
Distance indexing and seed clustering in sequence

graphs

Xian Chang*, Jordan Eizenga, Adam M. Novak, Jouni Sirén and Benedict Paten

Department of Biomolecular Engineering, University of California Santa Cruz Genomics Institute, Santa Cruz, CA 95060, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Graph representations of genomes are capable of expressing more genetic variation and can therefore
better represent a population than standard linear genomes. However, due to the greater complexity of genome
graphs relative to linear genomes, some functions that are trivial on linear genomes become much more difficult in
genome graphs. Calculating distance is one such function that is simple in a linear genome but complicated in a
graph context. In read mapping algorithms such distance calculations are fundamental to determining if seed align-
ments could belong to the same mapping.

Results: We have developed an algorithm for quickly calculating the minimum distance between positions on a se-
quence graph using a minimum distance index. We have also developed an algorithm that uses the distance index
to cluster seeds on a graph. We demonstrate that our implementations of these algorithms are efficient and practical
to use for a new generation of mapping algorithms based upon genome graphs.

Availability and implementation: Our algorithms have been implemented as part of the vg toolkit and are available
at https://github.com/vgteam/vg.

Contact: xhchang@ucsc.edu

1 Introduction

Conventional reference genomes represent genomes as a string or
collection of strings. Accordingly, these so-called ‘linear reference
genomes’ can only store one allele at each locus. The resulting lack
of diversity introduces a systematic bias that makes samples look
more like the reference genome (Zook et al., 2014). This reference
bias can be reduced by using pangenomic models, which incorporate
the genomic content of populations of individuals (The
Computational Pan-Genomics Consortium, 2016). Sequence graphs
are a popular representation of pangenomes that can express all of
the variation in a pangenome (Paten et al., 2017). Sequence graphs
have a more complex structure and the potential to contain more
data than linear genomes. This tends to make functions on a se-
quence graph more computationally challenging than analogous
functions on linear genomes.

One such function is computing distance. In a linear genome, the
exact distance between two loci can be found by simply subtracting
the offset of one locus from the offset of the other. In a graph, calcu-
lating distance is much more complicated; there may be multiple
paths that connect the two positions and different paths may be rele-
vant for different problems.

Distance is a basic function that is necessary for many functions
on genome graphs; in particular, calculating distance is essential for
efficient mapping algorithms. In a seed-and-extend paradigm, short
seed matches between the query sequence and reference are used to
identify small regions for expensive alignment algorithms to align to
Garrison et al. (2018), Li (2016), Rakocevic et al. (2019),
Rautiainen et al. (2019), Schneeberger et al. (2009) and Vaddadi
et al. (2019). Often these regions are identified by clusters of

matches. Clustering requires repeated distance calculations between
seeds and can be very slow in graphs as large as whole genome
graphs. The prohibitive run time of clustering algorithms can make
them impractical for mapping and some mapping algorithms omit
this step entirely (Rautiainen et al., 2019).

We have developed an algorithm to calculate the exact minimum
distance between any two positions in a sequence graph and
designed an index to support it. We also developed a clustering algo-
rithm that clusters seeds based on the minimum distance between
them. Our algorithms are implemented as part of vg, a variation
graph toolkit (Garrison et al., 2018).

2 Background

2.1 Sequence graph structure
A sequence graph is a bidirected graph in which each node is labeled
by a sequence of nucleotides. A node X has two sides, fx; �xg. For
convenience, we will consider x to be the ‘left’ side and �x to be the
‘right’. This induces a directionality on X, so that we may consider a
left-to-right (or x to �x) traversal of X to be forward, and a right-to-
left traversal backward. However, we note that the designation of
‘left’ and ‘right’ is arbitrary. They can be swapped without changing
the underlying graph formalism. Conceptually, a forward traversal
corresponds to the forward strand, and a backward traversal corre-
sponds to the reverse complement strand.

Paths in a bidirected graph must obey restrictions on both nodes
and edges. Edges connect two node sides rather than nodes. A path
consists of an alternating series of oriented nodes and edges. The
path must enter and exit each (non-terminal) node through opposite

VC The Author(s) 2020. Published by Oxford University Press. i146

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36, 2020, i146–i153

doi: 10.1093/bioinformatics/btaa446

ISMB 2020

https://github.com/vgteam/vg
https://academic.oup.com/


node sides. In addition, there must exist an edge connecting consecu-
tive nodes in the path, between the node side that is exited and the
node side that is entered.

In Figure 1, the graph has an edge between �a and b. A path
including this edge would go from A to B traversing both forward,
or from B to A traversing both backward.

