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Safe composition levels of transgenic crops assessed

via a clinical medicine model
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Substantial equivalence has become established as a foundation concept in the safety evaluation
of transgenic crops. In the case of a food and feed crop, no single variety is considered the stan-
dard for safety or nutrition, so the substantial equivalence of transgenic crops is investigated rel-
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ative to the array of commercial crop varieties with a history of safe consumption. Although used
extensively in clinical medicine to compare new generic drugs with brand-name drugs, equivalence
limits are shown to be a poor model for comparing transgenic crops with an array of reference crop
varieties. We suggest an alternate model, also analogous to that used in clinical medicine, where
reference intervals are constructed for a healthy heterogeneous population. Specifically, we advo-
cate the use of distribution-free tolerance intervals calculated across a large amount of publicly
available compositional data such as is found in the International Life Sciences Institute Crop

Composition Database.
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1 Introduction

Substantial equivalence has become established as
a foundation concept in the safety evaluation of
transgenic crops. If the composition (nutrients,
antinutrients, etc.) of a transgenic crop is found to
be equivalent to that of non-transgenic varieties of
the same crop, and those crop varieties are consid-
ered safe, then further safety assessment of the
transgenic crop can focus solely on the intended
modification, usually the expression of a transgenic
protein that is novel in that crop [1]. A number of
statistical approaches have been used to compare
the composition of transgenic crops with their con-
ventional counterparts [2-28], and new methods
have recently been suggested [29, 30]. However, the
concept of substantial equivalence has been adopt-
ed in the area of clinical medicine for a much longer
period compared with its relatively short applica-
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tion to the field of transgenic crops, so it seems wise
to learn from this experience. Here we discuss how
the issue of equivalence has been dealt with in the
area of clinical medicine, and suggest an analogous
approach for evaluating substantial equivalence
for transgenic crops. Specifically, we suggest how
reference intervals should be calculated for evalu-
ating the substantial equivalence of new transgenic
crops relative to existing crop varieties that have a
history of safe use. We use the term crop variety
here to encompass both inbred lines and hybrids.
Bioequivalence is a common concept in the field
of clinical medicine. It is an approach that is typi-
cally applied to the evaluation of new generic
drugs. The intent of such bioequivalence studies is
to compare the performance and bioavailability of
a new generic drug with the performance of a com-
mercially available brand-name drug. Equivalence
limits are constructed based on arbitrarily set devi-
ations (e.g., +20% of the performance of the brand-
name drug) or the variability in the response ob-
served when the brand-name drug is administered
(statistical equivalence limits). The performance of
the candidate generic drug is then examined to see
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if it performs within these equivalence limits [31].
These limits are centered on the average perform-
ance of the brand-name drug. This is an appropri-
ate approach because the generic and brand-name
drug are expected to have the same average per-
formance.

Although this approach has been suggested for
evaluating the substantial equivalence of trans-
genic crops [29, 30], the aforementioned pharma-
ceutical situation is fundamentally different from
that of transgenic-crop composition comparisons.
Unlike the pharmaceutical situation, no single va-
riety of a crop is considered the benchmark for
safety or nutrition. Rather, a large number of crop
varieties are considered safe and nutritious. Fur-
thermore, different crop varieties often have dis-
tinct compositional profiles, so that there is an ex-
pectation that any single variety, whether trans-
genic or not, would have a composition that differs
from the average composition across all varieties.
Therefore, constructing equivalence limits around
the average composition across a number of differ-
ent crop varieties that are each considered safe is
not useful for understanding the safety of an indi-
vidual variety. In fact, if many crop varieties are
used to construct statistical equivalence intervals,
then many of the individual varieties used to con-
struct the interval will fall outside of the interval.
This clearly illustrates the inappropriateness of
this approach for evaluating the safety of trans-
genic crops.

Another concept that is also widely applied to
the area of clinical medicine is a better model for
the safety analysis of transgenic crops. It is com-
mon in the medical field to test individual patients
for the presence of analytes (e.g., disease markers
or blood chemistry) and to assess whether such re-
sults are normal. As in the previous case, intervals
are constructed to use as a frame of reference to
judge individual patient results [32]. Such intervals
may be based on previous results with diseased pa-
tients, or more commonly, are based on responses
from a population of healthy individuals. We gen-
erally do not have crop varieties that are consid-
ered unsafe, but for a small number of crops and
analytes, such varieties exist. For example, unsafe
levels of glycoalkaloids in a non-transgenic variety
of potatoes led to intoxication upon consumption,
as did cyanogenic compound levels in a non-trans-
genic lima bean variety [6, 33]. For this reason, new
potato and lima bean varieties, whether transgenic
or non-transgenic, are routinely tested for these
compounds before commercial release. However,
for most compositional constituents, unsafe levels
are not known to exist in food crops. Thus, in the
vast majority of cases, each and every crop variety
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is considered safe. This is analogous to the field of

clinical medicine in which a population of healthy

individuals may be used to construct intervals for
evaluating the test results of an individual patient

[32]. Thus we can look to this example to gain in-

sight into how intervals describing a safe/normal

population should be constructed.

There are three common types of statistical in-
tervals: confidence, prediction, and tolerance [34]:
1. Confidence limits describe the interval of cer-

tainty around a mean value (or mean difference

between two groups). In the bioequivalence ex-
ample above, if a new generic drug was to pro-

duce results within the confidence limits for a

standard brand-name drug, then one would not

conclude that they are different. These limits
are sometimes considered equivalence limits,
and falling within them is sometimes asserted to
demonstrate equivalence [31]. This approach
has merit where two treatments are being test-

ed for having equivalent mean responses (or a

zero mean difference between treatments) and/

or variability.

