
Fractionated irradiation of MCF7 breast cancer cells
rewires a gene regulatory circuit towards a treatment-
resistant stemness phenotype
Auchi Inalegwu1,2,3,4 , Bart Cuypers3, Jürgen Claesen5, Ann Janssen1, Amelie Coolkens1,
Sarah Baatout1, Kris Laukens3, Winnok H. De Vos2,6,7 and Roel Quintens1

1 Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, Mol, Belgium

2 Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium

3 Adrem Data Lab, Department of Computer Science, University of Antwerp, Belgium

4 Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium

5 Department of Epidemiology and Data Science, Amsterdam UMC, VU Amsterdam, The Netherlands

6 Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Belgium

7 μNEURO Research Centre of Excellence, University of Antwerp, Belgium

Keywords

breast cancer; circular RNA; radioresistance;

relapse-free survival; stemness; tamoxifen

resistance

Correspondence

R. Quintens, Radiobiology Unit, SCK CEN,

Belgian Nuclear Research Centre, 2400 Mol,

Belgium

Tel: +32474481972
E-mail: roel.quintens@sckcen.be

W. H. De Vos, Department of Veterinary

Sciences, Faculty of Pharmaceutical,

Biomedical and Veterinary Sciences,

University of Antwerp, 2610 Antwerp,

Belgium

E-mail: winnok.devos@uantwerpen.be

Winnok H. De Vos and Roel Quintens

shared senior authorship

(Received 22 November 2021, revised 7

April 2022, accepted 5 May 2022, available

online 15 June 2022)

doi:10.1002/1878-0261.13226

Radiotherapy is the standard of care for breast cancer. However, surviving

radioresistant cells can repopulate following treatment and provoke

relapse. Better understanding of the molecular mechanisms of radiation

resistance may help to improve treatment of radioresistant tumours. To

emulate radiation therapy at the cellular level, we exposed MCF7 breast

cancer cells to daily radiation doses of 2 Gy up to an accumulated dose of

20 Gy. Fractionally irradiated cells (FIR20) displayed increased clonogenic

survival and population doubling time as compared with age-matched

sham-irradiated cells and untreated parental MCF7 cells. RNA-sequencing

revealed a core signature of 229 mRNAs and 7 circular RNAs of which

the expression was significantly altered in FIR20 cells. Dysregulation of

several top genes was mirrored at the protein level. The FIR20 cell tran-

scriptome overlapped significantly with canonical radiation response signa-

tures and demonstrated a remarkable commonality with radiation and

endocrine therapy resistance expression profiles, suggesting crosstalk

between both acquired resistance pathways, as indicated by reduced sensi-

tivity to tamoxifen cytotoxicity of FIR20 cells. Using predictive analyses

and functional enrichment, we identified a gene-regulatory network that

promotes stemness and inflammatory signalling in FIR20 cells. We propose

that these phenotypic traits render breast cancer cells more radioresistant

but may at the same time serve as potential targets for combination thera-

pies.
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1. Introduction

Female breast cancer is the most common cancer diag-

nosed worldwide [1]. It is also the leading cause of

cancer deaths in women with region-specific mortality

rates of 9.8–18.9 per 100 000 women [1]. There were

2.3 million new cases diagnosed in 2020, representing

11.7% of all cancer cases. Radiotherapy (RT) is the

standard of care for early breast cancer and is recom-

mended in 83% of all breast cancer patients [2]. It is

administered after breast-conserving surgery or a mas-

tectomy to eliminate residual tumour cells. As such,

RT reduces the relapse rate significantly (by a factor

of 2/3 to 3) compared to surgery alone [3-5]. Further-

more, RT combined with adjuvant chemotherapy

increases disease-free survival in patients with high-risk

breast cancer [6,7]. Nevertheless, tumour recurrence is

a major clinical challenge that can occur in 4.3–7.3%
of breast cancer patients who receive radiotherapy

after breast conserving surgery [8]. Many factors such

as total dose, fractionation, tumour doubling time,

hypoxia and intrinsic radiosensitivity can impact on

the response of tumours to irradiation [9]. Tumour

heterogeneity accounts for the varying sensitivity and

unequal response of tumour cells to RT. The presence

of self-renewing cancer stem cells is a major contribu-

tor to tumour recurrence as well [10]. It has been

shown that cancer cells or normal tumour cells can

acquire stem cell characteristics that allow them to

repopulate after radiation treatment [11-13]. Studying

the population of surviving cells following irradiation

can further illuminate the molecular mechanisms of

radioresistance that render such tumour cells resilient

to the cytotoxic effects of RT [14] and provide insight

into developing more precise therapies. In this context,

the investigation of gene expression and gene regula-

tory mechanisms involving both protein coding mes-

senger RNA (mRNA) and noncoding RNA such as

microRNA (miRNA) and circular RNA (circRNA) is

rapidly gaining significance [15,16]. Typically, miRNAs

negatively regulate gene expression by binding to and

mediating the degradation of target mRNA [17], while

circRNAs can act as sponges for miRNAs thereby

attenuating their effect on mRNA expression [18,19].

Consequently, different RNA species can cooperate

with or antagonize each other within a so-called com-

petitive endogenous RNA (ceRNA) network [20] to

control diverse biological processes and pathways.

There is accumulating evidence that circRNAs regulate

tumour initiation, pathogenesis and treatment resis-

tance processes by acting as miRNA sponges [21,22].

Furthermore, circRNA-associated ceRNA networks

have been implicated in chemoresistance, radioresis-

tance, regulation of cancer stem cell properties and

populations, evasion of apoptosis, proliferation, migra-

tion, and invasion, among other tumour promoting

effects [21,22].

To uncover the transcriptional rewiring that takes

place upon radiotherapy, we here exposed oestrogen

receptor-positive (ER+) MCF7 breast cancer cells to

fractionated doses of X-rays. The MCF7 cell line was

selected because it is of the hormone receptor-positive

subtype, which accounts for the highest number of

breast cancer diagnoses (~ 70%) and shows the best

response to RT [23-27]. Additionally, the MCF7

human breast cancer model has proven to be a reliable

preclinical experimental model [28] as it retains several

essential features of the mammary epithelium [29] and

it is increasingly been used in the search for biomark-

ers of radiation sensitivity [30-33]. We used global dif-

ferential expression profiling, target prediction and

functional enrichment approaches to gain insight into

the underlying regulatory ceRNA network and its

associated biological functions. We found that activa-

tion of a cancer stem cell-like, pro-inflammatory

immune response and several cancer pro-survival sig-

naling pathways is involved in treatment-induced

radioresistance in breast cancer cells. We also discov-

ered a marked down-regulation of oestrogen signaling,

which likely promotes cross-resistance to tamoxifen

and endocrine therapies.

2. Materials and methods

2.1. Cell line and cell culture

The human breast cancer cell line MCF7 was pur-

chased from the American type cell culture collection

(ATCC LGC Standards, Molsheim Cedex, France).

The cells were maintained in Eagle’s Minimum Essen-

tial Medium (EMEM, ATCC, Middlesex, UK) with

10% Fetal Bovine Serum (Gibco, Life Technologies,

Ghent, Belgium) at 37 °C in a humidified incubator

with 5% CO2 and 95% air. The cells were passaged

two times weekly to maintain exponential growth. A

cryo-stock was generated and stored in liquid nitrogen.

All experiments were performed using cells thawed

from the stock.

