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Abstract
The renin–angiotensin system (RAS) is a key regulator of vascular resistance, sodium and
water homeostasis and the response to tissue injury. Historically, angiotensin II (Ang II)
was thought to be the primary effector peptide of this system. Ang II is produced predomi-
nantly by the effect of angiotensin converting enzyme (ACE) on angiotensin I (Ang I). Ang
II acts mainly through the angiotensin II type-1 receptor (AT1) and, together with ACE,
these components represent the ‘classical’ axis of the RAS. Drug therapies targeting the
RAS by inhibiting Ang II formation (ACE inhibitors) or binding to its receptor (angiotensin
receptor blockers) are now in widespread clinical use and have been shown to reduce tissue
injury and fibrosis in cardiac and renal disease independently of their effects on blood
pressure. In 2000, two groups using different methodologies identified a homolog of ACE,
called ACE2, which cleaves Ang II to form the biologically active heptapeptide, Ang-(1–7).
Conceptually, ACE2, Ang-(1–7), and its putative receptor, the mas receptor represent an
‘alternative’ axis of the RAS capable of opposing the often deleterious actions of Ang II.
Interestingly, ACE inhibitors and angiotensin receptor blockers increase Ang-(1–7) pro-
duction and it has been proposed that some of the beneficial effects of these drugs are
mediated through upregulation of Ang-(1–7) rather than inhibition of Ang II production or
receptor binding. The present review focuses on the novel components and pathways of the
RAS with particular reference to their potential contribution towards the pathophysiology
of liver disease.
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Renin–angiotensin system,
past and present

‘Classical’ renin–angiotensin system

Most of us can recall the schema of the renin–angiotensin system
(RAS) taught in physiology lectures (Fig. 1). The system is often
depicted as a simple enzyme cascade starting with the degradation
of angiotensinogen (derived from the liver) by circulating renin
(secreted from the juxtaglomerular apparatus of the kidney) to
form angiotensin I (Ang I). Subsequent enzymatic action by angio-
tensin converting enzyme (ACE) in the capillaries of the lung
yields the predominant effector peptide of the system, angiotensin
II (Ang II).1–3 Two receptors for Ang II have been cloned and
characterized, the angiotensin II type-1 receptor (AT1) is the abun-
dant receptor in adult life, whereas the angiotensin II type-2 recep-
tor (AT2) is present in the fetus and persists in the central nervous
system of adults.4–6 Binding of Ang II to the AT1 receptor mediates
a number of diverse effects including vasoconstriction and sodium
hemostasis. Ang II also participates in inflammation and wound
healing through the release of critical cytokines and production of
extracellular matrix.7 The effect of Ang II on vascular tone and

systemic blood pressure has been extensively studied and is medi-
ated through direct effects on vascular smooth muscle cells or
indirectly by increasing vascular sympathetic tone. Sodium-
conserving effects occur via reabsorption of sodium by the renal
tubules as well as stimulating the adrenal gland to secrete aldos-
terone. The effect of Ang II to stimulate thirst is mediated through
AT1 receptors in the brain.8

Figure 1 illustrates the conventional view of the ‘classical’ RAS.
This schema is useful as it clarifies how drugs like ACE inhibitors
or AT1 receptor blockers (ARB) produce their beneficial therapeu-
tic effects in cardiovascular and renal disease. However, there have
been a number of major advances in our understanding of the RAS
which have made it clear that the system is far more complex than
this ‘classical’ view would suggest (Fig. 2).

Angiotensin family of peptides

One key point of understanding is that Ang II is just one member
of a family of angiotensin peptides produced by the RAS. Ang II
consists of eight amino acids, which, like other peptides, has a free
amino group at one end (N-terminus) and a free carboxyl group
(C-terminus) at the other. Ang II can also be denoted as Ang-(1–8),
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where the first amino acid is at the N-terminus and the eighth
amino acid is at the C-terminus. Therefore, cleavage of amino
acids from either end of the Ang II molecule can generate
smaller peptide fragments (Fig. 3). For example, removal of the
N-terminus amino acid results in the generation of a peptide con-
sisting of seven amino acids starting from the second amino acid of
Ang II, and is denoted by Ang-(2–8) (historically also known as
Ang III). Of the fragments that can be generated from Ang II, only
three are known to be physiologically relevant.9 Two are derived
from N-terminus cleavage, Ang-(2–8) (Ang III) and Ang-(3–8)
(Ang IV) and one formed by cleavage of a single amino acid from
the C-terminus, angiotensin-(1–7) (Ang-(1–7)). Ang III is formed
following cleavage of the aspartate-arginine bond of Ang II by
aminopeptidase A, and Ang IV can be formed by further cleavage
of Ang III by aminopeptidase B or N. Ang III shares many of the
properties of Ang II with 40% of the pressor activity and 100% of
the aldosterone stimulating activity. Ang IV has its own distinct
receptor (AT4) and has central nervous system effects together with
some opposing actions to Ang II.10 Ang-(1–7) is generated from
cleavage of either Ang II or Ang I and has been the focus of much
research since the discovery that it has biological functions that
oppose those of Ang II.