2. Prediction intervals estimate the probability
that a new sample from the same population
will fall within the estimated limits. This meas-
ure is rarely used for evaluating equivalence.

3. Tolerance limits describe the interval that is
expected to contain a certain specified propor-
tion of the population with a specified level of
certainty. For example, one can calculate a toler-
ance interval that is expected to contain at least
99% of the population with 95% certainty. While
a confidence interval will approach a zero-
width as the sample size increases to infinity
(reflecting the true population mean), tolerance
limits converge on the values that contain the
specified proportion of the population as the
sample size increases. Tolerance limits are used
in a number of fields, including clinical medi-
cine, to evaluate whether or not a new response
is normal for a healthy individual. For example,
if a patient is tested for the presence of a cancer
marker, results might be compared with toler-
ance intervals generated from results with a
population of healthy individuals [35]. Results
outside the specified tolerance interval indicate
that further diagnostics should be conducted.
Of these, tolerance intervals are the most ap-

propriate for evaluating whether or not a trans-

genic variety is within the normal range for com-
mercial varieties of the same crop.

One concern with calculating reliable intervals,
including tolerance intervals, is obtaining a suffi-
ciently large sample size. If too small a sample size
is used to generate a tolerance interval, it is likely
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to contain far more coverage than specified. This is
a consequence of the certainty level that is desired,
and is similar to confidence intervals that are very
wide for small sample sizes. This situation is espe-
cially problematic for intervals that are designed to
cover a large proportion of the population with a
high degree of certainty. In these cases, if the sam-
ple size is too low, the tolerance interval will be too
wide to be of practical value [36]. The appropriate
sample size for constructing tolerance intervals is
also affected by the assumed underlying distribu-
tion of the data from which it is calculated. For a
normal distribution, a minimum of 120 points is
recommended for a 95%-coverage, 90%-certainty,
tolerance interval [32]. Higher numbers would be
needed for a useful 99%-coverage, 95%-certainty,
tolerance interval. When estimating high-coverage
tolerance intervals, accurately defining the under-
lying data distribution is especially important, be-
cause the intervals will be very sensitive to devia-
tions from the assumed distribution in the tails of
the distribution, where few (if any) points are avail-
able [37]. An alternative approach is to calculate
distribution-free tolerance intervals. Such inter-
vals are robust if an adequate sample size is used,
but this approach requires large sample sizes. For
example, a minimum of 473 data points are needed
for calculating a 99%-coverage, 95%-certainty, dis-
tribution-free, tolerance interval [34, 38].

The International Life Sciences Institute (ILSI)
has compiled a large database of compositional
results for many non-transgenic varieties of a few
widely planted crops [39]. This resource provides
an opportunity to calculate valid high-coverage tol-
erance intervals for many compositional compo-
nents found in these crops. Here we present these
tolerance intervals for corn, cotton, and soybean,
and discuss the merits of using these intervals to
evaluate the substantial equivalence of transgenic
crops compared with conventional crop varieties.

2 Materials and methods

Results for an array of compositional components
found in corn, cotton, and soybean seed samples
were downloaded from the ILSI, version 3.0, crop-
composition database (www.cropcomposition.org).
Distribution-free tolerance intervals (99%-cover-
age, 95%-certainty) were determined for each crop-
analyte combination [40] where possible (N >473).
The sample size, mean, median and range of each
dataset were also determined, and the certainty
with which this range covers at least 99% of the
population was determined using distribution-free
methods [40, 41]. This latter calculation is equal to
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the 99%-coverage, distribution-free tolerance in-
terval at the specified certainty. Results are not re-
ported where the sample size was less than 75. The
S-PLUS code used to produce these results was as
follows {adapted from Hahn and Meeker [34]
(http://www.public.iastate.edu/~wqmeeker/
stint.html) and Marcot et al. [42]}:

TolInt <— function(data,cov.pct,int.conf){
sampsize <—length(data)

# calculate v — the number of items to strip off the
end(s) of the sorted data
n <- 0:sampsize
# calculate point at which cumulative binomial
probability exceeds int.conf, based on cov.pct
hit rate
# this is the number of data points we need to
include to obtain int.conf
ul <— match(T,pbinom(n,sampsize,cov.pct)>
int.conf)-1
# this is the number of data points at which to
set interval ends
Vv <— sampsize —ul

# sort data
datasort <— sort(data)

## calculate interval
vl <-ifelse(v%%2==0,v/2,(v/2)-.5)
v2 <—ifelse(v%%2==0,v/2,v1 + 1)
l<-vl
u <— sampsize-v2+1
lower <— ifelse(l<1,datasort[1],datasort[1])
upper <- ifelse(u>sampsize,datasort[samp-
size],datasort[u])
ti <— c(lower,upper)
ti.pct <— tol.pct(sampsize,ifelse(vli<1,1,v1),
ifelse(v2<1,sampsize,sampsize-v2+1),cov.pct)
ti.res <—list(“N Keep / N Cut”=c(ul,v),
“Number of Data Points”=length(data),”Data
Range”=range(data),
“Mean”=mean(data),”"Median"=median(data),”
Quantiles”"=quantile(data,probs=seq(0,1,by=.1)),
“Coverage Level”=cov.pct,”Confidence Level”
=int.conf,
“Order Statistics”=c(v1l,sampsize-v2+1),” Toler-
ance Interval”=ti,
“Calculated Confidence Level For Tolerance
Interval”=ti.pct,
“Calculated Confidence Level For Data
Range”=tol.pct(sampsize, 1,sampsize,cov.pct),
“Confidence Interval For mean”=c(mean(data)—
(qt(int.conf/1,length(data)-1)*sqrt(var(data)/
length(data))),
mean(data)+(qt(int.conf/1,length(data)-1)*sqrt
(var(data)/length(data)))))
return(ti.res)
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3 Results and discussion