2.2. Cell lines and irradiation procedure

The sub-clones used in this study were generated from

MCF7 wild type cells referred to here as parental
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(PAR). PAR cells were grown in three separate T75

cell culture flasks, and each flask of cells was sub-

cultured into 2 sets of 3 cell culture flasks among

which one set was assigned to the fractionally irradi-

ated group (FIR20) and the other set was assigned to

the age-matched control group (AMC). The FIR20

group was exposed to 2 Gy fractionated daily doses of

X-rays 5 days per week to a total dose of 20 Gy, and

the AMC group were subjected to the same culture

conditions and experimental procedures (e.g. trans-

port) but were not irradiated, while the PAR cells were

maintained in liquid nitrogen storage and only cul-

tured again when needed for downstream experiments

(Fig. 1A). Irradiations were performed at a dose rate

of 0.5 Gy�min−1 using a Xstrahl 320 Kv generator

(250 kV, 12 mA, 3.8 mm AI equivalent, 1.4 mm Cu-

filtered X-rays). To ensure homogeneity, the beam pro-

file was scanned in 2 dimension and measured with a

small ionization chamber and cell culture flasks were

placed horizontally on the irradiation platform perpen-

dicular to and within the measured range of the X-ray

beam. Cells were subsequently returned to the incuba-

tor. Growth medium was changed every 2–3 days, and

cells were passaged when they reached 70–90% conflu-

ence. The sub-clones were each generated and main-

tained in three separate independent cell culture flasks,

respectively, throughout the fractionated irradiation

scheme and throughout all downstream experiments.

2.3. Clonogenic survival assay

Cell survival after single dose irradiation was evaluated

using a clonogenic survival assay [34]. MCF7 cell lines

in exponential growth phase were harvested by trypsini-

sation and seeded in triplicate for each radiation dose in

6-well plates at a density of 0.8 × 103–1 × 104 cells per

well, then incubated overnight before irradiation with 0,

2, 4 and 6 Gy, respectively. The cells were maintained

for 14–21 days under normal culture conditions as pre-

viously described. Cell colonies were fixed with 6% glu-

taraldehyde and stained with 0.5% crystal violet

(Sigma-Aldrich, Diegem, Belgium). Visible colonies

were counted manually and the surviving fraction (SF)

was calculated using the formula: number of colonies

formed after irradiation/(number of cells seeded x plat-

ing efficiency). The surviving fraction (SF(dose)) was

estimated using the log-logistic regression model [35]:

SF doseð Þ ¼ φ1 þ
1�φ1

1þ exp φ3 ln doseð Þ�ln φ2ð Þ½ �f gð Þφ4

with φ1 ¼ 0, φ3 the parameter proportional to the slope,

φ2 the inflection point of the estimated SF-curve. The

irradiation dose which resulted in 50% survival, also

known as the median effective dose (ED50) was repre-

sented as bφ2. The α/β ratio and D10 (radiation dose

required to inactivate 90% of cells or reduce clonogenic

survival by 90%) were also determined using the linear-

quadratic model [36]. Where β and β parameters

describe the cellular radiosensitivity and reflect the lin-

ear and quadratic components of cell killing, respec-

tively. α/β = dose at which α and β contribute equally

to the total effect.

2.4. Cell proliferation and cytotoxicity assays

Real-time proliferation of cells was assessed using the

INCUCYTE ZOOM (Essen Bioscience, Newark, UK) live-

cell imaging system. 5 × 103 Cells were seeded in 96-

well plates and incubated overnight. Phase-contrast

images were captured every 2 h for 48 h with a 10×
objective and analyzed using the integrated INCUCYTE

ZOOM software. Cell proliferation was determined by

masking and measuring the percentage surface area

occupied by cells (% confluence) which was then

expressed in arbitrary units by setting the first time

point to 1 for each cell line.

Cytotoxicity assay was used to monitor the effect of

tamoxifen on cultured cells using live imaging in a

INCUCYTE ZOOM system (Essen Bioscience). Cytotox

green live cell analysis reagent (Essen Bioscience) was

used to fluorescently label the nuclei of dying cells

after loss of plasma membrane integrity. Briefly,

5 × 103 cells were seeded in 96-well plates and incu-

bated for 24 h. Cytotox green reagent (250 nM) and 4-

Hydroxytamoxifen (H7904 Sigma-Aldrich) (0, 1.25, 2.5

or 5 μM) were added to the cells which were then

returned to the IncuCyte. Phase-contrast and fluores-

cent images were captured every 2 h for 96 h from

time of seeding using a 10× objective. Cytotoxicity was

measured by counting the number of Cytotox positive

nuclei (green object count�mm−2) and normalizing to

cell confluence over time.

2.5. Samples and RNA isolation

Three independent replicates each of exponentially

growing PAR, AMC and FIR20 cells were seeded in

25-cm flasks and incubated for 72 h followed by RNA

extraction. Cell pellets were collected by trypsinization,

snap frozen and stored at −80 °C until further use.

Total RNA was extracted from the cell pellets using

RNeasy Mini Kit (Qiagen, Venlo, The Netherlands) as

described by the manufacturer. During the extraction

procedure, genomic DNA was removed using a geno-

mic DNA eliminator spin column (Qiagen). Sample
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Fig. 1. Fractionally irradiated MCF7 cell subline exhibits higher clonogenic survival and doubling time. (A) Overview of fractionated irradiation

schedule. The fractionally irradiated (FIR20) cells were obtained by exposing parental (PAR) MCF7 cells to 20 Gy of X-rays, distributed over a

12-day period with two series of 5 consecutive days 2 Gy exposure and 2 days without exposure. The age-matched control group (AMC)

group were subjected to the same culture conditions and experimental procedures but were not irradiated. After 2 weeks of irradiation or

mock treatment, the cells were allowed to recover for 9 weeks prior to being used for experiments (n = 3 biological replicates, d: Days, w:

Weeks). (B) Cell proliferation from 0 to 48 h, significance ***P ≤ 0.001, ****P = 0.0001, two-way ANOVA with holm-Sidak’s multiple com-

parisons test, n = 3. Vertical lines represent the cell doubling time, Dt. (C) Quantitative immunocytochemistry reveals a significantly lower

average nuclear Ki67 intensity in FIR20 cells vs. PAR and AMC. Note the presence of Ki67 negative cells in all three cell types (arrowheads)

(individual image contrast has been adapted for clarity). The box plots show the distribution of the data for each cell line. The boxes indicate

the median and interquartile range and whiskers indicate the spread of the data. Statistical analysis was performed using a mixed model

with Tukey post-hoc test, *P < 0.05, n = 3. Scale bars: 20 μm. (D) Graph of clonogenic assay showing surviving fraction in FIR20, PAR and

AMC cell lines after acute exposure to X-rays at different doses. Stars (*) denote significant differences in surviving fraction following irradia-

tion with 2 Gy. (*) color: Black = FIR20 vs. PAR, blue = FIR20 vs. AMC, **P = 0.0019, ***P = 0.0001, 2-way ANOVA with holm-Sidak’s

multiple comparisons test, n = 3. Vertical lines represent the inflection point bφ2 of the survival curves . Line colors: Black = PAR, blue =
AMC, red = FIR. N = 3 for all experiments.
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RNA concentrations were measured and assessed for

the presence of contaminants using a NanoDrop ND-

2000 spectrophotometer (Isogen Life Sciences, PW De

Meern, The Netherlands) and the DropSenseTM 16

spectrometer (Trinean, Ghent, Belgium). RNA integrity

was subsequently assessed using Agilent 2100 bioana-

lyzer (Agilent Technologies, Inc, Palo Alto, CA, USA).

2.6. Library preparation and RNA sequencing

High-throughput whole transcriptome RNA-

sequencing (RNA-seq) was performed by CD Genomics

(Shirley, NY, USA). First, the total RNA was depleted

of ribosomal RNA (rRNA) using the Ribo-Zero HMR

kit (Illumina, San Diego, CA, USA) according to the

manufacturers instructions. The rRNA-depleted RNA

was then purified using 2x RNAClean XP beads (Beck-

man Coulter, Brea, CA, USA) followed by first and

second-strand synthesis using NEBNext, New England

Biolabs reagents. The generated cDNA was purified

with 1.8x SPRIselect Beads (Beckman Coulter). End-

prep reaction was performed following the manufac-

turer’s protocol for NEBNext Ultra II End Prep

Reaction for the rest of the procedure. Adaptor ligation

was then performed using NEBNext Ultra II Ligation

protocols (New England Biolabs, Ipswich, MA, USA),

and the ligated product was purified by SPRIselect

Beads (Beckman Coulter) followed by elution in

nuclease-free water. PCR was carried out using NEB-

Next Ultra II Q5 Master Mix, and primers and the final

library was subsequently purified with SPRIselect

Beads. Libraries were sequenced using the Illumina

HiSeq platform, generating 2 × 150 bp paired-end

reads and at least 50 million reads per library according

to the manufacturer’s instructions.