Some applications use a specific articulation of a sequence graph
called a variation graph. A variation graph contains a set of
embedded paths through the graph. These paths typically corres-
pond to the primary and alternate scaffolds of a reference genome.

2.2 Snarl decomposition
In previous work, we proposed a decomposition for sequence graphs
that describes their common topological features (Paten et al.,
2018). A simple variant, such as an indel or SNP, will typically be
represented as one or two nodes (corresponding to the different
alleles), flanked by two more nodes (corresponding to adjacent con-
served sequences. In Figure 1, nodes A, J and M all represent con-
served sequences. Nodes K and L represent two alternative
sequences that occur between J and M. The subgraph between the
two flanking nodes, in this case the subgraph containing nodes J, K,
L and M, is called a snarl. Snarls can be seen as a generalization of
the variant ‘bubbles’ used in many genome assembly algorithms
(Paten et al., 2018).

A snarl is defined by a pair of node sides, (x, y) that delimit a
subgraph between them. The nodes X and Y are called the bound-
ary nodes of the snarl. Two node sides define a snarl if they are (i)
separable: splitting the boundary nodes into their two node sides
disconnects the snarl from the rest of the graph, and (ii) minimal:
there is no node A in the snarl such that (x, a) or ð�a; yÞ are separ-
able. In Figure 1, �g and i define a snarl ð�g; iÞ. We will sometimes
abuse the terminology and use ‘snarl’ to refer to both the pair of
nodes and the subgraph that they separate from the rest of the
graph. Thus, we can say that the snarl ð�g; iÞ contains node H and
boundary nodes G and I.

In sequence graphs, snarls often occur contiguously with a
shared boundary node between them; a sequence of contiguous
snarls is called a chain. In Figure 1, the snarls ð�b; dÞ and ð�d; f Þ com-
prise a chain between �b and f, which we refer to as ½�b; f �. A trivial
chain is one that contains only one snarl; in Figure 1, snarl ð�g; iÞ is
part of a trivial chain, chain ½�g; i�.

Snarls and chains can be nested within other snarls. This nesting
behavior often occurs when the same genomic element is affected by
both point and structural variants, in which case the point variant’s
snarl nests inside the structural variant’s snarl. A snarl (x, y) con-
tains another snarl (a, b) if all nodes in (a, b) are contained in the
subgraph of (x, y). In Figure 1, the snarl ð�a; jÞ contains snarls
ð�g; iÞ; ð�b; dÞ and ð�d; f Þ. A snarl contains a chain if each of the chain’s
snarls are in the subgraph of the containing snarl.

The nesting relationships of snarls and chains in a sequence
graph are described by its snarl tree (Fig. 1). Each snarl or chain is
represented in the snarl tree as a node. Since every snarl belongs to a
(possibly trivial) chain, snarl trees have alternating levels of snarls
and chains with a chain at the root of the tree. We also refer to the
root as the top-level chain. A snarl is the child of a chain if it is a
component of the chain. A chain ½a; b� is a child of (x, y) if (x, y) con-
tains ½a; b� and there are no snarls contained in (x, y) that also con-
tain ½a; b�.

All nodes in a sequence graph will be contained by the de-
composition of its snarls and chains, described by the snarl tree.
In general, the snarl tree can be arbitrarily deep and have very
short chains. However, the snarl tree of a typical sequence graph
will be shallow and have a long chain as the root. The majority
of snarls will be contained in this top-level chain. Small variants
can nest within larger structural variants, contributing to the
depth of the snarl tree. However, in most parts of the genome,
the rate of polymorphism is low enough that two variants are
unlikely to overlap each other. As a result, the depth of these
nested variants is usually very small, typically <5 in our
observations.

Nodes, snarls and chains are all two-ended structures that are
connected to the rest of the graph by two node sides. It is some-
times convenient to refer to a topological feature only by this
shared property, and to be opaque about which topological fea-
ture it actually is. In these cases, we will refer to the node, snarl
or chain generically as a ‘structure’. As with nodes of the se-
quence graph itself, structures are assigned an arbitrary orienta-
tion but we will assume that they are oriented left to right and
refer to the left and right sides of structures as struct and �struct,
respectively. Because of their shared two-ended property, struc-
tures can all be treated as single nodes in their parents. The net-
graph of a snarl is a view of the snarl where each of its child
chains is replaced by a node.