ACE2 and the ‘alternative’ renin–angiotensin
system

For decades, the ‘classical’ arm of the RAS was recognized as
being the only system of biological relevance. However, this inter-
pretation was challenged in the late 1980s with the discovery of

Ang-(1–7) and description of its diverse biological functions.11

This was followed by studies which clearly demonstrated new
components of the RAS, such as ACE212,13 and the Ang-(1–7)
receptor, mas.14 These new components, together with the effector
molecule Ang-(1–7), form the axis which we now recognize as the
‘alternative’ arm of the RAS. The discovery of these new RAS
components provided some missing connections to the hitherto
complex biochemical pathways of the RAS. The new components
of the alternative arm of the RAS are reviewed below with a major
emphasis on their potential contribution towards the pathophysi-
ology of liver disease.

Angiotensin converting enzyme 2

Interest in alternative components of the RAS was re-ignited in the
year 2000 when two groups independently discovered an enzyme
similar to ACE in human tissue.12,13 This homolog of ACE was
initially called hACE but has subsequently been named angio-
tensin converting enzyme 2 (ACE2). Although structurally similar
to ACE, ACE2 has different substrate affinities and resists inhibi-
tion by ACE inhibitors. ACE2 is a zinc-metalloproteinase and, like
ACE, is a type-1 transmembrane protein. It consists of 805 amino
acids with a single transmembrane alpha-helical portion, an exter-
nal N-terminus portion containing the catalytically active enzyme
and an internal inactive C-terminus section. A transmembrane
proteinase, ADAM 17 acts as a ‘sheddase’ releasing the active
enzyme into the extracellular environment (Fig. 4).15 The released
ACE2 (soluble ACE2) is a carboxypeptidase, capable of cleaving
a single amino acid from the C-termini of its various substrates,
including, Ang II, Ang I, des-Arg9-bradykinin, neurotensin 1–13
and kinetensin (see review by Burrell and colleagues).16 Impor-
tantly, ACE2 can generate Ang-(1–7) directly from Ang II or
indirectly by cleaving Ang I into an inactive intermediate frag-
ment, Ang-(1–9), which is then cleaved by ACE to produce Ang-
(1–7) (Fig. 2). Of these two ACE2 pathways, the conversion of
Ang II into Ang-(1–7) is kinetically favoured 400-fold compared
to the conversion of Ang I to Ang-(1–9).17,18

In addition to its role in the ‘alternative’ RAS, the ACE2 trans-
membrane protein has, interestingly, been identified as a receptor
site for spike proteins of the severe acute respiratory syndrome
(SARS) coronavirus, thereby facilitating infection of target cells.19

Angiotensin 1–7

Much of the work on Ang-(1–7) has been carried out in animals
and, to date, this peptide has been shown to have antihypertensive,
anti-arrhythmic, and cardioprotective properties20–22 as well as
anti-trophic properties in vascular endothelial cells, smooth
muscle cells, cardiac myocytes and cardiac fibroblasts.23–26 In con-
trast to Ang II, Ang-(1–7) also has anti-inflammatory, anti-
fibrotic27 and anti-thrombotic properties.28,29 As a result of these
studies, Ang-(1–7) has been proposed to represent the effector
peptide of a counterbalancing arm of the RAS, capable of oppos-
ing the deleterious actions of Ang II. The putative receptor for
Ang-(1–7) is the G protein-coupled receptor encoded by the mas
proto-oncogene,14 although other receptors may well exist.30 Thus,
ACE2 together with Ang-(1–7) and the mas receptor represent an
‘alternative’ arm or axis of the RAS which may present a counter-

Figure 1 ‘Classical’ renin–angiotensin system (RAS). The RAS is
depicted here as a linear cascade leading to the generation of angiotensin
II (Ang II) through the enzymatic action of renin on angiotensinogen and
angiotensin converting enzyme (ACE) on angiotensin I (Ang I). There are
two known receptors for angiotensin II, angiotensin II type-1 receptor
(AT1) and angiotensin II type-2 receptor (AT2). The AT1 receptor is thought
to play a more important role than the AT2 receptor in human disease.
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balancing system to the deleterious ACE/Ang II/AT1 axis (Fig. 5).
Clearly, ACE2 holds a central role in the RAS influencing both
axes, as it is capable of simultaneously degrading Ang II and
generating Ang-(1–7) (Fig. 2).