2.7. Bioinformatics

The quality of the paired-end reads was verified using

FASTQC version 0.11.8 [37]. Reads were mapped to the

Human genome assembly GRCh38.p13 (Genome Ref-

erence Consortium Human genome build 38 – with

Gencode) and count tables generated using STAR v2.7.3a

[38] for mRNA detection. During this first run of

STAR, the option ‘chimSegmentMin’ was set to 10 to

enable the detection of chimeric alignments. Subse-

quently, a ‘second pass’ run of STAR was carried out

with the option ‘sjdbFileChrStartEnd’ for the most sen-

sitive novel junction discovery. Circular RNAs were

identified and quantified using the CIRCexplorer2 [39]

and CIRI2 [40] tools and subsequently annotated from

the circBase database [41]. DESeq2 [42] was used for

data normalization and to screen differentially

expressed mRNA (DEM) and circRNA (DEC). Signifi-

cant differential expression was defined as those DEMs

having an absolute log2 fold-change (log2FC) larger

than 1 and an adjusted P-value below 0.05. For DECs,

a (nonadjusted) P-value ≤ 0.001 was considered signifi-

cant. Gene set enrichment analysis (GSEA) [43] of the

global gene expression data was performed using

DESeq2-normalized transcript counts [42]. A weighted

enrichment statistic was used with a signal-to-noise met-

ric for gene ranking [43]. Results with FDR <0.25 were

considered significant. The ‘investigate gene sets’ online

tool of the Molecular Signatures Database (MSIGDB

v7.0) [44] was used for functional enrichment analysis

of the DEMs. Prediction and visualization of protein–
protein interaction networks were performed using the

Search Tool for the Retrieval of Interacting Genes/Pro-

teins (STRING) database online resource [45].

CircInteractome [46], and miRWalk [47] online data-

bases were used to predict the circRNA target miRNAs

and their respective target mRNAs. We first predicted

miRNAs that could be bound/sponged by DECs using

CircInteractome. Then, mRNA targets of the identified

miRNAs were predicted using miRWalk’s ‘validated

miRNA targets module’. The DECs and their predicted

targets were used to construct a competitive endogenous

RNAs (ceRNA) network of circRNA-miRNA-mRNA

regulatory interactions. Intersection(s) of gene lists

were calculated using the Venn diagram Web tool at

https://bioinformatics.psb.ugent.be/webtools/Venn/. Only

genes predicted by mirWalk that were also DEMs were

used to construct and visualize the network using CY-

TOSCAPE software (Version 3.8.2) [48]. CircInteractome

uses the TargetScan algorithm to predict miRNA-

circRNA interactions by searching for 7-mer or 8-mer

complementarity to the seed region and the 30 end of the

miRNAs [49]. We filtered for circRNA-miRNA interact-

ing pairs with a context score percentile (CSP) > 90 to

select for high-confidence miRNAs targets with high

binding specificity. Parameters for target scoring based

on CSP are detailed in Grimson et al [50]. The context of

effective sites is scored for favorable binding sites. The

CSP is the percentile rank of each site compared with all

sites for a given miRNA family. Therefore, a high CSP

designates a specific site as being more favorable for

binding than most other sites for a miRNA.

2.8. Quantitative real-time PCR

Quantitative real-time PCR (qPCR) was used to vali-

date a selection of DEMs and DECs. Total RNA was

isolated from the study cell lines (i.e., PAR, AMC and

FIR20) using RNeasy Mini Kit as previously described.

Subsequently, cDNA was synthesized from 1 μg of the
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extracted total RNA using GoScriptTM Reverse Tran-

scription kit (Promega Corporation, Leiden, The

Netherlands) and amplified by qPCR based on the

SYBR green method on an ABI 7500 Fast Real-Time

PCR System (ThermoFisher Scientific, Ghent, Belgium)

or a Rotor-Gene Q system (Qiagen, Hilden, Germany).

The reference genes GAPDH and TFRC were used for

normalization. The convergent target-specific primers

used for mRNA detection were designed using NCBI

primer-BLAST tool [51] and divergent primers spanning

the circRNA back-splice junctions were designed using

CircInteractome Webtool [46]. All the primer sequences

were synthesized by Eurogentec (Seraing, Belgium), and

their sequences are listed in Table S1. All experiments

were performed with three independent biological repli-

cates of the respective samples and two technical repli-

cates. Relative mRNA and circRNA expression levels

were compared using the Pfaffl method [52].

2.9. Protein isolation and detection

Protein lysates were prepared by lysing cells in ice-cold

RIPA Lysis and Extraction Buffer (89900, Thermo Sci-

entific, Merelbeke, Belgium). Whole cell lysates were

collected and centrifuged at 16 900 g for 15 min at

4 °C, and protein concentration was determined using

the Bicinchoninic acid Assay. Equal amount of protein

was separated by sodium dodecyl sulphate SDS gel elec-

trophoresis and blotted onto polyvinylidene difluoride

(PVDF) membranes. The membranes were blocked for

1 h in TBST (tris-buffered saline with Tween 20, 0.1%)

containing 5% bovine serum albumin, then incubated

overnight at 4 °C with primary antibodies (Table S2).

Afterwards, the membranes were washed 3 times with

TBST for 5 min at room temperature (rt) with rocking,

and incubated with horseradish peroxidase-conjugated

secondary antibodies (goat-anti-mouse-62-6520/goat-

anti-rabbit-65-6120 - Invitrogen, Merelbeke, Belgium)

for 1 h. Signals were detected by chemiluminescence

reagents (Bio-Rad Laboratories, Temse, Belgium).

Images were acquired with Fusion FX. Membranes

required for re-probing with beta-actin antibody were

stripped using RestoreTM PLUS Western Blot Stripping

Buffer (Thermofisher, https://www.thermofisher.com/

order/catalog/product/46430). Semi-quantitative analy-

sis of intensity of the bands was performed using IMAGEJ

[53]. Signals in AMC were set at 1.00.

2.10. Quantitative immunocytochemistry (ICC)

and cell cycle analysis

Paraformaldehyde-fixed cultures (2%, 30 min, rt) were

permeabilized with 0.3% Triton X-100 for 8 min and

incubated in blocking buffer (50% fetal bovine serum

in PBS) for 30 min, followed by a 60-min incubation

with primary antibodies (Table S2). After washing

with PBS, secondary antibodies (Donkey-anti-Mouse-

Cy3/Donkey-anti-Rabbit-Cy5) were added for 30 min

at room temperature. Finally, DAPI was applied to

the cultures for 15 min at a concentration of

2.5 μg�mL−1, followed by a PBS wash. Fluorescent

images were collected with an automated Nikon Ti-E

inverted microscope (Nikon Instruments Europe, Ams-

terdam, The Netherlands) equipped with a SPECTRA

light engine® solid-state light source (Lumencor,

Beaverton, USA) and a Nikon DS-Qi2 digital camera.

Nikon NIS-elements software was used to control the

image acquisition. Analysis of immunofluorescently

labeled cells was made in FIJI software using an

updated version of a high content cell profiling script

that has been developed earlier [54,55] (CellBlock-

s.ijm), and which is available on Github (https://

github.com/DeVosLab/CellBlocks). In brief, nuclei

were detected in maximum projections of confocal Z-

stacks of the DAPI channel after local contrast

enhancement to cover for spatial illumination hetero-

geneity using StarDist versatile (fluorescent nuclei)

neural network model, with a probability score of 0.30

and an overlap score of 0.20. After size filtering, the

average intensity of the immunolabeled markers was

measured within the nuclear regions of interest. The

integrated intensity of the DAPI signal was used as a

proxy for DNA content and cell cycle estimation as

previously done [56].