2.3 Prior research
2.3.1 Distance in graphs

Calculating distance in a graph is an extremely well-studied topic.
Many graph distance algorithms improve upon classical algorithms,
such as Dijkstra’s algorithm (Dijkstra, 1959) and A* (Hart et al.,
1968), by storing precomputed data in indexes. These methods
index the identities of important edges (Lauther, 2004; Möhring
et al., 2005) or distances between selected nodes (Akiba et al., 2013;
Dave and Hasan, 2015; Djidjev, 1997; Qiao et al., 2012) then use
the indexed information to speed up distance calculations. Index-
based algorithms must make a tradeoff between the size of the index
and the speed of the distance query.

2.3.2 Distance in sequence graphs

Some sequence graph mapping algorithms use clustering steps based
on different estimations of distance (Garrison et al., 2018; Vaddadi
et al., 2019). In vg, distance is approximated from the embedded
paths. This path-based method estimates the distance between two
positions based on a nearby shared path. The algorithm performs a
bidirectional Dijkstra search from both positions until it finds at
least one path in common from both positions. This path is then
used to estimate the distance between them.

Some research has been done on finding solutions for more
specific distance queries in sequence graphs. PairG (Jain et al.,
2019) is a method for determining the validity of independent
mappings of reads in a pair by deciding whether there is a path
between the mappings whose distance is within a given range.
This algorithm uses an index to determine if there is a valid
path between two vertices in a single O(1) lookup. Although
this is an efficient solution for this particular problem, it cannot
be used to query the exact distance between two nodes. Rather,
it returns a boolean value indicating whether two nodes are
reachable within a range of distances, which is defined at index
construction time.

Fig. 1. Example sequence graph (top) and its snarl tree (bottom). Chains in the se-

quence graph are represented as rectangular nodes in the snarl tree and snarls are

represented as elliptical nodes

Distance indexing i147



3 Minimum distance

Our minimum distance algorithm finds the minimum oriented tra-
versal distance between two positions on a sequence graph. A pos-
ition consists of a node, offset in the sequence, and orientation. The
oriented distance must originate from a path that starts traversing
the first position in its given orientation and ends at the second pos-
ition in its given orientation.

Our algorithm uses the snarl decomposition of sequence graphs
to guide the calculation. Because structures are connected to the rest
of the graph by their boundary nodes, any path from a node inside a
structure to any node not in that structure must pass through the
structure’s boundary nodes. Similarly, any path between boundary
nodes of snarls in a chain must pass through the boundary nodes of
every snarl that occurs between them in the chain. Because of this
property, we can break up the minimum distance calculation into
minimum distances from node and chain boundaries to the bounda-
ries of their parent snarl, from snarl boundaries to their parent chain
boundaries, and the distance between sibling structures in their par-
ent structure (Fig. 2). We refer to this property of minimum distance
calculation in structures as the split distance property.

3.1 Minimum distance index
We designed our minimum distance index to support distance
queries between child structures in snarls and between boundary
nodes of snarls in chains in constant time. The overall minimum dis-
tance index consists of a snarl index for each snarl and a chain index
for each chain in the graph.

3.1.1 Snarl index

For each snarl, the index stores the minimum distances between
every pair of node sides of child structures contained in the snarl,
including the boundary nodes. A distance query within a snarl is a
simple constant time lookup of the distance.

3.1.2 Chain index

For each chain, the index stores three arrays, each with one entry for
each boundary node of the snarls in the chain. The first, a prefix
sum array, contains the minimum distance from the start of the
chain to the left side of each of the boundary nodes of the snarls that
comprise the chain. This array can be used to find the distance be-
tween two of these snarls’ boundary nodes along the chain.
Distances from a left-to-right traversal of the chain can be computed
directly from the prefix sum array, whereas distances from a right-
to-left traversal also require the length of the boundary nodes. Since
paths can reverse direction in the chain (Fig. 3a), the index also
stores each boundary node’s ‘loop distance’. The loop distance is the
minimum distance to leave a boundary node, change direction in the
chain and return to the same node side traversing in the opposite dir-
ection. These loop distances are stored in final two arrays, one for
each direction. In Figure 3a, the forward loop distance for node C is
two times the length of E: the distance to leave �c traversing forward
and return to �c traversing backward by taking the bold looping edge
on �e. These three arrays are sufficient to find the minimum distance
between any two node sides in the chain in constant time (Fig. 3).

Chains that are not top-level chains cannot form a closed cycle
so any path that traverses a chain’s boundary node going out of the
chain must leave the chain. Therefore, any connectivity between the
boundaries of the chain will be captured by the snarl index of the
chain’s parent. The top-level chain may form a closed cycle where
the start and end boundary nodes are the same node (Fig. 4). In this
case, the shortest path may remain within the chain, but it may also
leave the chain and re-enter it from the other side. In Figure 4, the
minimum distance from �a to d could be dð�a; �dÞ þ dðd; dÞ or
dð�a; �aÞ þ dða;dÞ.