Interactions between the RAS and the
kallikrein–kinin system

Angiotensin converting enzyme is known to participate actively in
the kallikrein–kinin system by degrading bradykinin (Fig. 2).31

Inhibitors of ACE can therefore lead to the accumulation of brady-
kinin, which may contribute to the antihypertensive properties of
these drugs, as well as to some of the observed side-effects, such
as chronic cough and angioedema. In the liver, bradykinin binds to
the B2 receptor and causes increases in hepatic resistance and

elevation of portal pressure.32 In other vascular beds, bradykinin
induces vasodilatation on binding to the B2 receptor, and Ang-
(1–7) has been shown to induce bradykinin-mediated relaxation in
porcine coronary arteries.33 A possible explanation for this is that
Ang-(1–7) has ACE inhibitory properties that prevent ACE-
mediated degradation of bradykinin.34

Concept of local renin–angiotensin
systems
In recent years, scientists have departed from the traditionally held
view of the RAS being exclusively a circulating endocrine system
and have realized that many organs, such as the heart, kidney, liver
and pancreas, constitutionally express all the ‘classical’ RAS
components required for a functioning, autonomous intra-organ

Figure 2 Contemporary renin–angiotensin system (RAS). Angiotensin converting enzyme (ACE) 2 has a central role in the RAS influencing both the
‘classical’ and ‘alternative’ axes, as it degrades angiotensin II (Ang II) while simultaneously generating Ang-(1–7). ACE is important in generating Ang
II, but is also responsible for the degradation of Ang-(1–7) into the inactive peptide fragment Ang-(1–5). The RAS interacts with the kinin system
through ACE degradation of bradykinin. The two axes of the RAS and the kinin system are shaded grey. Enzymes are shown in yellow boxes and
peptides in blue boxes. Aminopeptidase A (APA) and aminopeptidase N (APN) sequentially cleave Ang II to form angiotensin III and angiotensin IV,
respectively. Neprilysin (NEP) is involved in both the RAS and the kinin system. Possible peptide–receptor interactions are shown by dashed lines.

Figure 3 Peptide structure and fragments of
angiotensin I. Angiotensin I is a decapeptide
(Ang-(1–10)) which can be fragmented by
various enzymes into four peptides with bio-
logical activity; angiotensin II (Ang-(1–8)),
angiotensin III (Ang-(2–8)), angiotensin IV
(Ang-(3–8)) and angiotensin 1–7 (Ang-(1–7)).
Further enzymatic degradation of Ang 1–7
yields the inactive fragment angiotensin 1–5
(Ang-(1–5)). Aminopeptidases are shown in
blue and cleave amino acids from the
N-terminus, whereas carboxypeptidases are
shown in red and cleave amino acids from the
C-terminus. Amino acids are given numerical
values, where 1, aspartic acid; 2, arginine;
3, valine; 4, tyrosine; 5, isoleucine; 6, histi-
dine; 7, proline; 8, phenylalanine; 9, histidine;
10, leucine.
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RAS.35,36 These locally generated angiotensin peptide fragments
have been demonstrated to have a multitude of actions, being
implicated in cell growth, cell proliferation, apoptosis, reactive
oxygen species generation, inflammation, and fibrogenesis.
Although conceptually separate, the local intra-organ RAS and the
systemic RAS must interact and the final peptide products will
depend on the interplay between the two.

Renin–angiotensin system
in liver disease
Despite the discovery of Ang-(1–7) and the recognition that many
of its actions oppose Ang II, the importance of this heptapeptide
fragment of Ang II remained elusive until recently. It is now clear
that in the diseased liver, not only are the ‘classical’ RAS compo-
nents such as renin, ACE, Ang II and the AT1 receptor overex-
pressed, but, importantly, components of the ‘alternative’ RAS,
such as ACE2, Ang-(1–7) and the mas receptor are also upregu-
lated.37,38 The implication from these studies is that the ‘classical’
components contribute to the fibrotic process whereas the
‘alternative’ components may be upregulated in an attempt to
restore the status quo.