3.1 Tolerance intervals

Distribution-free tolerance intervals (99%-cover-
age, 95%-certainty) for various compositional com-
ponents of corn seed that are available in the ILSI
crop-composition database are compiled in
Table 1, along with the sample sizes used to con-
struct them. Sample sizes for some components of
corn (Table 1) and all components of cotton
(Table 2) and soybean (Table 3) were less than the
minimum needed to calculate 99%-coverage, 95%-
certainty tolerance intervals (N<473). Based on the
sample size, distribution-free methods were used
to calculate alternative tolerance intervals where
the certainty with which the range of the corn, cot-
ton, and soybean data captured 99% of the popula-
tion. This latter calculation is equal to the 99%-cov-
erage, distribution-free tolerance interval at the
specified certainty. For example, the 99%-coverage,
83.4%-certainty, distribution-free tolerance inter-
val for ash in soybean seed is 3.89-6.99% dry weight
(Table 3, row 1). These intervals should conserva-
tively capture the safe levels of these composition-
al components in the seeds of these crops, since
100% of commercial corn, cotton, and soybean vari-
eties are considered compositionally safe. The cal-
culation of certainty with which each tolerance in-
tervals captures 99% coverage provides a measure
of the robustness of the interval.

As described earlier, the approach of using tol-
erance intervals to describe the range of response
variables expected when testing a healthy popula-
tion has precedence in the area of clinical medicine
[32, 35, 43]. This approach has also been used to
compare the compositional and nutritional equiva-
lence of transgenic crops with populations of non-
transgenic crops [9, 10, 12, 19, 21, 24, 25, 35, 39, 44,
45]. However, large sample sizes are required to
calculate tolerance intervals that are not so wide as
to be of little practical value [36]. Furthermore, the
construction of tolerance intervals is very sensitive
to deviations from the assumed distribution espe-
cially for high-coverage, high-certainty intervals
like those typically constructed [37]. For this rea-
son, we used the publicly available data in the ILSI
crop-composition database to construct useful
99%-coverage, 95%-certainty, distribution-free, tol-
erance intervals where possible (N >473). In cases
where the sample size was insufficient to calculate
99%-coverage tolerance intervals with 95% certain-
ty, the certainty with which the range of the data
covers at least 99% of the population was calculat-
ed.
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We used all data for each analyte in the ILSI
crop-composition database and did not segregate
the data by the analytical method used to deter-
mine the compositional component, or by the labo-
ratory used to analyze the samples. Only validated
methods that are comparable should be used to de-
termine the composition of crops if such data are to
be used for a safety assessment. This validation
process should include spike-recovery experi-
ments that demonstrate that the method is able to
recover an adequate proportion of the analyte, and
each laboratory should validate its ability to carry
out the analyses successfully. The methods used to
determine compositional analytes compiled in the
ILSI crop-composition database are accepted, val-
idated, and independently-developed [39]. Fur-
thermore, the acceptance criteria required by ILSI
for including data are stringent and potential out-
liers are confirmed as valid before entry into the
database [39]. As such, all data in the database,
regardless of the analytical method, should be
comparable.

However, some data in the ILSI crop composi-
tion database may display a bimodal distribution
correlated with the method of analysis (e.g., vita-
min B1). In these cases, we recommend that single
homogeneous subsamples of plant tissue be sent to
the different laboratories conducting the analyses
in question, along with additional subsamples that
have been fortified with a well-characterized puri-
fied preparation of the analyte in question. The
characterization of the purified standard should in-
clude an absolute purity estimate based on the best
methods available, and if possible, be verified by an
additional analytical method. If the laboratories
obtain equivalent results for these samples, then
the distribution of values in the database may rep-
resent true differences in the analyte concentra-
tions between the germplasm sources sent to each
laboratory. If the laboratories obtain different re-
sults for the subsamples sent to each laboratory,
then it will be possible to subtract the results for the
non-fortified sample from those of the fortified
sample and determine the accuracy of each labora-
tory or method. Finally, if the accuracy of the labo-
ratories for predicting the correct quantity of forti-
fication is good for both laboratories, but results
from the unfortified samples differ, the laboratory
with the lower results for the non-fortified samples
may have inferior extraction methods. Since the
units associated with analytes in the database are
absolute, meaningfully inaccurate results should
be removed from the database, or the units changed
to an index scale. It is also important to be sure that
subtle differences in the actual analyte being
measured are not causing differences. If this is the
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Table 1. Maize grain composition

