

which to describe these data. Similar to the St. Mary’s, the

robust weightings indicate that the data are approximately

lognormal, given that only three of 39 points are down-

weighted by more than 0.7 (Cantoni and Ronchetti 2001).

However, these outliers have a greater influence on the pre-

dicted coefficients in that the robust lognormal model pre-

dicted a greater decline in survival (i.e., more negative

slope) as rise rate increased relative to the lognormal model

(Table 2; Fig. 3).

For the LaHave River, initial fits from the lognormal

and GLM models found survival to be related to the fre-

quency of extreme low water events (xlow.freq), but had

strongly autocorrelated residuals at a lag of 1. Re-analysis

in a generalized least squares model with an ar1 residual

correlation structure significantly reduced model AIC, but

xlow.freq was no longer a significant predictor in the

model (P-value = 0.07). Therefore, a relationship between

egg to age 0 survival and hydrological change could not

Table 2. Comparisons of coefficients from eight regression model forms describing egg to age 0 survival relative to the frequency of extreme

low water conditions (xlow.freq) for the St. Mary’s River and the median rise rate (rise.rate) for the Nashwaak River. Coefficients from a model

that retained an alternate hydrological predictor (the timing of extreme low water events; dist.low) for the St. Mary’s River are also shown. Note

that the slope estimates for the models of mortality rates would be expected to be opposite in sign to those of survival rates or age 0 density.

Results from the LaHave River are not included because no significant predictors were identified.

River Model Dependent variable Independent variable Value SD P-value

St. Mary’s Lognormal Instantaneous mortality rate xlow.freq 0.064 0.027 0.030

St. Mary’s Quasibinomial Annual survival rate xlow.freq �0.046 0.038 0.240

St. Mary’s Quasi-Poisson Age 0 density (offset pop size) xlow.freq �0.039 0.031 0.235

St. Mary’s Negative binomial Age 0 density (offset pop size) xlow.freq �0.054 0.021 0.010

St. Mary’s Robust lognormal Instantaneous mortality rate xlow.freq 0.064 0.020 0.005

St. Mary’s Robust binomial Annual survival rate xlow.freq �0.055 0.007 �0.001

St. Mary’s Robust Poisson Age 0 density (offset pop size) xlow.freq �0.048 0.003 �0.001

St. Mary’s Robust negative binomial Age 0 density (offset pop size) xlow.freq �0.059 0.007 �0.001

St. Mary’s Quasi-Poisson Age 0 density (offset pop size) dist.low 0.014 0.006 0.038

Nashwaak Lognormal Instantaneous mortality rate rise.rate 0.326 0.114 0.007

Nashwaak Quasibinomial Annual survival rate rise.rate �0.299 0.138 0.037

Nashwaak Quasi-Poisson Age 0 density (offset pop size) rise.rate �0.247 0.119 0.045

Nashwaak Negative binomial Age 0 density (offset pop size) rise.rate �0.256 0.108 0.018

Nashwaak Robust lognormal Instantaneous mortality rate rise.rate 0.401 0.137 0.006

Nashwaak Robust binomial Annual survival rate rise.rate �0.420 0.052 �0.001

Nashwaak Robust Poisson Age 0 density (offset pop size) rise.rate �0.294 0.046 �0.001

Nashwaak Robust negative binomial Age 0 density (offset pop size) rise.rate �0.460 0.109 �0.001
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be described for the LaHave River population from these

analyses.