In liver disease, architectural changes to the microscopic struc-
ture of the liver occur as a result of inflammation and fibrosis.
These changes lead to capillarization of the hepatic sinusoids,
increased extracellular matrix (ECM) formation and elevated
hepatic resistance; the latter impedes liver blood flow and leads
to portal hypertension.39 Stretching of the portal vein (as with
increased hepatic resistance to blood flow) and oxidative stress
together cause release of vasodilators, including nitric oxide,
which induce a number of compensatory mechanisms important
for restoring the functional blood volume. These mechanisms are
effected via sodium and water preservation and stimulation of
the sympathetic nervous system, which together contribute to the
development of ascites, edema, hepatorenal syndrome, and a
hyperdynamic circulation, all of which are typically seen in
patients with advanced liver disease. The RAS is involved with
all these processes. As the result, manipulation of the RAS with
either antagonists of the ‘classical’ pathway, or agonists of the
‘alternative’ pathway could have potential therapeutic benefits.
Balanced against the possible benefits are the potential side
effects of such therapy, as the compensatory mechanisms acti-
vated by the systemic RAS are necessary to maintain an
adequate circulation.

Figure 4 Release of angiotensin converting
enzyme (ACE) 2 from the cell membrane
by ADAM 17. ACE2 (shown in red) is a
transmembrane protein which undergoes
shedding by the proteinase ADAM 17 (shown
in blue) to release free, circulating ACE2.
Modified from Lambert et al.119

Figure 5 Counterbalancing effects of the
two axes of the renin–angiotensin system
(RAS). The RAS can be thought of as two
counterbalancing axes. The angiotensin
converting enzyme (ACE)/angiotensin II/AT1

receptor axis causes vasoconstriction, salt
retention, inflammation, fibrosis and thrombo-
sis, whereas the ACE2/angiotensin 1–7/mas
receptor axis has opposing effects.
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Renin–angiotensin system and hepatic fibrosis

Hepatic stellate cells (HSC) are thought to play a pivotal role in
fibrogenesis within the liver,40 and there is a large body of evidence
to support the hypothesis that Ang II promotes activation, and
dedifferentiation of these cells into myofibroblasts. Furthermore,
Ang II encourages myofibroblast contraction, proliferation and
promotes release of inflammatory cytokines as well as the depo-
sition of extracellular matrix (ECM). Although both of the Ang II
receptors (AT1 and AT2) are expressed in the liver, the AT1 receptor
is far in abundance and is thought to be responsible for most of the
Ang II-mediated effects. Studies using gene-deletion mice have
demonstrated that AT1A receptor-deficient mice41 are protected
from hepatic fibrosis whereas AT2 receptor-deficient mice have
worse fibrosis.42

A great deal of evidence supporting the role of the RAS in
hepatic fibrosis has come from animal studies using ACE inhibi-
tors and angiotensin receptor blockers (ARB). Numerous studies
using a variety of animal models have demonstrated antifibrotic
effects of these drugs.43–53 However, there appear to be some con-
flicting observations reported in the literature. For example, losa-
rtan treatment failed to influence either liver injury or progression
of fibrosis in an animal model of non-alcoholic steatohepatitis
(NASH).54 [Editor’s note: A detailed review of animal models of
NASH has been written by Larter and Yeh for a later article in this
Basic Science Miniseries.] In contrast, a study with a similar
model of NASH but using the ARB olmesartan, demonstrated a
70% reduction in fibrosis in the ARB-treated group.55

The avid interest in RAS-blocking drugs is, in part, related to
their relative safety in humans and widespread use in cardiovas-
cular and renal medicine. Despite the large number of animal
studies, there is a relative paucity of human data to support the use
of these drugs in human liver disease. In part, this could be due to
the need to perform multiple liver biopsies to histologically
confirm resolution of fibrosis, which, outside the setting of post-
transplantation recurrent hepatitis C, is rarely indicated in 2008. In
addition, the slow progression of fibrosis in most diseases such as
hepatitis C and non-alcoholic fatty liver disease (NAFLD) make it
difficult to detect possible beneficial effects of antifibrotic therapy,
unless studies are conducted over a number of years.

A pilot study examining the effects of 6 months of losartan
treatment on liver fibrosis in chronic hepatitis C demonstrated a
significant decrease in fibrosis stage in the treated group compared
to control patients.56 In support of this, a study using candesartan
for 48 weeks in 24 compensated Child A and B cirrhotic patients
demonstrated a significant reduction of plasma hyaluronic acid
levels, a surrogate marker for fibrogenesis. However, in this study,
two of three serum markers of fibrosis used showed no improve-
ment, and there were no histological data provided; this makes it
difficult to evaluate any effects on architectural changes.57