Biotechnol. J. 2010, 5, 172-182

Certainty of 99% Coverage

Sample Range Containing 95% Certainty
Analyte Category Size Units Mean?  Median Range®) >99% Coverage Tolerance Interval?
ash proximates 1410 % DW 1.44 1.41 0.616-6.28 99.999% 0.834-4.489
carbohydrate proximates 1410 % DW 84.65 84.7 77.4-89.5 99.999% 78.4-88.9
crude fat proximates 260 % DW 3.98 3.94 2.47-5.9 73.417% not calculable
crude protein proximates 1434 % DW 10.30 10.21 6.15-17.26 99.999% 6.67-16.86
total fat proximates 1174 % DW 3.56 3.50 1.74-5.82 99.990% 2.09-5.58
acid detergent fiber fiber 1350 % DW 4.06 3.8 1.82-11.34 99.998% 2.18-9.33
crude fiber fiber 301 % DW 236 2.4 0.49-3.26 80.384% not calculable
neutral detergent fiber fiber 1349 % DW 11.23 10.93 5.59-22.64 99.998% 6.74-19.85
total dietary fiber fiber 397 % DW 16.43 15.48 8.85-35.31 90.731% not calculable
calcium minerals 1344 mg/kg DW 46.35 45.2 12.7-208.4 99.998% 17.7-112.4
copper minerals 1255 mg/kg DW 1.74 1.65 0.073-18.5 99.995% 0.77-4.12
iron minerals 1255 mg/kg DW  21.81 21.83 10.42-49.07 99.995% 10.58-39.2
magnesium minerals 1257 mg/kg DW 1194 1192 594-1940 99.996% 768-1601
manganese minerals 1256 mg/kg DW 6.18 5.94 1.69-14.3 99.995% 2.06-11.5
phosphorus minerals 1349 mg/kg DW 3273 3279 1470-5330 99.998% 1632-4359
potassium minerals 1257 mg/kg DW 3842 3786 1810-6030 99.996% 2240-5354
sodium minerals 300 mg/kg DW  26.73 5.26 0.17-731.54 80.235% not calculable
zinc minerals 1257 mg/kg DW 21.55 21.3 6.5-37.2 99.996% 8.7-33.2
alanine amino acids 1350 mg/g DW 7.90 7.81 4.39-13.93 99.998% 4.81-12.03
arginine amino acids 1350 mg/g DW 4.33 4.41 1.19-6.39 99.998% 2.14-6.19
aspartic acid amino acids 1350 mg/g DW 6.88 6.87 3.35-12.08 99.998% 4.44-10.50
cystine amino acids 1350 mg/g DW 2.21 217 1.25-5.14 99.998% 1.33-3.62
glutamic acid amino acids 1350 mg/g DW 20.09 19.89 9.65-35.36 99.998% 11.43-31.78
glycine amino acids 1350 mg/g DW 3.85 3.83 1.84-5.39 99.998% 2.50-5.28
histidine amino acids 1350 mg/g DW 2.96 2.94 1.37-4.34 99.998% 1.98-4.16
isoleucine amino acids 1350 mg/g DW 3.68 3.61 1.79-6.92 99.998% 2.32-5.96
leucine amino acids 1350 mg/g DW 13.41 13.21 6.42-24.92 99.998% 7.42-21.74
lysine amino acids 1350 mg/g DW 3.15 3.12 1.72-6.68 99.998% 2.18-6.21
methionine amino acids 1350 mg/g DW 2.09 2.05 1.24-4.68 99.998% 1.3-3.7
phenylalanine amino acids 1350 mg/g DW 5.25 5.19 2.44-93 99.998% 3.07-8.21
proline amino acids 1350 mg/g DW 9.51 9.49 4.62-16.32 99.998% 5.95-14.21
serine amino acids 1350 mg/g DW 5.12 5.11 2.35-7.69 99.998% 2.88-7.51
threonine amino acids 1350 mg/g DW 3.75 3.57 2.24-6.66 99.998% 2.35-6.47
tryptophan amino acids 1350 mg/g DW 0.627 0.613 0.271-2.15 99.998% 0.406-1.08
tyrosine amino acids 1350 mg/g DW 3.36 3.37 1.03-6.42 99.998% 1.31-5.64
valine amino acids 1350 mg/g DW 4.90 4.82 2.66-8.55 99.998% 3.34-7.23
16:0 palmitic fatty acids 1344 % FA 11.50 11.43 7.94-20.71 99.998% 8.07-16.39
16:1 palmitoleic fatty acids 596 % FA 0.154 0.149 0.095-0.447 98.242% 0.095-0.447
18:0 stearic fatty acids 1344 % FA 1.82 1.78 1.02-3.4 99.998% 1.13-3.1
18:1 oleic fatty acids 1344 % FA 25.81 25.2 17.4-40.2 99.998% 17.9-38.7
18:2 linoleic fatty acids 1344 % FA 57.63 58.45 36.2-66.5 99.998% 40.8-65.9
18:3 linolenic fatty acids 1344 % FA 1.20 1.16 0.57-2.25 99.998% 0.72-2.2
20:0 arachidic fatty acids 988 % FA 0.412 0.4 0.297-0.965 99.947% 0.283-0.816
20:1 eicosenoic fatty acids 987 % FA 0.297 0.293 0.17-1.92 99.946% 0.183-0.453
22:0 behenic fatty acids 924 % FA 0.176 0.171 0.11-0.349 99.904% 0.11-0.319
beta-carotene vitamins 278 mg/100g DW  0.680 0.523 <0.026-4.681 76.704% not calculable
beta-tocopherol vitamins 224 mg/100g DW  0.140 <0.06 <0.05-2.28 65.656% not calculable
delta-tocopherol vitamins 224 mg/100g DW  0.151 <0.06 <0.048-1.61 65.656% not calculable
folic acid vitamins 896 mg/100g DW  0.065 0.066 <0.011-0.146 99.877% 0.147-0.132
gamma-tocopherol vitamins 367 mg/100g DW  2.95 2.86 0.646-6.1 88.228% not calculable
total tocopherols vitamins 278 mg/100g DW  4.04 3.81 0.869-13.3 76.704% not calculable
vitamin B1 (thiamin) vitamins 894 mg/100g DW  0.530 0.412 0.126-4 99.874% 0.138-3.501
vitamin B2 (riboflavin) vitamins 896 mg/100g DW  0.109 0.111 0.05-0.236 99.877% <0.1-0.234
vitamin B3 vitamins 415 mg/100g DW  2.38 232 1.04-4.69 91.984% not calculable
vitamin B6 vitamins 415 mg/100g DW  0.644 0.635 0.368-1.132 91.984% not calculable
vitamin E vitamins 863 mg/g DW 0.0103 0.0095 0.0015-0.0687 99.834% 0.0018-0.0417
phytic acid bio-actives 1196 % DW 0.745 0.733 0.111-1.570 99.992% 0.18-1.38
raffinose bio-actives 743 % DW 0.126 0.123 0.01-0.32 99.514% 0.01-0.29
trypsin inhibitor bio-actives 702 TIU/mg DW 7.72 2.65 <2-7.18 99.302% <2-6.73
ferulic acid other metabolites 817 mg/kg DW 2201 2180 291.9-3386 99.749% 542-3842
furfural other metabolites 230 mg/kg DW  0.675 0.5 <0.5-6.34 67.065% not calculable
inositol other metabolites 505 mg/kg DW 1329 1367 <45-3765 96.188% <45-3765
p-coumaric acid other metabolites 817 mg/kg DW  218.4 202 53.4-576.2 99.749% 67.3-551.3