2.11. Investigation of patient data

To assess the relationship between the gene of interest

and outcome in breast cancer patients, we used the

Kaplan–Meier plotter at http://kmplot.com/analysis/

for survival analysis. Sources for the the Kaplan–
Meier plotter database include GEO, EGA and

TCGA. The characteristics of patients in the data set

have been described previously [57]. We evaluated

relapse-free survival (RFS) of patients who received

endocrine treatment alone (n = 867, 84.3% ER+),
tamoxifen alone (n = 733, 90.3%), chemotherapy

(n = 844, 19.4% ER+) or systematically untreated

patients (n = 1025, 48% ER+). The analysis was per-

formed by grouping patient samples based on the

expression of the gene of interest using the Jetset best

Probeset and the median cut-off value [57]. Addition-

ally, association between genes of interest and survival

status among patients who received radiotherapy was

assessed using data from whole-exome sequencing of

817 breast invasive carcinoma (ER status IHC %
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Fig. 2. Identification of differentially expressed mRNAs. (A) Biplot of principal component analysis showing the variation of the respective

gene sets. Clustering of the gene sets by cell line are specified by the ellipses. (B, C) volcano plots showing the P value (y-axis) and the fold

change (x-axis) for the differentially expressed genes between FIR20 vs. PAR and FIR20 vs. AMC respectively. Red dots indicate signifi-

cantly upregulated and downregulated mRNAs Padj ≤ 0.05;¦log2FC¦ ≥ 1. Some of the shared DEMs and those validated by qPCR are indi-

cated on the plots. Genes with significance values ≤ 10e-25 were set to 10e-25. (D) Venn diagram showing the 229 common DEMs (core

signature genes) and 1120 extended signature genes. (E) Heat map showing hierarchical clustering of the core signature genes. (F) Results

of qPCR analysis of 7 top DEMs in the core signature presented as mean � (1.96 SE) of three biological replicates. *P < 0.05; **P < 0.005,

***P = 0.0001, ****P < 0.0001; by one-way ANOVA with holm-Sidak’s multiple comparisons test. FC, fold change. The RNA-seq data plot-

ted are based on CIRCexplorer2 results. N = 3.
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positive, 37.5%) tumour/normal pairs [58] from The

Cancer Genome Atlas (TCGA) database available in

cBioPortal at https://www.cbioportal.org/study/

clinicalData?id=brca_tcga_pub2015 [59,60]. The rela-

tionship between gene of interest and outcome was

assessed by fitting a basic Cox-proportional-hazard

model for survival status. Patients were grouped based

on the expression-levels of the gene of interest: ‘above

the median expression level of the gene’ (n = 409) and

‘below the median expression level of the gene’

(n = 408). Furthermore, we evaluated the association

of the core signature genes with tumour stage in

patients with breast invasive carcinoma from TCGA

(n = 1085) using Gene Expression Profiling Interactive

Analysis (GEPIA) an interactive WEB tool for analyz-

ing RNA-sequencing expression data from the TCGA

and the Genotype-Tissue Expression (GTEx) projects

(http://gepia.cancer-pku.cn/) [61]. Ethical approval was

not required because all the patient data in this study

were accessed and/or downloaded from the publicly

available databases Kaplan–Meier plotter, GEPIA and

cbioportal. The TCGA data were generated by the

TCGA Research Network: https://www.cancer.gov/

tcga.

2.12. Statistical analysis

All experiments were conducted in triplicate using

three independently generated cell lines each with at

least three technical replicates for functional assays

and two technical replicates for RT-qPCR. Two-way

ANOVA with Holm-Sidak’s multiple comparison test

was used to test for differences between two groups

for colony forming and proliferation assays. For

qPCR, one-way ANOVA with Holm-Sidak’s multiple

comparison test was used to test for differences

between FIR20 cells and the control cells (PAR and

AMC). Differences with P-values < 0.05 were

considered statistically significant. Data are presented

as mean � 1.96 SEM or SD, and statistical analysis

were performed with GRAPHPAD PRISM version 9.2.0

(San Diego, CA, USA). Cytotoxicity assays were ana-

lyzed with a linear mixed effects model, after log-

transforming the cytotoxicity values. For ICC, down-

stream data analysis was performed in R STUDIO [62].

For DAPI-based cell cycle staging, the integrated

intensity values were normalized by dividing with the

average intensity per replicate. For other markers, no

additional correction was applied. Statistical compar-

isons were performed using a linear mixed effect model

with cell type as fixed factor and the plate (biological

replicate) as a random variable with well (technical

replicate) as a nested factor.

3. Results

3.1. Fractionally irradiated MCF7 cells exhibit

reduced basal proliferation and increased

clonogenic survival after radiation

To assess the impact of fractionated irradiation on cell

physiology, we monitored the basal cell proliferation

potential using quantitative, label-free, live cell imag-

ing. We found that the FIR20 cells proliferate slower

than PAR and AMC cells as indicated by a significant

increase in their doubling time (Dt) (Fig. 1B, Table

S3). In line with this, quantitative ICC staining

revealed a significant decrease in the average nuclear

intensity of the proliferation marker Ki67 in FIR20

cells (Fig. 1C). However, no significant shift in cell

cycle profile was detected using DAPI-based cell cycle

staging (Fig. S1).

Next, we examined whether fractionated exposure to

radiation would render MCF7 cells more resistant to a

subsequent exposure. To this end, a clonogenic

Fig. 3. FIR20 cells exhibit a treatment resistant, basal-like gene expression profile underlined by increased levels of EGFR expression and

MAPK pathway. Overlap of genes with increased expression in (A) the extended signature and (B) core signature with Post et al. [31] genes

which were increased in both tamoxifen and radiation resistant cells and Weichselbaum et al. [33] genes which are associated with

chemotherapy and/or radiation resistance. Heat map showing the expression of the extended signature genes that overlapped with (C) Post

et al gene sets and (D) Weichselbaum et al. genes, respectively. Red indicates higher expression, blue indicates lower expression. #genes

present in both Post et al. and Weichselbaum et al. signatures, *genes also present in the core radio-adaptive signature. Clustering was per-

formed using complete linkage (C) and average linkage (D) with Euclidean metric. (E) MSigDB C2: Curated pathways dysregulated in FIR20

cells based on enrichment analysis of the core signature genes showing dysregulation of ESR1 signaling, enrichment of tamoxifen and endo-

crine therapy resistance gene signatures, and basal-like breast cancer genes. (F) Western blot analysis showing the expression profiles of

ESR1 and EGFR in PAR, AMC and FIR20 cell lines, n = 3 (G) images (top) and graph (bottom) showing cytotoxicity of 5 μM tamoxifen in

PAR, AMC and FIR20. Images (72 h after tamoxifen treatment), graph (4–72 h) after tamoxifen treatment. Linear mixed effect model with

Tukey’s honest significant difference test, **P ≤ 0.01 significance between both controls and FIR20, n = 3. Data is presented as mean

� (1.96 SE) of three biological replicates. Scale bars: 100 μm. Oncogenic signatures enriched in (H) the core signature and (I) FIR20 vs.

REST respectively. (J) Western blot analysis confirmed enrichment of MAPK pathway in FIR20 cells, n = 3. Bands from western blotting

were semi-quantitatively analyzed using IMAGEJ. Signals in AMC were set at 1.00 but no statistical analysis was performed.
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survival assay was performed after exposing the PAR,

AMC and FIR20 cells to a single dose of X-

irradiation ranging from 0 to 6 Gy. The survival curve

of the FIR20 cells was characterized by a significantly

higher φ2 (ED50) and SF2, and a lower α/β ratio.