A number of other studies have reported possible antifibrotic
effects of RAS blockers in patients with hepatitis C. In one study,
30 hepatitis C virus (HCV)-infected patients with mild fibrosis
were treated with losartan 50 mg/day and ursodeoxycholic acid
600 mg/day whereas controls received ursodeoxycholic acid
alone. There were significant reductions in serum markers of
hepatic fibrosis such as transforming growth factor b1 (TGF-b1)
and type IV collagen in the losartan and ursodeoxycholic acid
group, but no significant changes in fibrosis score between the

groups.58 Another report described outcomes in patients with hepa-
titis C treated with low-dose interferon (IFN alpha 3 ¥ 106 IU 3
times a week for 12 months) in combination with the ACE inhibi-
tor, perindopril (4 mg/day). Treatment was accompanied by sig-
nificant improvement in serum markers of fibrosis (hyaluronic
acid, type IV collagen 7S and procollagen III-N-peptide), but
histological analysis was not carried out.59 Although this study did
not have a perindopril monotherapy group, a subsequent study by
the same group demonstrated that perindopril alone decreased
serum fibrosis markers in patients with chronic hepatitis C. The
addition of interferon significantly augmented the effect of perin-
dopril monotherapy. Finally, a retrospective review compared liver
histology in liver transplant patients with recurrent hepatitis C who
were taking RAS-blocking drugs (n = 27) with those who were not
(n = 101). The group taking RAS blockers were less likely to
develop severe hepatic fibrosis (bridging fibrosis or cirrhosis) at 1
and 10 years after transplantation than were the control group
(15% vs 35% at 1 year [P < 0.05], and 35% vs 70% at 10 years,
respectively).60

Only small studies have looked at RAS blockers and NASH.
One such study (n = 7) found that giving losartan (50 mg/day for
48 weeks) in hypertensive patients with NASH reduced serum
TGF-b1, serum ferritin and aminotransferase levels. Five patients
showed improvement in the grade of hepatic necroinflammation.61

The study design could have been improved had the investigators
examined pre- and post-treatment histology and biochemical
markers in a placebo group. In a subsequent study, the pre- and
post-treatment biopsies of seven patients with NASH treated with
losartan (50 mg/day for 48 weeks) were compared with eight
patients with NAFLD who acted as a control group. The treatment
group showed a significant improvement in necroinflammatory
grade, stage of fibrosis, significantly fewer activated HSC and a
mild increase in quiescent HSC at the end of 48 weeks.62 However,
the lack of a proper randomized control group is a particular
problem in studies of patients with NASH, as the disease can
improve in response to changes in lifestyle.

Renin–angiotensin system and
portal hypertension

Fixed changes in hepatic architecture account for approximately
70% of the total resistance to portal blood flow in the cirrhotic
liver.63 The remaining 30% results from a reversible or ‘dynamic’
resistance caused by the contraction of activated myofibroblasts
positioned around the sinusoidal endothelial cells within the space
of Disse. As portal resistance increases, a number of factors,
including distension of the portal venous system, endotoxemia and
oxidative stress result in the release of mediators, including nitric
oxide, which dilate the mesenteric and systemic vasculature. Acti-
vation of compensatory mechanisms designed to restore functional
blood volume results in sodium and water retention, stimulation of
the sympathetic nervous system and the development of a hyper-
dynamic circulation. This cascade of events contributes to many of
the key features and complications of advanced liver disease
including development of ascites, edema and the hepatorenal syn-
drome. The RAS is involved with all these processes. Manipula-
tion of the RAS with either antagonists of the ‘classical’ pathway,
or agonists of the ‘alternative’ pathway therefore has potential for
therapeutic benefit.
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Variceal bleeding is one of the most important causes of mor-
bidity and mortality in patients with portal hypertension. A number
of pharmacological approaches have been developed for the pre-
vention and treatment of this problem. Non-selective ß-adrenergic
antagonists (beta-blockers) lower portal pressure by decreasing
cardiac output and constricting the mesenteric vascular bed but
have no direct effect on intrahepatic resistance to portal flow.
These drugs have become the mainstay of treatment for the pre-
vention of variceal bleeding. However, only 36% of patients
achieve the target reduction in portal pressure of 20%, as measured
by hepatic venous pressure gradient (HVPG), and they are poorly
tolerated in patients with severe liver disease.64 As a result, there is
a major interest in the development of other pharmacological
therapies which can lower portal pressure. Interestingly, beta-
blockers interact with the RAS by inhibiting renin release, but
have not been shown to impact on the development or progression
of hepatic fibrosis. In contrast, the use of either ACE inhibitors or
ARB to reduce portal pressure is an attractive proposition, as these
drugs have the additional potential benefit of slowing the progres-
sion of hepatic fibrosis.