The number of significant figures represented in the table reflects the data available in the ILSI Crop Composition Database.
3 Where data includes values less than the level of quantification (LOQ), values of 1/2 the LOQ were used to calculate means.
b Where data include values of "<LOQ", values were ranked based on 1/2 the LOQ for establishing ranges and tolerance intervals, but reported intervals reflect the

actual LOQ.
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Table 2. Cotton seed composition

Certainty of 99% Coverage
Sample Range Containing  95% Certainty
Analyte Category Size Units Mean  Median Range >99% Coverage Tolerance Interval
ash proximates 164 % DW 4.46 4.55 3.65-5.34 48.892% not calculable
calories proximates 156 Kcal/100g DW 4742  479.5 407.4-508.1 46.297% not calculable
carbohydrate proximates 156 % DW 47.35 47.3 39-53.6 46.297% not calculable
crude protein proximates 164 % DW 26.88  26.68 21.48-32.97 48.892% not calculable
total fat proximates 156 % DW 21.55  21.68 17.2-27.29 46.297% not calculable
acid detergent fiber fiber 110 % DW 28.71 29.53 19.74-38.95 30.115% not calculable
crude fiber fiber 142 % DW 17.75  17.38 13.86-23.1 41.578% not calculable
neutral detergent fiber fiber 110 % DW 39.65  40.53 25.56-51.87 30.115% not calculable
total dietary fiber fiber Al % DW 41.76  42.57 33.69-47.55 47.550% not calculable
calcium minerals 150  mg/kg DW 1472 1475 1032-3258 44.302% not calculable
copper minerals 150  mg/kg DW 7.54 7.59 3.13-24.57 44.302% not calculable
iron minerals 150 mg/kgDW  53.78  51.79 36.71-318.38 44.302% not calculable
magnesium minerals 150  mg/kg DW 4138 4127 3471-4931 44.302% not calculable
manganese minerals 150 mg/kg DW 1532 14.87 10.69-21.96 44.302% not calculable
phosphorus minerals 150  mg/kg DW 7256 7278 4825-9916 44.302% not calculable
potassium minerals 150  mg/kg DW 11886 11890 9835-14484 44.302% not calculable
sodium minerals 145  mg/kg DW 1269 1150 110.7-7355 42.607% not calculable
zinc minerals 150  mg/kg DW  37.96 37.7 27-59.5 44.302% not calculable
alanine amino acids 149 mg/gDW 1017 10.14 8.01-12.19 43.965% not calculable
arginine amino acids 149 mg/gDW 2828  28.14 20.57-37.22 43.965% not calculable
aspartic acid amino acids 141 mg/gDW 2337  23.40 18.25-27.48 41.232% not calculable
cystine amino acids 149 mg/g DW 4.36 4.38 3.47-5.57 43.965% not calculable
glutamic acid amino acids 149 mg/gDW  51.10  50.96 39.14-67.21 43.965% not calculable
glycine amino acids 149 mg/g DW  10.65  10.63 8.31-13.16 43.965% not calculable
histidine amino acids 149 mg/g DW 7.36 7.33 5.73-9.06 43.965% not calculable
isoleucine amino acids 149 mg/g DW 8.23 5.22 6.20-10.46 43.965% not calculable
leucine amino acids 149 mg/gDW  15.04  14.96 11.39-18.55 43.965% not calculable
lysine amino acids 149 mg/gDW  11.88  11.75 9.41-14.56 43.965% not calculable
methionine amino acids 149 mg/g DW 3.89 3.90 3.02-4.69 43.965% not calculable
phenylalanine amino acids 149 mg/g DW  13.45  13.39 10.19-17.15 43.965% not calculable
proline amino acids 149 mg/g DW 9.85 9.77 7.53-12.30 43.965% not calculable
serine amino acids 149 mg/gDW  11.53  11.59 9.15-13.51 43.965% not calculable
threonine amino acids 149 mg/g DW 7.78 7.86 5.53-9.18 43.965% not calculable
tryptophan amino acids 149 mg/g DW 2.59 2.55 1.94-3.19 43.965% not calculable
tyrosine amino acids 149 mg/g DW 6.67 6.64 5.25-8.41 43.965% not calculable
valine amino acids 149 mg/gDW  11.54  11.49 8.67-14.89 43.965% not calculable
14:0 myristic fatty acids 150 % FA 0.822  0.798 0.455-2.4 44.302% not calculable
16:0 palmitic fatty acids 150 % FA 23.50  23.66 15.11-27.9 44.302% not calculable
16:1 palmitoleic fatty acids 149 % FA 0.617  0.607 0.451-1.19 43.965% not calculable
18:0 stearic fatty acids 150 % FA 2.43 2.41 0.2-3.11 44.302% not calculable
18:1 oleic fatty acids 150 % FA 16.41 16.55 12.8-25.3 44.302% not calculable
18:2 linoleic fatty acids 150 % FA 54.26 54.4 46-59.4 44.302% not calculable
18:3 linolenic fatty acids 77 % FA 0.204 0.19 0.11-0.42 18.005% not calculable
20:0 arachidic fatty acids 150 % FA 0.272  0.27 0.186-0.414 44.302% not calculable
22:0 behenic fatty acids 147 % FA 0.150  0.145 0.104-0.295 43.288% not calculable
dihydrosterculic fatty acids 145 % FA 0.179  0.174 0.075-0.31 42.607% not calculable
malvalic fatty acids 150 % FA 0.419  0.419 0.229-0.759 44.302% not calculable
sterculic fatty acids 150 % FA 0.297  0.292 0.19-0.556 44.302% not calculable
free gossypol bio-actives 155 % DW 0.802  0.765 0.454-1.399 45.968% not calculable
total gosspol bio-actives 164 % DW 0.966  0.942 0.547-1.522 48.892% not calculable