These results suggest a competitive survival advantage

of FIR20 cells compared with the controls to a subse-

quent radiation exposure (Fig. 1D, Table S4).

3.2. FIR20 transcriptome exhibits a profile of

radioresistance, cross-resistance to anti-

oestrogen therapies and luminal-to-basal

subtype plasticity

To investigate the effect of fractionated irradiation on

gene expression, we used RNA-seq to generate mRNA

expression profiles of the PAR, AMC and FIR20 cells.

Principal component analysis (PCA) of the resulting

transcriptomes revealed a clear grouping of the biologi-

cal replicates of the parental and derivative cell lines

proving reproducibility (Fig. 2A). In FIR20 cells, 571

and 778 mRNAs were significantly differentially

expressed (DEM, adjusted P-value ≤ 0.05 and log2FC

≥ 1 or ≤ −1) compared with the PAR cells and AMC

controls, respectively (Fig. 2B,C and Suppl. Data S1).

Among these, 229 DEMs were conserved and demon-

strated a concordant pattern of up- or down-regulation

(163 up and 66 down, respectively) for both compar-

isons (i.e. FIR20 vs. AMC and FIR20 vs. PAR, respec-

tively) (Fig. 2D,E). As both FIR20 and AMC cells may

have experienced (epi-) genetic drift from the PAR cell

line during sustained culture, we considered this subset

of common DEMs as the core radio-adaptive signature

in the FIR20 cells (Fig. 2D, Suppl. Data S2) and exam-

ined the corresponding genes to further interpret the

FIR20 phenotype. For a comprehensive overview, we

also examined the total subset of genes altered in FIR20

vs. either one of both controls (PAR and AMC cells)

including the shared and unique DEMs (Fig. 2D,

Suppl. data S3). We named this the extended radio-

adaptive signature. A selection of 7 top hits from the

core signature was validated using qPCR on samples

from independent cell cultures, revealing very similar

changes as those detected by RNA-seq (Fig. 2F).

To confirm the observed radioresistant-like pheno-

type of the FIR20 cells at the transcriptional level, we

compared the genes of the extended and core signa-

tures with increased expression in FIR20 cells with 2

published gene expression signatures associated with

radiation resistance [31,33] (Fig. 3A–D, Table S5). The

first [31] contained a list of 94 genes with increased

expression in both treatment-derived radioresistant

and tamoxifen-resistant MCF7 breast cancer cells rela-

tive to sensitive controls. The second [33] consisted of

an interferon-regulated signature of 49 genes impli-

cated in radiation and/or chemotherapy resistance. Of

the extended signature, 21 genes were present in the

Post et al. gene set (22%) and 11 in the Weichselbaum

et al. gene set (22%) (Fig. 3A). Of the core signature,

there were 8 (9%) and 2 (4%) genes in common with

these gene sets, respectively (Fig. 3B). These results

indicate that the gene expression profile of FIR20 cells

shows commonality with previously described breast

cancer cells with acquired resistance to radiation and

cross-resistance to tamoxifen.

To explore the significant pathways associated with

the radioresistant-like phenotype, we performed func-

tional enrichment analysis of the FIR20 core signature

using the MSigDB gene set investigation tool [44]

(Data S2). We also used GSEA [43] for exploratory

analysis of the global transcriptome of the FIR20 cells

compared with PAR and AMC cells (‘FIR20 vs.

REST’) using the complete DESeq2 normalized reads

of all the expressed mRNA transcripts (Fig. S2, Data

S4). First, we queried for ‘genetic and chemical pertur-

bations’ within the MSigDB curated gene set. A

Fig. 4. FIR20 cells display a cancer stem cell-like gene expression profile and induction of genes regulated by pluripotency-associated tran-

scription factors. Gene ontology analysis of the core signature DEMs for (A) molecular functions and (B) biological processes. Transcription

factor enrichment analysis of (C) the core signature genes and (D) extended signature genes performed using Enrichr [112]. Transcription

factors were extracted from the ENCODE and ChIP enrichment analysis (ChEA) consensus TFs from ChIP-X database [112]. (E) Heat map

showing core signature genes on the y-axis and their predicted pluripotency associated TF and other TFs which share the same targets on

the x-axis based on hits extracted from (D). Red boxes represent transcription factor-target gene relationship. (F–J) graphs showing relative

expression of stem cell-associated genes in PAR, AMC and FIR20 cells validated by qPCR. Data is represented as mean � SD of three bio-

logical replicates normalized to expression in wild-type PAR cells, and statistical significance was determined by one-way ANOVA with

holm-Sidak’s multiple comparison test. mRNA expression, *P < 0.05; **P < 0.005, ***P = 0.0001, ****P < 0.0001, significant differences

are relative to FIR20. (K) Immunocytochemistry staining indicating increased levels of SOX9 in FIR20 cells compared to controls. The box

plots show the distribution of the data for each cell line. The boxes indicate the median and interquartile range and the whiskers indicate

the spread of the data. Statistical analysis was performed using a mixed model with Tukey post-hoc test, *P < 0.05. Scale bars: 20 μm. (L)

Western blot analysis showing increased expression of OCT4 (POU5F1) and CD44 in FIR20 cells. Bands from western blotting were semi-

quantitatively analyzed using IMAGEJ. Signals in AMC were set at 1.00. K and L, n = 3.
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striking observation was the significant dysregulation

in FIR20 cells of oestrogen receptor alpha (ESR1) tar-

get genes and gene sets associated with tamoxifen and

endocrine therapy resistance (Fig. 3E, Data S2). Wes-

tern blotting revealed no difference in ESR1 protein

levels suggesting that the observed changes are rather
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related to changes in receptor activation or downstream

signaling proteins (Fig. 3F). To assess the impact of

altered oestrogen receptor signaling on hormone ther-

apy response, we evaluated the effect of tamoxifen in

the cell lines. We found a strong attenuation of

tamoxifen-induced cytotoxicity in FIR20 cells (Fig. 3G,

Fig. S3). These findings align with the notion that resis-

tance to anti-oestrogen and radiation therapy involve

common effector genes [31]. We also gathered evidence

for additional cross-resistance, as several genes associ-

ated with ERBB2 expression or ERBB2 subtypes of

breast cancer and genes involved in the response and

resistance to chemotherapeutic agents such as fenre-

tinide, fluorouracil, doxorubicin and the EGFR inhibi-

tor Gefitinib were significantly dysregulated in the

FIR20 cells (Fig. S2, Data S4). Western blotting

revealed higher EGFR levels in FIR20 cells arguing for

a direct link with this receptor (Fig. 3F). In fact, EGFR

was part of a cluster of dysregulated genes and enriched

gene sets in the FIR20 cells that define the basal breast

(cancer) subtype (LAMC2, TRIM29, COL17A and

cytokeratin genes (KRT6, KRT7, KRT13, KRT15))

(Data S1). We therefore conclude that FIR20 cells exhi-

bit an altered molecular landscape that confers resis-

tance to radiation, reduced sensitivity to endocrine

therapies and enhanced EGFR signaling.

3.3. FIR20 transcriptome exhibits characteristic

profile of MAPK pathway activation

Having observed a strong change in EGFR, we next

queried the MSigDB C6 collection for oncogenic path-

way activation. We found significant overlap between

the expression profile of FIR20 cells with gene sets pre-

viously reported as being dysregulated in MCF7 breast

cancer cell models engineered for hyperactivation or

overexpression of the mitogen-activated protein kinase

(MAPK) pathway [63] (Fig. 3H,I, Data S2 and S4).

Western blot analysis confirmed increased levels of

phosphorylated ERK 1/2 in FIR20 cells compared with

PAR and AMC confirming upregulation of the MAPK

pathway (Fig. 3J).