Ang II is a potent vasoconstrictor, and myofibroblasts derived
from HSC express the AT1 receptor and contract in response to Ang
II.35,65 Additionally, cirrhotic rat livers are hyperresponsive to Ang
II with an increased portal pressure compared to those from
healthy rats as a result of increased expression of AT1 receptors.66

This finding is of interest given that the relative importance of Ang
II as a mediator of increased portal resistance has been ques-
tioned,67 based on a study of hepatic hemodynamics in isolated
perfused cirrhotic rat livers which suggested that Ang II-mediated
vasoconstriction is attenuated in the cirrhotic liver.68

Following some persuasive animal studies,53,69 the effects of AT1

blockade on portal hypertension have been examined in a number
of human studies.70 Despite some encouraging initial studies
showing a significant reduction of portal pressure by ARB, subse-
quent well-designed studies have failed to confirm these findings.
Schneider and colleagues reported a dramatic reduction in HVPG
with losartan in both moderate and severe portal hypertensive
patients, but with only a 3 mmHg drop in mean arterial pressure
(MAP).71 These findings were markedly different to a subsequent
randomized controlled trial comparing the hemodynamic effects
of losartan with propanolol72 given for 6 weeks following an index
variceal bleed. Losartan failed to reduce HVPG, yet resulted in a
significant reduction of MAP by 8%. Treatment tolerance was
equivalent. The hemodynamic effect of losartan was further cor-
roborated by a recent small study of 12 pre-ascitic patients which
also found that losartan had no affect on HVPG, but did cause a
drop in MAP of 7.8%.73

Irbesartan, another ARB, produced only modest reduction
in portal pressures (12% � 6.6%, P < 0.05) in a randomized,
placebo-controlled, double-blind study. Importantly, however, this
was associated with significant arterial hypotension and significant
renal impairment in 22% of patients. In this study, plasma renin
activity before treatment was a predictor of patients that would not
tolerate treatment.74 The explanation for this adverse effect is that
the RAS is known to play a central role in the homeostatic
response to vasodilatation in patients with portal hypertension.
The RAS, together with other compensatory systems, the posterior
pituitary (through vasopressin secretion) and the sympathetic
nervous system, endeavors to restore circulatory volume and organ

perfusion by inducing vasoconstriction and sodium and water
retention. In patients with advanced cirrhosis, plasma renin, Ang
II, ACE and aldosterone levels are all increased75 and, within the
kidney, Ang II is critical for maintenance of renal perfusion pres-
sure and an adequate glomerular filtration rate (GFR). As liver
disease progresses, the decrease in effective circulatory volume
results in vasoconstriction of the glomerular afferent circulation,
renal hypoperfusion and a fall in GFR. In response to renal hypop-
erfusion, Ang II selectively constricts the efferent glomerular arte-
rioles; this restores glomerular perfusion pressure and GFR. The
maintenance of adequate renal perfusion is therefore ACE depen-
dent. Furthermore, ACE inhibition results in a rapid fall of
GFR.76,77 This adverse effect of RAS inhibition on renal function
in patients with advanced cirrhosis represents a major disadvan-
tage for the use of this class of drug for the treatment of portal
hypertension.

A recent study by Debernardi-Venon and colleagues examined
the effects of candesartan treatment for 48 weeks on 24 compen-
sated Child A and B cirrhotic patients. Treatment was well toler-
ated, with a mild but significant reduction in HVPG in more than
70% of those treated. Furthermore, 25% of patients treated
achieved a 20% reduction in their HVPG. Interestingly, the
changes in HVPG correlated well with those observed for plasma
hyaluronic acid. However, the treatment group was preselected in
that patients were excluded from analysis if they had large varices,
evidence of significant arterial hypotension or renal impairment.57

Angiotensin receptor blockers have also been studied in portal
hypertensive gastropathy; at least one study has reported a positive
benefit from their use.78

The effects of ACE inhibitors on portal pressure have also been
examined in a few small studies, but the results generally have
been disappointing, with poor agreement between studies.79–82 A
number of explanations have been proposed to explain the lack of
uniformity in results from clinical studies investigating the ben-
efits and adverse effects of RAS inhibitors. There are known
genetic polymorphisms for the AT1 receptor gene and genes
responsible for cleaving angiotensin I, including ACE;83 these
may confer patient-to-patient variations in response to these
drugs. This has led to the suggestion that genetic testing may help
determine which patients are likely to have a positive response to
therapy.84 In addition, chronic ACE inhibition may not lead to
sustained Ang II suppression because of increased renin activity
and upregulation of alternative enzymes, such as hepatic
chymase, which is capable of generating Ang II from Ang I.85,86

Furthermore, chronic use of ARB also results in hyper-reninemia
and elevated Ang II levels; the latter increasingly compete with
the AT1 receptor antagonist for binding sites on the AT1 receptor
molecule.87,88 Finally, it has also been claimed that there is tissue-
dependent responsiveness to ACE inhibitors and ARB and, at
current therapeutic dosing, both classes of drug may not com-
pletely inhibit their respective targets.88 To date, no studies have
examined the effects on portal pressure of combined therapy with
an ACE inhibitor and ARB; theoretically, this may overcome
some of the possible issues of Ang II reactivation with use of
ACE inhibitors alone.