The number of significant figures represented in the table reflects the data available in the ILSI Crop Composition Database.
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Certainty of 99% Coverage
Sample Range Containing  95% Certainty
Analyte Category Size Units Mean  Median Range >99% Coverage Tolerance Interval
ash proximates 323 % DW 5.32 5.29 3.89-6.99 83.410% not calculable
carbohydrate proximates 323 % DW 38.24  37.80 29.60-50.20 83.410% not calculable
crude protein proximates 323 % DW 39.47 3933 33.19-45.48 83.410% not calculable
total fat proximates 323 % DW 16.68  17.25 8.10-23.56 83.410% not calculable
acid detergent fiber fiber 149 % DW 11.97 1178 7.81-18.61 43.965% not calculable
crude fiber fiber 234 % DW 7.81 7.82 4.12-13.87 67.978% not calculable
neutral detergent fiber fiber 149 % DW 1233 1211 8.53-21.25 43.965% not calculable
calcium minerals 80 mg/kg DW 2171 2068 1166-3071 19.084% not calculable
iron minerals 80 mg/kg DW  78.11 77.45 55.36-109.54 19.084% not calculable
magnesium minerals 80 mg/kg DW 2636 2591 2194-3128 19.084% not calculable
phosphorus minerals 80 mg/kg DW 7148 7394 5067-9352 19.084% not calculable
potassium minerals 80 mg/kg DW 20614 20621 18680-23161 19.084% not calculable
alanine amino acids 234 mg/g DW 1706 17.10 15.13-21.04 67.978% not calculable
arginine amino acids 234 mg/gDW  28.40  27.92 22.85-34.00 67.978% not calculable
aspartic acid amino acids 234 mg/g DW 4493 4457 38.08-51.22 67.978% not calculable
cystine amino acids 234 mg/g DW 5.87 5.86 3.70-8.08 67.978% not calculable
glutamic acid amino acids 234 mg/gDW  70.88  70.20 58.43-82.01 67.978% not calculable
glycine amino acids 234 mg/gDW  16.88  16.80 14.58-19.97 67.978% not calculable
histidine amino acids 234 mg/gDW 1040  10.38 8.78-11.75 67.978% not calculable
isoleucine amino acids 234 mg/gDW  18.08  18.09 15.39-20.77 67.978% not calculable
leucine amino acids 234 mg/gDW 3039  30.16 25.90-36.22 67.978% not calculable
lysine amino acids 234 mg/g DW 2557  25.51 22.85-28.39 67.978% not calculable
methionine amino acids 234 mg/g DW 5.51 5.50 4.31-6.81 67.978% not calculable
phenylalanine amino acids 234 mg/gDW  19.79  19.72 16.32-23.46 67.978% not calculable
proline amino acids 234 mg/g DW  20.01 19.99 16.87-22.84 67.978% not calculable
serine amino acids 234 mg/gbw  20.19  20.12 11.06-24.84 67.978% not calculable
threonine amino acids 234 mg/gDW 1473 14.56 11.39-18.62 67.978% not calculable
tryptophan amino acids 234 mg/g DW 433 4.32 3.56-5.02 67.978% not calculable
tyrosine amino acids 234 mg/g DW 3.21 13.12 10.16-16.13 67.978% not calculable
valine amino acids 234 mg/gDW  19.10  19.20 15.97-22.04 67.978% not calculable
16:0 palmitic fatty acids 234 % FA 1112 10.97 9.55-15.77 67.978% not calculable
16:1 palmitoleic fatty acids 122 % FA 0.127  0.123 0.086-0.194 34.499% not calculable
17:0 heptadecanoic fatty acids 97 % FA 0.114  0.115 0.085-0.146 25.315% not calculable
18:0 stearic fatty acids 234 % FA 4.01 3.98 2.70-5.88 67.978% not calculable
18:1 oleic fatty acids 234 % FA 20.72  20.60 14.30-32.20 67.978% not calculable
18:2 linoleic fatty acids 234 % FA 53.26  53.40 42.30-58.80 67.978% not calculable
18:3 linolenic fatty acids 234 % FA 8.34 8.21 3.00-12.52 67.978% not calculable
20:0 arachidic fatty acids 233 % FA 0.323 0319 0.163-0.482 67.752% not calculable
20:1 eicosenoic fatty acids 221 % FA 0.204  0.192 0.14-0.35 64.934% not calculable
22:0 behenic fatty acids 233 % FA 0.402  0.391 0.277-0.595 67.752% not calculable
folic acid vitamins 80 mg/100g DW 0.359  0.376 0.239-0.471 19.084% not calculable
vitamin B1 (thiamin) vitamins 80 mg/100g DW 0.197  0.197 0.101-0.254 19.084% not calculable
vitamin B2 (riboflavin) vitamins 80 mg/100g DW 0.267  0.272 0.19-0.321 19.084% not calculable
vitamin E vitamins 234 mg/g DW  0.0191 0.0135 0.0019-0.0617 67.978% not calculable
lectins bio-actives 251 H.U./mgDW 1.72 1.27 0.11-9.04 71.630% not calculable
phytic acid bio-actives 118 % DW 1.12 1.13 0.63-1.96 33.046% not calculable
raffinose bio-actives 118 % DW 0.35 0.34 0.21-0.66 33.046% not calculable
stachyose bio-actives 118 % DW 2.19 2.23 1.21-3.50 33.046% not calculable
total diadzein bio-actives 289 mg/kgDW  862.6  784.0 60.00-2453 78.533% not calculable
total genitein bio-actives 289 mg/kgDW  978.6  893.8 144.3-2837 78.533% not calculable
total glycitein bio-actives 286 mg/kgDW  161.2  160.2 15.30-310.4 78.047% not calculable
total isoflavones bio-actives 76 mg/kg DW 2221 2006 678.7-3733 17.647% not calculable
trypsin inhibitor bio-actives 178 TIU/mg DW 4833  45.99 19.59-118.68 53.236% not calculable