3.4. FIR20 transcriptome inclines towards cancer

cell stemness

FIR20 cell transcriptome demonstrated enrichment

in MSigDB gene sets associated with blebbishield

transformation an emergency program that pro-

motes cell transformation at the onset of apoptosis

[64] in cancer stem cells (Fig. 3E, Data S2). Gene

ontology analysis provided further evidence of

induction of stem cell and pluripotency-associated

genes in the FIR20 cells (Fig. 4). For example, the

core signature was enriched in the GO molecular

function (Fig. 4A) ‘aldehyde dehydrogenase [NAD

(P)+] activity’ attributed to the increased expression

of the stemness markers ALDH1A3, ALDH3A1 and

several GO biological processes relating to cell dif-

ferentiation and development attributed to cancer

stem cell associated genes such as CD109 and

SOX9. (Fig. 4B). Upstream transcription factor pre-

diction (Fig. 4C–E, Data S2 and S3) revealed that

many genes of the core signature were targets of

pluripotency factors SOX2, POU5F1 (OCT4),

NANOG and SALL4. We validated the increased

expression of ALDH1A3, ALDH3A1, CD44, CD109

and SOX9 in FIR20 cells using qPCR (Fig. 4F-J),

and confirmed upregulation at the protein level for

SOX9 using quantitative immunofluorescence (Fig. 4

K), as well as OCT4 and CD44 using western blots

(Fig. 4L). Despite the enrichment of its transcrip-

tional target genes in FIR20, SOX2 did not change

significantly with respect to AMC cells (Fig. 4L).

This can be explained by the dependence of tran-

scription factor activity on their shuttling kinetics

[65] and/or the presence of binding partners [66]

rather than abundance alone. Our results show that

the enriched stemness and pluripotency-associated

factors, possibly in crosstalk with the other tran-

scriptional regulators (SUZ12, SMAD4, AR, TCF3,

TP53), may drive the core radio-adapted transcrip-

tome of FIR20 cells and portray a stem-cell like,

radiation-induced cellular reprogramming of this cell

line.

Fig. 5. Core signature genes are associated with - poorer survival after chemotherapy, endocrine therapy, tamoxifen therapy or radiotherapy

and tumour stage. (A–D) Forest plots showing the association (hazard ratios and 95% CIs) between the expression of the core signature

genes and relapse-free survival in breast cancer patients after chemotherapy (n = 844, # n = 211), endocrine therapy (n = 867, # n = 181)

or tamoxifen treatment (n = 733, # n = 110) or no systemic treatment (n = 1025) [57]. Error bars represent 95% CI. (E–L) Kaplan–Meier

plots of relapse-free survival in high and low expression groups for the core signature genes which correlated with poor survival in endocrine

or tamoxifen treated patients. Not shown: LFNG, LTBP2 and THRB. Cox proportional hazard survival analysis, a log-rank P < 0.05 was con-

sidered as statistically significant. (M–O) plots of overall survival in high and low expression groups for core signature genes which corre-

lated with poorer overall survival in breast cancer patients treated with radiotherapy based on a cox proportional hazard model, significance

level 0.05. N = 817. (P–W) violin plots illustrating the expression levels of 8 core signature genes that were associated with tumour stage in

breast invasive carcinoma generated from TCGA using GEPIA, n = 1085. RFS, relapse-free survival.
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3.5. Core signature genes are correlated with

worse survival and tumour stage

To test the clinical relevance of our results, we exam-

ined the association of the core signature genes with

relapse-free survival in breast cancer patients treated

with chemotherapy, endocrine therapy or no systematic

treatment, using Kaplan–Meier analysis [57]. The

results showed that high expression levels of many core

signature genes were negatively correlated with relapse-

free survival in patients who received chemotherapy

(35), endocrine therapy (9), tamoxifen (9) or no system-

atic therapy (9), respectively (Fig. 5A–L, Data S5).

High expression of two genes were also associated with

worse overall survival in breast cancer patients treated

with radiotherapy based on analysis of TCGA data [58]

available on cBioPortal (Fig. 5M–O). The effect of the

core signature genes on the pathogenesis of breast can-

cer was investigated using GEPIA [61] to determine

their association with tumour stage based on analysis of

samples from the TCGA project (Data S5). Six genes

which were inversely correlated with relapse-free sur-

vival in endocrine and/or tamoxifen-treated patients

also correlated with tumour stage (Fig. 5P–W). Six

other genes from the chemotherapy and/or systemati-

cally untreated group also significantly correlated with

tumour stage in breast cancer patients. Thus, we con-

clude that radioresistant cancer cells are associated with

a worse prognosis.

3.6. Fractionated irradiation modulates the

expression of circular RNAs

Having established a clear transcriptional shift in

FIR20 cells, we next asked whether this was

accompanied by changes in circRNA expression.

We used two different high performing circRNA

prediction algorithms in other to exclude algorithm-

specific false positives [67]. These were CIRCexplor-

er2 [39] which requires mandatory gene annotation

input, and the default de novo prediction algorithm

CIRI2 [40]. The generated data were then used as

input to identify differentially expressed circRNAs

(DECs) between cell lines using DeSeq2 [42]. PCA

showed good clustering of replicate gene set signa-

tures by cell type (Fig. 6A,B). CIRCexplorer2 iden-

tified 28 DECs and CIRI2 29 DECs in the core

signature, of which 7 were shared (Fig. 6C–I, Table

S6). The 7 common DECs have also previously

been reported in relation to cancer development

(Table S7) [68] and were therefore considered as

high-confidence DECs. We validated the expression

of 9 DECs (5 up-regulated, 4 down-regulated)

which exhibited the highest fold change in the

extended signature using qPCR (Fig. 6J, Data S6).

Next, we examined whether change in level of

expression of the DECs correlate with those of

their cognate linear mRNAs using linear regression

analysis. A moderate correlation was observed

between the expression levels of circRNAs and their

cognate mRNAs (linear regression P < 0.05 (Fig.

S4). The correlation was even lower when only cog-

nate mRNAs with padjusted values > 0.05 were

considered (Fig. 6K,L). These results indicate that

some circRNAs were regulated independently of the

levels of their cognate linear mRNAs and aligns

with the notion that circRNAs are not simply splic-

ing byproducts [69]. We experimentally examined

the change in expression levels of the circular and

linear transcripts of CAMSAP1, CDYL and XPO1

Fig. 6. Differential circRNA expression in FIR20 cell lines vs. controls. Principal component analysis shows clustering of genes by cell type

based on (A) CIRCexplorer2 and (B) CIRI2 detection algorithms. Volcano plots representing DECs detected in FIR20 vs. PAR by (C)

CIRCexplorer2 and (D) CIRI2, respectively, as well as DECs detected in FIR20 vs. AMC by (E) CIRCexplorer2 and (F) CIRI2, respectively.

Red dots indicate significant DECs, P value ≤ 0.001 and green dots represent nonsignificant DECs. (G) Total DEC transcripts detected by

CIRCexplorer2 and CIRI2 algorithms in FIR20 vs. PAR (left), FIR20 vs. AMC (right) and high-confidence DECs (bottom) detected by both

algorithms (common in both FIR20 vs. PAR and FIR20 vs. AMC). Heat maps showing hierarchical clustering of samples based on expression

levels of DECs detected by (H) CIRCexplorer2 and (I) CIRI2 respectively. Significance given by P value ≤ 0.001. CIRI2 failed to detect any

circRNA in one sample from the AMC group. (J) Results of qPCR validation of top DECs in the extended signature showing concordance

with RNA-seq results from CIRCexplorer2 plotted side-by-side. Data are presented as mean � (1.96 SE) of three biological replicates.