In summary, the use of RAS inhibitors (other than beta-
blockers) to reduce portal pressure has been disappointing. At the
doses used in clinical trials, these drugs appear to have only minor
effects on portal pressure but very significant side-effects, includ-
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ing systemic hypotension and renal impairment. These complica-
tions are a useful reminder of the homeostatic role the RAS plays
in maintaining MAP and GFR in the vasodilated patient with
severe liver disease.89–91 Based on the current available evidence,
the use of either ACE inhibitors or ARB for reducing portal pres-
sure remains controversial and cannot be recommended outside
clinical trials.

Role of the ‘alternative’ RAS
in liver disease
As outlined above, there is increasing evidence that both the
‘classical’ and the ‘alternative’ RAS are upregulated in chronic
liver disease.38,66 It has recently been suggested that the progres-
sion of liver fibrosis may be influenced by a balance between ACE
and ACE2 activation.92 In both an animal model of secondary
biliary fibrosis and in humans with hepatitis C, ACE2 gene and
activity are upregulated.38,66 As fibrosis worsens, the progressive
rise in ACE and AT1 gene expressions coincide with an increase in
ACE2 and mas expression, together with increased plasma levels

of both Ang-(1–7) and Ang II.66,93 Cirrhotic livers have a greater
capacity than healthy livers to convert Ang II to Ang-(1–7) because
of upregulated ACE2 gene and protein expression (Fig. 6). In
addition, the hepatic production of Ang-(1–7) from Ang II is
augmented by ACE inhibition.38,66 This increased Ang-(1–7) pro-
duction in the presence of an ACE inhibitor can be explained by
the fact that Ang-(1–7) is cleaved by ACE to produce the inactive
peptide Ang-(1–5) (Fig. 2). Inhibition of ACE therefore increases
Ang-(1–7) half-life, leading to an increase in net production and
accumulation of Ang-(1–7).94–96

Evidence for a beneficial role of Ang-(1–7) in hepatic fibrosis
has been provided by a study examining the effects of the mas
receptor antagonist [7-D-Ala]-Ang-(1–7) (A779). Treatment with
A779 worsened experimental liver injury with increases in
TGF-b1 and hydroxyproline levels; this infers that mas receptor
stimulation plays a protective role in liver fibrosis.93 Further com-
pelling evidence for a beneficial role of Ang-(1–7) has come from
a recent rat study presented at AASLD 2007 by our group.97 We
demonstrated that Ang-(1–7) infusion in bile duct-ligated rats
attenuated fibrosis as quantified using METAVIR fibrosis score,
hydroxyproline content, and type 1 collagen mRNA expression.

Figure 6 Angiotensin 1–7 synthesis from angiotensin II (Ang II) in perfused rat liver. Ang II injected into fibrotic rat livers (•) generates more
Ang-(1–7) than healthy livers (o). The production of Ang-(1–7) is amplified when the liver is pre-incubated with the ACE inhibitor lisinopril (b).
Baseline corrected total area under the Ang-(1–7) curves are shown in panel (c). Each circle/bar represents mean � SEM from 4–5 rats per
treatment group. ***P < 0.001, **P < 0.01, *P < 0.05 baseline-corrected fibrotic vs healthy livers. aP = 0.05. Reproduced from Herath et al with
publisher’s permission.37
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Alpha-smooth muscle actin (a-SMA) gene and protein expression
were also reduced, indicating that hepatic stellate cell activation
was inhibited by Ang-(1–7). Interestingly, Ang-(1–7) infusion also
inhibited ACE gene and protein expression, and resulted in down-
regulation of mas receptor gene expression. The Ang-(1–7) infu-
sion group also showed decreased mRNA expression levels for
connective tissue growth factor (CTGF, also known as CCN2) and
vascular endothelial growth factor (VEGF), two critical growth
factors implicated in fibrosis and tissue repair. This is the first
direct evidence showing that Ang-(1–7) can ameliorate hepatic
fibrosis.97 Evidence from studies in ACE2 deletion mice further
supports a central role of ACE2 in regulating fibrosis in liver
disease.98

Despite a number of reports that Ang-(1–7) is a vasodilator,99

experiments on rat isolated perfused livers have failed to demon-
strate any vasodilatory effect in normal or cirrhotic livers.66,100,101