Discussion

Investigating changes in survival relative to environmental

variation requires a systematic analysis that explicitly con-

siders what the monitoring data represent and where vari-

ation is likely to come from in order to draw meaningful

conclusions. It is particularly important in cases where

the distributional assumptions underlying the methods

cannot be investigated a priori (Ver Hoef and Boveng

2007; Zuur et al. 2010), as well as in situations where

both predictors and responses could contain variation

that is unaccounted for with a particular model structure

(Richards 2008). The relative popularity of GLMs stems

from their ability to account for alternate mean–variance
relationships and errors arising from certain types of bio-

logical processes (McCullagh and Nelder 1989). At first

glance, GLMs may have been expected to be the most

appropriate method for analyzing juvenile salmon survival

relative to hydrological variation given that the observa-

tional time series derive from count data and survival is

an inherently binomial process. However, our analyses
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Figure 2. A comparison of the fits of seven different regression models to egg to age 0 survival data (egg cohorts: 1989–2009) relative to the

frequency of extreme low water events from the St. Mary’s River, showing the observed values (points), the predicted fit of the model (lines) and

2*SE (dashed lines). The response variable was standardized to be an annual survival rate to facilitate comparison. Although the preferred quasi-

Poisson model retained an alternate predictor as significant (Table 2) and the quasibinomial model retained no significant predictors, the

nonsignificant relationship with the frequency of extreme low flows is shown here. To date, a predict function has not been developed for the

newly available robust negative binomial model, which is why the results are not included here (although see Table 2).
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suggest that the appropriate error distribution for the sur-

vival estimates deviates from theoretical expectations,

likely due to the combined observation and measurement

error associated with the population monitoring data.

Simulation studies have demonstrated that violating

regression assumptions can produce spurious correlations

or can mask significant correlations when data contain

additional errors in the predictors or response (Graham

2003). Both of these potential biases were demonstrated

by the GLM models for the St. Mary’s River, with the

quasi-Poisson model showing a seemingly spurious corre-

lation with the timing of extreme low flows, and the rela-

tionship between survival and the frequency of extreme

low water events being masked in the quasifamily models.

The most obvious outliers (i.e., the survival estimates >1)
occurred when the median timing of extreme low flows

was later in the year (i.e., at higher values of dist.low)

and would be expected to have high leverage on model

fits. It is likely that dist.low was only retained as a signifi-

cant predictor by the quasi-Poisson model because of

characteristics of the estimation process. For example,

quasi-Poisson regression gives greater weight to larger

counts in the fit from iteratively weighted least squares as

compared to alternatives such as the negative binomial

(Ver Hoef and Boveng 2007), and the age 0 densities con-

tributing to the survival estimates above one were an
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Figure 3. A comparison of the fits of seven different regression models to egg to age 0 survival data (egg cohorts: 1970–2009) relative to the

rise rate (cms/day) from the Nashwaak River, showing the observed values (points), the predicted model fit (lines), and 2*SE (dashed lines). The

response variable was standardized to be an annual survival rate to facilitate comparison. To date, a predict function has not been developed for

the newly available robust negative binomial model, which is why the results are not included here (although see Table 2).
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order of magnitude larger than the majority of the other

values. Although survival values greater than one could

have been removed because they were not biologically

plausible, this would have been the equivalent of prefer-

entially excluding data points when survival would be

expected to be high. As an alternative, robust methods

are a powerful way to analyze data that is subject to mea-

surement and process error in that they do not require

any a priori assessment of data quality (i.e., removal of

biologically implausible values or other outliers). Because

of the downweighting imposed by the influence function

during estimation, the survival values greater than one

would have little influence on model fit. Therefore, the

robust regressions should have also identified the relation-

ship between survival and the timing of low water events

(dist.low) if it was unrelated to leverage points in the

data. Similarly, the impact of outliers was found to be rel-

atively small on the slope estimates for the St. Mary’s

River (c.f. traditional and robust parameter estimates;

Table 2), but larger on the standard deviation. This influ-

ences the significance of parameters in the model and is

likely why the quasibinomial and quasi-Poisson GLMs

did not retain xlow.freq as a predictor.