**P < 0.005, ***P = 0.0001, ****P < 0.0001. (K, L) correlation between the change in expression levels of the DECs (with P < 0.001) and

their cognate linear mRNAs by regression analysis. The circRNAs plotted are based on CIRCexplorer2 results. The square of the correlation

coefficient (R2) and P value (P) are shown. Names of several RNA transcripts are labeled. The red regression line depicts the correlation

between DECs and cognate mRNAs with Padj < 0.05 and the cyan line depicts the relationship between DECs and cognate mRNAs with

Padj > 0.05. Lower correlation is observed between DECs and cognate linear mRNAs with P values > 0.05. (M) Results of qPCR analysis of

the differential expression of 3 DECs and their cognate linear mRNAs confirms that not all circRNAs are regulated at the level of their host

gene expression **P < 0.001, ****P < 0.0001 by one-way ANOVA with holm-Sidak’s multiple comparisons test. Data are presented as

mean � (1.96 SE) of three biological replicates. FC, fold change.
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using qPCR. These transcripts were selected based

on previous report of their expression in human

cancer cells [70]. The results were consistent with

our observation that some circRNAs are regulated

independent of the levels of their linear mRNAs

(Fig. 6M).
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3.7. DECs compete with miRNAs to regulate

radiation-activated cancer stem cell-like signaling

pathways in FIR20 cells

CircRNAs negatively regulate miRNA activity through

their sponge-effect [18,19]. We used CIRCINTERACTOME

WEB tool [46] to predict miRNA targets of the 7 high-

confidence DECs. A total of 102 unique target miRNAs

were identified, for which 8287 target mRNAs were then

predicted using the validated target module of miRWalk

[47]. The predicted target mRNAs were intersected with

the 229 core signature genes (Fig. 7A) and an overlap of

47.2% (108 DEMs) was obtained. Using this informa-

tion, we compiled a high-confidence ceRNA network

(Fig. 7B, Data S7A,B), consisting of 7 circRNAs, 72

miRNAs and 108 mRNAs (all core signature genes).

The highest number of unique circRNA-miRNA-

mRNA interactions was related to down-regulated hsa_-

circ_0006411 and hsa_circ_0000118, followed by upreg-

ulated hsa_circ_0002111 and hsa_circ_0004365. The

microRNA, hsa-miR-335-5p, a unique target of the

downregulated circPIK3R1_hsa_circ_0006411 had the

highest number of unique interactions (18%). The con-

siderable overlap of the core signature genes with pre-

dicted targets of dysregulated DECs suggest their

involvement in the transcriptional regulation thereof

and hence in the radio-adaptive phenotype of the FIR20

cells. Very much in line with core signature pathway

analysis, miRNA targets of the DECs were found to be

involved in various cancer-promoting processes includ-

ing, but not limited to, regulation of treatment resistance

(chemotherapy, endocrine and radiation therapy) and

stem cell phenotype (Table S8). This support from the

literature was further confirmed by functional enrich-

ment analysis of the subset of 108 core signature genes

regulated by DECs (Fig. 7C–F, Fig. S4) and all the mir-

Walk predicted mRNA targets (Fig. S5).

We performed enrichment analysis of the subset of

51 upregulated core signature genes that were targets

of upregulated DECs (DEC-up_DEM-target up) and

found that many which were regulated by the master

pluripotency factors (SOX2 and NANOG) were also

retained in this subset and were involved in GO bio-

logical processes related to development and cell dif-

ferentiation (Fig. 8A–D, Data S8). Analysis of

potential protein–protein interaction (PPI) between

the transcription factors and the upregulated ceRNA-

associated core signature genes also indicated the

involvement of LIF and BMPR1B in signaling path-

ways regulating pluripotency (Fig. 8E). Furthermore,

the positively regulated ceRNA-associated core signa-

ture genes were involved in diverse Hallmark path-

ways (Fig. 8E). These results further highlight the

stemness phenotype of the FIR20 cells and the

potential role of the DECs as positive regulators of

the stem cell-like mechanisms in the radio-adapted

cells.

4. Discussion

Tumour radioresistance remains a clinical challenge

that limits the outcome of radiotherapy in breast can-

cer treatment. To study radioresistance in more detail,

we exposed ER-positive MCF7 breast cancer cells to

fractionated 2-Gy doses of X-rays to a cumulative of

20 Gy. Based on in-depth, in silico analyses, we estab-

lished a ceRNA network governing the radiation

adaptive response in the fractionally irradiated cells.

We find that this network describes a transcriptional

rewiring that is characterized by slower growth,

increased radioresistance, conversion to a basal-like

subtype, MAPK signaling; and cross-resistance to

tamoxifen. We also found an association between core

radio-adaptive signature genes - ceRNA targets inclu-

sive, with treatment outcome in breast cancer patients

treated with endocrine therapy, chemotherapy or

radiotherapy, raising the translational value of our

findings.

Fig. 7. Identification of circRNA-miRNA-mRNA regulatory network in FIR20 cells. (A) Venn diagram showing the predicted downstream

mRNA targets of the 7 high-confidence DECs overlapped with the core signature genes. A total of 108 core signature genes (circled red)

overlapped with the predicted DEC target mRNAs. (B) High-confidence ceRNA regulatory network in FIR20 cells based on (A). The network

consists of the 7 DECs, 72 predicted miRNAs and their 108 targets from the FIR20 core signature genes. Shapes: Circle = circRNA, dia-

mond = miRNA, and square = mRNA. Shape color: Red = upregulated, blue = downregulated and green = miRNA. Line color: Pur-

ple = circRNA-miRNA interaction, gray = miRNA-mRNA interaction. Note that miRNAs were identified based on prediction analysis hence

their direction of expression is unknown. Ellipses show clusters of miRNAs and mRNAs that are: Unique or shared targets of the individual

DECs. Functional enrichment analysis of the independent subsets of up- and down-regulated DEMs predicated as targets of each DEC was

performed querying (C) MSigDB hallmark pathways and (D) curated gene sets (E) GO biological process and (F) GO molecular function. (C–
F) font color: Purple = upregulated DEC and orange = down-regulated DEC. (G) circRNA-mRNA-pathway network for top 10 enriched Hall-

mark pathways based on all 108 target core signature genes present in the ceRNA network. TF, transcription factor; UDP-gal:Beta-N-

AcGlcAm beta-1,3-GlcTn, UDP-galactose:Beta-N-acetylglucosamine beta-1,3-galactosyltransferase.
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Others have reported that fractionated irradiation

enriches or selects for radioresistant clones [30,71,72].

Gray et al. [30] also reported that radioresistant

MCF7 cells exhibit decreased basal proliferation rate

and concurrent lower expression of Ki67 and cell cycle

genes than their parent cells. Especially, dormant cells

are a lingering risk of tumour recurrence [73,74]. The

quiescent, slow-growing state has been described as a

survival strategy that protects cancer stem cells from

anti-proliferating therapies [75,76]. There is also evi-

dence for a relative increase in cancer stem cells fol-

lowing RT, chemotherapy and endocrine therapy

[11,12,13,77,78] suggesting that they may be intrinsi-

cally resistant and responsible for cancer relapse.

Although we observed slower cell proliferation,

reduced Ki67 staining and suppression of genes associ-

ated with the cell cycle and DNA replication in the

FIR20 cells, we did not find the expected change in

the proportion of cells distributed across the cell cycle

stages. This may be attributed to concurrent changes

in nuclear morphology or cell density. Live cell imag-

ing of cell cycle progression may provide more infor-

mation on differential cycle dynamics in the

radioresistant cells and how such changes result in

population wide suppression of cell cycle gene expres-

sion. The stem cell-like phenotype of FIR20 cells was

accentuated by enrichment in genes associated with

blebbishield transformation in cancer stem cells and

the expression of stem cell associated genes and pro-

teins, including pluripotency factors.