Likewise, experiments in isolated vessels from normal and cir-
rhotic rats also failed to show any direct vasodilatory effect of this
peptide.38 Conversely, Ang-(1–7) has been shown to enhance
acetylcholine-mediated vasodilatation in aortic rings from cir-
rhotic rats.38 The vasodilatory effects of Ang-(1–7) are thought
to be mediated through increased production of nitric oxide

(NO).34,102 Hence, the absence of a vasodilatory effect by Ang-
(1–7) in the cirrhotic rat liver could be explained by the known
general impairment of NO-dependent vasodilatation in the cir-
rhotic liver due to endothelial dysfunction.103,104

In summary, there is considerable evidence supporting the
concept that opposing axes of the RAS are involved in the patho-
genesis of chronic liver injury. On one side, the ACE/Ang II/AT1

receptor axis promotes liver injury and deposition of extracellular
matrix, on the other, ACE2/Ang-(1–7)/mas receptor promotes col-
lagen degradation and resolution of inflammation. Both axes are
upregulated in liver disease, but presumably the balance between
the two systems is critical in determining the net effect.92 For many
years researchers in the field of RAS have concentrated on block-
ing components of the ‘classical’ system in an attempt to reduce
fibrosis. However, both ACE inhibitors and ARB have an impact
on other components of the ‘classical’ RAS apart from Ang II, as
plasma renin activity and Ang I levels increase following chronic
therapy.105 This, in part, explains the phenomenon of ‘angiotensin
II reactivation’ and ‘aldosterone escape’ whereby chronic admin-
istration of an ACE inhibitor fails to completely suppress either
plasma Ang II or aldosterone production.106–108 The actual
mechanism underlying this phenomenon remains elusive,

Figure 7 Effects of angiotensin converting enzyme (ACE) inhibitors and angiotensin type-1 receptor (AT1) receptor blockers (ARB) on the two axes
of the renin–angiotensin system (RAS). The RAS is shown as a balance with ‘classical’ and ‘alternative’ axes counterbalancing each other. ACE
inhibitors (ACEi) cause an initial reduction in angiotensin II (Ang II), but after chronic administration increases in plasma renin activity and plasma
angiotensin I (Ang I) levels occur. Both Ang II and aldosterone levels can subsequently rise as a consequence of non-ACE-dependent pathways
facilitated by enzymes such as chymase. Both ACEi and ARB result in elevated levels of ACE2 and Ang-(1–7) which possibly contribute to the effects
of these drugs. Manipulations of the RAS aimed at tipping the balance in favour of ‘alternative’ components represents a potential target for
antifibrotic therapies.
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although non-ACE-dependent pathways involving enzymes like
chymase, which is capable of generating Ang II, may play an
important part.85,109 Interestingly, ACE inhibitors and ARB have a
profound impact on the ‘alternative’ system by causing significant
increases in Ang-(1–7).94,95,110,111 It has been postulated that some
of the beneficial effects observed with ARB and ACE inhibitors
are mediated through Ang-(1–7).28,29,112–116 In support of this,
ACE2 activity and gene expression are both increased in the heart
by ARB or ACE inhibitors.112,117 The elevated ACE2 activity in
such tissues would result in both diminished levels of Ang II and
simultaneous elevations in tissue Ang-(1–7), thus tipping the RAS
balance in favor of the ‘alternative’ axis. Interestingly, our own
studies and those of others have shown that Ang-(1–7) can inhibit
ACE activity and gene expression; this would further tend to alter
the balance of the two axes towards the ‘alternative’ axis
(Fig. 7).34,97

Conclusions and future directions
Our understanding of the RAS has considerably expanded since
the discovery of ACE2. Emerging evidence supports the hypoth-
esis that the RAS consists of two opposing axes. Manipulation of
the RAS, by either blocking the ‘classical’ RAS or by stimulating
the ‘alternative’ RAS represents a potential target for antifibrotic
and portal hypertension therapy. Limitations to treatment may be
the side-effects of such drugs, particularly their impact on arterial
blood pressure and renal function. Current therapies such as ACE
inhibitors and ARB used in cardiovascular and renal fibrosis have
been shown to impact on both the ‘classical’ and ‘alternative’
pathways. The elevated Ang-(1–7) plasma levels caused by these
drugs may represent a mechanism by which these drugs exert
some of their effects. New drugs which mimic the effects of
Ang-(1–7) have been developed. This represents a novel set of
agents that could be used for the treatment of hepatic fibrosis or
portal hypertension. One such drug, AVE0991 is a non-peptide
analog of Ang-(1–7). This orally active Ang-(1–7) receptor agonist
represents an entirely new class of drug118 spawn from the latest
insights into the complexities of the contemporary RAS and has
possible novel therapeutic applications in liver disease.
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