The practical consequences of such statistical considera-

tions can be quite large for this type of a research ques-

tion. Restricting these analyses to GLMs (e.g., the

quasibinomial, quasi-Poisson and negative binomial mod-

els) would have led to ambiguous results among candi-

date models for the St. Mary’s River as well as to slight

confidence in the predicted relationships on the Nash-

waak River. Furthermore, it would not be immediately

obvious whether the assumed distribution was inappro-

priate, the underlying relationships were weak (i.e., not

ecologically important), or if variability in the data (i.e.,

violations of assumptions) was adversely affecting param-

eter estimation. Taking this one step further for recovery

planning, the GLMs would not form as convincing a basis

to argue that remediation actions to alter hydrological

flows should be included in a remediation strategy.

Extending the analyses using both the lognormal model

and robust regression enabled us to address all of these

uncertainties and to identify the hydrological predictor

best supported by the data (xlow.freq on the St. Mary’s

River and rise.rate on the Nashwaak), as well as to reduce

biases in the estimated coefficients. The latter was particu-

larly important on the Nashwaak River, given that the

estimated slope increased from approximately 0.3–0.4,
indicating closer to a fourfold rather than a threefold

change in the instantaneous mortality rate over the range

of observed rise rates (Fig. 3).

The identification of population-level changes in survival

to hydrological variation gives indirect evidence for the

specific threats that have resulted in population decline in

these three rivers as well as the expected population

response to recovery actions. Furthermore, it would be

expected that changes in hydrological conditions that have

resulted in increased contrast in the data (i.e., anthro-

pogenic activities that cause more extreme flow values)

would enhance our ability to detect relationships with flow

(Frederiksen et al. 2014). The primary anthropogenic activ-

ities that have been linked to changes in hydrological flow

patterns are related to land clearing (Allan 2004; Broad-

meadow and Nisbet 2004; Poff et al. 2006), which can

result from mining operations, urbanization, agriculture,

or forestry, and the effects of which can be exacerbated by

changing precipitation patterns due to climate change

(Milly et al. 2005). Extreme low water conditions can arise

from a reduced capacity of the watershed to retain runoff

owing to the removal of vegetation (Broadmeadow and

Nisbet 2004) as well as to water extraction from surface

water or aquifers (Allan 2004). Recovery plans that identify

the specific location, extent and severity of such activities,

and remedial actions designed to alleviate these threats

would be expected to have a positive influence on egg to

age 0 survival on the St. Mary’s River. The speed at which

water levels increase is related to geology and vegetation

patterns which determine the capacity of a drainage area to

absorb runoff (Jewett et al. 1995; Allan 2004), as well as to

channel morphology, where straighter, deeper streambeds

enable faster water flow (Paul and Meyer 2001). Given that

approximately 90% of the Nashwaak River watershed was

clear-cut in 1978–1979 (Jewett et al. 1995), our ability to

detect the negative relationship between egg to age 0 sur-

vival and hydrological rise rate may represent the effect of a

land-use legacy (Greenwood et al. 2012), by increasing the

contrast in the data for this Atlantic salmon population.

Remediation focused on riparian planting, minimizing ero-

sion, and sources of sedimentation, as well as increasing

channel complexity, would be expected to result in

increased egg to age 0 survival in the Nashwaak River. For

the LaHave River, autocorrelation in the residuals was the

strongest signal found in the data, indicating a decline in

egg to age 0 survival over the duration of monitoring that

was not related to hydrology. These results do not preclude

the possibility that a relationship between egg to age 0 sur-

vival and alternate hydrological predictors exist, nor that

additional data collection and a longer time series would

enable a relatively weak relationship to be described. How-

ever, in terms of guiding recovery planning, alternate

threats that are not as strongly linked to hydrology, such as

the effects of invasive smallmouth bass and chain pickerel

(Wathen et al. 2011) or changes to water quality (Paul and

Meyer 2001) should be investigated.

This manuscript provides one example of how our inter-

pretation of ecological data changes as a result of the

assumptions made during the analytical process and high-
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lights the implications that these assumptions can have for

future recovery planning. Given the declining trends in a

large number of freshwater fish species (e.g., Dudgeon et al.

2006) as well as the limited time and resources available for

remediation, the efficient identification of priorities for

recovery planning is a pressing ecological issue.
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