We observed that the expression of some DECs was

independently regulated from their cognate host

mRNAs, which suggests that they are independently

regulated in the FIR20 cells. According to the cir-

cRNA target profiling and pathway enrichment analy-

sis, the high-confidence DECs could influence the

expression of cancer stem cell-associated core signature

genes such as ALDH1A3, SOX9, CD109, LIF and

BMPR1 via negative regulation of miRNAs. Among

these genes, ALDH1A3 was identified as a target of

hsa_circ_0074362, upstream of hsa-miR-7-5p in our

study. Interestingly, Pan and colleagues reported that

miR-7 could inhibit breast cancer growth by suppress-

ing ALDH1A3 with accompanying decrease in the

breast cancer stem cell population [79]. Others have

also implicated high ALDH activity involving both

ALDH1A3 and ALDH3A1 not only in stemness but

also, tumorigenicity and treatment resistance (chemo

and radiotherapy) [80-83]. Other FIR20 enriched tran-

scripts such as LIF and BMPR1 contribute to tumori-

genicity and stem cell mechanisms as well [84-86]. As

several of the DEC targets are also targets of key

cancer-promoting transcription factors (e.g. OCT4,

SOX2, NANOG KLF4 and SUZ12), it is plausible

that transcriptional regulation at the level of both

transcription factors and the ceRNA network is

involved in the stem cell-like rewiring of FIR20 cells.

In this regard, studies have shown that overexpression

of these transcription factors can induced normal

somatic cells or cancer cells to treatment resistant can-

cer stem cells [87-89]. Aberrant regulation of SUZ12 is

also linked to tumour initiation and progression by

repressing cell fate regulators to promote a stem cell-

like phenotype [87,88].

Several of the miRNAs in the ceRNA network have

also previously been identified as regulators of stem

cell-like properties and cancer treatment resistance

(Table S8). For instance, hsa-miR-335-5p was shown

to inhibit tumour re-initiation and metastasis [90], and

to synergize with hsa-miR-335-3p to inhibit oestrogen

receptor alpha expression and promote tamoxifen

resistance in breast cancer cells [91]. It is also associ-

ated with chemosensitivity, reduced tumorigenicity and

negative regulation of stem cell-like properties in

osteocarcinoma by targeting OCT4 [92].

Another interesting finding was the basal-like tran-

scriptional reprogramming of the FIR20 cells. The

basal breast cancer subtype is characterized by triple

negativity (for ESR1, PgR and HER-2), expression of

EGFR and cytokeratin 5/6 [93-95] and is a more

Fig. 8. Upregulated DECs are predicted positive regulators of core signature genes involved in stem cell-like mechanisms in FIR20 cells. (A)

ceRNA network of the up regulated DECs and their concordant 51 upregulated target core signature genes. Shapes: DEC = rounded rectan-

gle, miRNA = diamond, target core signature gene = circle. Red lines correspond to circRNA-miRNA interactions and blue lines depict

miRNA-mRNA interactions. The significant transcription factor regulators of the mRNAs extracted with Enrichr are shown as donut charts

around the genes in (A) and also presented in (B) in a heat map (top) and bar chart (bottom). (C) Protein–protein interaction between the pro-

tein product of the 51 upregulated core signature genes in the ceRNA network visualized using STRINGDB [45]. Edges indicate both func-

tional and physical PPIs, edge width indicates STRINGDB confidence rank from 0 to 1. Interactions with ‘medium’ confidence score ≥ 0.4

are shown. Pie chart colors correspond to the enriched GO biological processes associated with the network after removing redundancy.

(D) the 51 genes were visualized with their regulatory pluripotency-associated TFs using STRINGDB to identify key associations. Color corre-

sponds to the enriched KEGG and Reactome pathways associated with the PPI network. (E) Enriched MSigDB Hallmark pathways associ-

ated with the 51 upregulated target core signature genes in the ceRNA network.

3428 Molecular Oncology 16 (2022) 3410–3435 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

ceRNAs regulate breast cancer treatment resistance A. Inalegwu et al.



aggressive subtype; associated with high tumour grade,

younger age and poor prognosis, including shorter

disease-free and overall survival [96,97]. Although

ESR1 expression was not significantly different in the

FIR20 cells, the confirmed increase in EGFR; MAPK

pathway; and the basal-like, oestrogen signaling-

suppressed gene expression profile of FIR20 cells could

contribute to their reduced sensitivity to tamoxifen. As

the majority of breast cancers (~ 70%) are ER+, anti-
ER therapies are an important treatment option for a

large number of breast cancer patients [98,99]. Fur-

thermore, RT has been shown to be more effective in

ER+ breast cancers especially of luminal A subtypes

[23-27]. Moreover, tamoxifen [100,101] or fulvestrant

may be administered to patients concomitantly or in

sequence with RT to further inhibit tumour progres-

sion [102], so that a substantial number of breast can-

cer patients receive both radiation and hormonal

therapy [102]. This highlights the impact that subtype

plasticity and cross-resistance to both radiation and

endocrine therapy can have on treatment and patient

outcome.

Our results on EGFR and MAPK signaling align

well with transcriptional changes observed in radiore-

sistant derivatives of MCF7 and ZR751 cell lines [30].

Hyperactivation of MAPK in MCF7 cells results in a

progressive change to oestrogen receptor alpha nega-

tive phenotype with oestrogen-independent growth

[63]. The lack of expression of hormone receptors by

basal-like breast tumours limits the options for tar-

geted treatment of these subtypes [103]. A similar

effect of radiation on oestrogen and oestrogen receptor

signaling pathways via pathway crosstalk signaling

may be responsible for the luminal-to-basal-like tran-

scriptional rewiring we have observed in FIR20 cells.

Additionally, oestrogen is also known to regulate

Mki67, MYC [104] and E2F [105]; which are key regu-

lators of cell proliferation, cell cycle progression and

DNA synthesis [106] that were downregulated in the

FIR20 cells. SMAD4, of which targets are enriched in

FIR20 cells, is essential to inhibit ESR1 transcription

in breast cancer cell lines [107,108]. Therefore, tran-

scriptional changes in oestrogen signaling dynamics

may have had a significant effect on the cellular rewir-

ing in FIR20 cells and could also have a role in their

reduced proliferation. Because of the reliance on sub-

typing for breast cancer treatment [109], better under-

standing of the underlying drivers of phenotypic and

cellular plasticity could be harnessed to improve com-

position and timing of combination therapies. We

show here that circRNAs may contribute to therapy

resistance via competitive regulation of miRNAs and

mRNAs to promote acquisition of stem cell-like

features in breast cancer cells. The regulatory role of

the ceRNA network could be studied further to iden-

tify potential targetable modules and prognostic breast

cancer markers.

4.1. Limitations

We have only investigated one representative breast

cancer cell line and it would be valuable to compare

with nonhormone responsive types of breast cancer.

The cell model was only irradiated to a cumulative of

20 Gy which falls short of the full clinical regiment

which can reach 50 Gy for standard adjuvant RT

[110]. However, we found various similarities between

this cell model and other models treated with higher

radiation doses. We also observed only a small

increase in the clonogenic survival and radioresistance

of the FIR20 model when compared with those

demonstrated in other studies [14,30]. This could be

due to differences in the irradiation schedules and the

total dose applied. Additionally, FIR20 cells had a

recovery period of 9 weeks before being used for the

reported investigations. Therefore, this study does not

inform about the characteristics of the cells immedi-

ately after fractionated irradiation.

RNA-seq samples were processed by random prim-

ing, after ribosomal RNA depletion without enrich-

ment for linear or circRNAs. Nevertheless, similar

methods have been used by others and proved to

detect linear and circularly ordered exons at compara-

ble levels [111]. To minimize bias in transcript detec-

tion, we used separate algorithms (see Section 2) to

independently identify linear and circular splicing

events. The shared output of two circRNA detection

algorithms was also used to increase reliability and

exclude false-positive predictions [67]. As DEC and

miRNA targets were based on in silico predictions,

functional analyses are needed to validate their dysreg-

ulation and functional relevance.

5. Conclusions

In conclusion, we have established for the first time a

comprehensive, high-confidence ceRNA network gov-

erning the adaptive response to fractionated irradia-

tion in MCF7 cells. Our results indicate a

transcriptional rewiring towards a stem-like phenotype

that shows features of cross-resistance to radio- and

chemotherapy. Some of these changes may be driven

by independently regulated circRNAs, which exposes

them as possible targets for novel combined anti-

cancer regimen for hormone receptor-positive breast

tumours.
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