The number of significant figures represented in the table reflects the data available in the ILSI Crop Composition Database.
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case, then more explicit analyte names should re-
place the current names to more clearly segregate
the data.

We also included all geographies and growing
seasons in our datasets, since the compositional
safety of corn, cotton, and soybean is not known to
be compromised when these crops are grown in
any geography or environment, whether consumed
locally or in other regions. This differs from the
model sometimes used in clinical medicine where
tolerance limits may be generated regionally, be-
cause results for a healthy subpopulation in one
region may indicate disease in another subpopula-
tion in a different region. As indicated above, this
does not apply to crop varieties that are safely
grown and consumed worldwide.

In addition to the advantages previously de-
scribed for distribution-free tolerance intervals, a
couple of additional points are worthy of mention.
Many of the data in the ILSI crop-composition
database were collected from replicated field trials
like those used to evaluate transgenic lines. There-
fore, any bias in the sampling of such data should
be roughly equivalent between these two groups of
data, making the data distributions similar between
groups. However, it must be acknowledged that, like
previous studies in the clinical field and those used
to evaluate the substantial equivalence of trans-
genic crops in the past [9, 10, 12, 19, 21, 24, 25, 35,
39, 44, 45], sample results may not represent truly
random independent samples, and correlations
within the samples likely exist, theoretically reduc-
ing calculated tolerance intervals such that they do
not span the designated coverage. As such, the tol-
erance intervals reported here may be more con-
servative than those generated from truly random
samples. Furthermore, it is important to investigate
the distribution of samples collected from specific
field trials when comparing them with the toler-
ance intervals reported here to check the assump-
tion that both datasets appear to be distributed
similarly.

An addition advantage of tolerance intervals is
simplicity of interpretation. It is easy to understand
the coverage encompassed in tolerance intervals
and the degree of certainty that one has about this
content. The ability to work in the natural units of
analyte concentration, as opposed to transformed
units that might be applied in an attempt to nor-
malize datasets for a parametric analysis, also sim-
plifies interpretation of results. Concentrations of
analytes can be directly compared with literature
pertinent to their safety or nutrition without back-
calculation of transformed values. Finally, data in-
dicating analyte concentrations below the level of
detection or quantification do not need to be cen-
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sored or assigned “dummy” values for reporting,
because distribution-free tolerance intervals are
based on the rank of responses, not the responses
themselves. This further simplifies analysis and
interpretation of results.

Here we have applied techniques analogous
to those used in the field of clinical medicine to
estimate the normal range of analytes in several
non-transgenic crops. The concept of substantial
equivalence has been used in the field of clinical
medicine for much longer than its fairly recent ap-
plication to transgenic crops, so it seems natural to
make use of the progress made in this area. How-
ever, it is noteworthy that tolerance intervals are
used in the medical field because it is not possible
to ensure that the reference population contains
100% healthy individuals. By using a limited-cover-
age tolerance interval that excludes a small pro-
portion of subjects, potentially diseased individuals
are excluded from what is considered normal. For
many crops, such as corn, cotton, and soybean, no
unsafe crop varieties are known. As such, the use of
99%-coverage, tolerance intervals to assess safe
levels of crop components may be unnecessarily
conservative. By way of example, if the US produces
10 billion bushels of corn in any given year and 1%
of this crop is considered to be of questionable
safety based on composition, this would result in
the production of 100 million bushels of potential-
ly unsafe corn in the US every year. Unless invalid
data are present in the reference database, all de-
termined levels should be safe, and the range of the
data is an appropriately conservative interval to
use for assessing safety.

In reality, the range of the data in the ILSI data-
base may also be too conservative, because many
varieties are not represented in this database, and
studies with some non-transgenic varieties indi-
cate that their composition is frequently outside of
this range [23]. In addition, the sample sizes for
many crop-analyte combinations are not suffi-
ciently robust to capture an adequate cross-section
of the expected variability across all varieties. For
these reasons, compositional equivalence studies
typically include a concurrently grown non-trans-
genic, near-isogenic line, and sometimes include
various other commercial reference lines. Such
lines can be used to supplement the range of re-
sponses found in the ILSI database. The composi-
tion of samples collected from transgenic varieties
can be compared with intervals constructed from
the values tabulated in the ILSI crop-composition
database and from these concurrently grown re-
ference lines to evaluate substantial equivalence.
Traditional analysis of variance approaches com-
paring concurrently grown controls with trans-

179



Biotechnology

Journal

genic lines may also be useful in assessing whether
or not varietal differences are statistically signifi-
cant. Finally, the safety consequences of any differ-
ences will need to be assessed in the context of bio-
logical impact. It is important to understand that
compositional equivalence studies with transgenic
crops are typically conducted to inform the safety
assessment, and are not conducted to detect minor
changes from the non-transgenic isogenic line.
While such changes may be of academic interest,
they do not suggest a safety risk if compositional
components are within the normal range for a crop
that is safely consumed regardless of the variety. It
is also noteworthy that perfect isogenic lines are
never actually available because native genes
closely linked to the transgenic traits will always be
present in the transgenic line at higher frequencies
than in the non-transgenic isogenic control, and
these genes will likely result in some composition-
al differences between the transgenic line and the
non-transgenic isogenic line. However, this phe-
nomenon is likely more dramatic when polygenic
traits are selected in traditional breeding programs
with non-transgenic crops.

3.2 Value of compositional analyses
in safety assessment

It is unclear how the insertion of a novel gene
would disrupt the genome causing an unsafe per-
turbation of composition in a fundamentally differ-
ent manner than that experienced during tradi-
tional breeding or mutagenesis, and the current lit-
erature supports the concept that agronomically
acceptable varieties containing transgenic insect-
resistance genes and herbicide-tolerance genes
are not particularly prone to such changes [2-28].
A long history of crop improvement, resulting in
very few adverse health effects, suggests that our
current food crops are not generally prone to up-
regulation of detrimental constituents. In fact, this
attribute of these plant species likely contributed to
their selection and persistence as food crops. Fur-
thermore, agronomically “off-types” are culled
from any breeding program, whether traditional or
transgenic. Compositional analysis is, none the
less, required by most governments for approval of
transgenic plants, but not for non-transgenic crop
varieties.

Regulation of non-transgenic crop composition
was attempted in the early 1970s when the FDA en-
acted similar but much less aggressive regulation
in the area of traditional crop breeding [46]. How-
ever, the regulations were impractical and unen-
forceable, and today, have been largely forgotten. In
addition, novel food regulations are in place in sev-
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eral geographies, but these do not generally extend
to new non-transgenic varieties of food crops un-
less expressly bred to have an altered composition
[47].

Compositional equivalence studies have added
little to the safety assessment of currently available
transgenic crops since unsafe levels of composi-
tional components have not been identified [2-28].
However, new transgenic crops are in development
that are expressly intended to have modified com-
position. While the likelihood of altering the safety
of transgenic crops through DNA-insertional ef-
fects may be lower than for traditional breeding
[16, 18, 20, 22, 39], the safety assessment for new
transgenic crops bearing traits intended to alter
endogenous metabolic pathways may be aided by
hypothesis-driven compositional analyses.

4 Concluding remarks

The use of tolerance intervals using appropriate
sample sizes, and covering many varieties and en-
vironments, represents a valid statistical approach
for assessing the composition of transgenic crops
in relation to their conventional counterparts. For
crops that are not known to contain unsafe levels of
compositional components, the range of composi-
tional data for commercially available varieties is
an adequately conservative safety interval. This ap-
proach has the most value for assessing the safety
of traits intended to alter endogenous metabolic
pathways in plants, but compositional analysis for
input traits is generally not warranted. To support
these methods, the continued submission of quali-
ty data to the ILSI crop composition database is
strongly encouraged, especially where the sample
sizes are insufficient to calculate distribution-free
99%-coverage 95%-certainty tolerance intervals
(N<473).

Statistical approaches to data analysis are al-
most universally required when reporting data to
regulatory agencies or in peer-reviewed journals.
Here we describe the application of a statistical ap-
proach used in clinical medicine to the evaluation
of substantial equivalence of transgenic crops and
non-transgenic crops, and suggest that the greater
experience in the field of clinical medicine should
make this model the standard against which other
approaches are compared. We describe the meth-
ods used to construct 99%-coverage, 95%-certainty
tolerance intervals, and also how to determine the
certainty that the range of data for non-transgenic
crops covers 99% of the data. Both types of toler-
ance intervals should be useful in complying with
the need to present statistical measures of compo-
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sitional equivalency to support the safety assess-
ment of transgenic crops, and Tables 1-3 should be
a handy resource for comparing the composition of
new transgenic corn, soybean, and cotton varieties
with conventional comparators. While beyond the
scope of this publication, the methods and intervals
reported here can be compared with those report-
ed elsewhere using alternative methods.

The authors are employed by Dow AgroSciences LLC
which develops and markets agricultural products,
including transgenic crops.
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