3.1.3 Index construction

The minimum distance index is constructed in a post-order traversal
of the snarl tree. For each snarl, the construction algorithm does a
Dijkstra traversal starting from each child structure, using the child’s
index to find the distance to traverse child snarls or chains. For each
chain, the construction algorithm traverses through each snarl in the
chain and uses the snarl’s index to find each of the relevant distances
for the chain index.

3.1.4 Index size

Naively, a minimum distance index could store the minimum dis-
tance between every node in the graph. A distance calculation
would be a constant time lookup but the index size would be quad-
ratic in the number of nodes in the graph. For each snarl in the
graph, our index stores the distance between every pair of struc-
tures in the net graph. For each chain, it stores three arrays, each
the length of the chain. In a graph with a set of snarls S and chains

Fig. 2. The minimum distance calculation from a position on C to a position on K

can be broken up into the distances from each position to the ends of each of its an-

cestor structures in the snarl tree. Each colored arrow in the graph represents a dis-

tance query from a structure to a boundary node of its parent. The snarl tree node

that each query occurs in is outlined with the same color. At the common ancestor

of the positions, chain [�a;m], the distance is calculated between two of the chain’s

children, (�a; j) and (�j;m)

Fig. 3. (a) The shortest path between two nodes in a chain can sometimes reverse

direction in the chain. The edges on the shortest path between the positions on B

and D are bolded. (b) A and B are boundary nodes of snarls in a chain. Distances

stored in the chain index are shown in black. For each boundary node in the chain,

the chain index stores the minimum distance from the start of the chain to the left

side of that node as well as the loop distances for a forward and backward traversal.

These loop distances are the minimum distance to leave a node, reverse direction

in the chain and return to the same node side. (c) There are four possible minimum-

distance paths between two nodes, connecting either node side of the two nodes.

The lengths of these paths can be found using the distances stored in the chain index

and the lengths of the nodes

Fig. 4. A cyclic chain containing two snarls, ð�a; �dÞ and (d, a)

i148 X.Chang et al.



C, our index will take Oð
P

S n2
s þ

P
C ncÞ space where ns is the

number of structures in the netgraph of snarl s and nc is the num-
ber of snarls in chain c.

3.2 Minimum distance algorithm
The first step of our minimum distance algorithm (Algorithm 2) is to
find the least common ancestor structure in the snarl tree that con-
tains both positions. We do this by traversing up the snarl tree from
each position and finding the first common structure. This traversal
is O(d) where d is the depth of the snarl tree.

Next, the algorithm finds the distance from each position to the
ends of the child of the least common ancestor (Algorithm 1).
Starting at a position on a node, we find the distances to the ends of
the node. If both positions are oriented forward, then we find the
distance to the right side of the fist node and the left side of the se-
cond, and we record the distances to the opposite sides as infinite. In
the case where a position is oriented backward, we find the distance
to the opposite side. The algorithm then traverses up the snarl tree
to the least common ancestor and at each structure, finds the min-
imum distances to the ends of the structure. Because of the split dis-
tance property, this distance can be found by adding the distances to
the ends of the child, found in the previous step in the traversal, to
the distances from the child to the boundary nodes of the structure,
found using the minimum distance index (Fig. 5). Since this requires
only four constant-time queries to the minimum distance index,
each step in the traversal is constant time and the overall traversal is
O(d).

At this point in the algorithm, we know the minimum distance
from each position to its ancestor structure that is a child of the
common ancestor. By composing these distances with the distances
between the two structures, the algorithm finds possible distances
between the two positions in the common ancestor structure. The al-
gorithm continues to traverse the snarl tree up to the root and finds
a minimum distance between the positions at each structure, check-
ing for paths that leave the lowest common ancestor. This traversal
is also O(d). The minimum distance algorithm is done in three O(d)
traversals of the snarl tree, so the algorithm is O(d). In variation
graphs for moderately large genomes without extreme levels of poly-
morphism, snarl trees are very shallow. In these graphs, the algo-
rithm is expected to be O(1). However, for variation graphs of
small, highly polymorphic genomes, the run time may grow with
increasing amounts of population variation. Complex sequence
graphs derived from assembly graphs also may demonstrate slower
run time behavior.

4 Clustering

Seed-and-extend algorithms sometimes cluster seed alignments by
their location in the graph to find which might belong to the same
mapping. Using our minimum distance index, we developed an algo-
rithm to cluster positions based on the minimum distance between
them in the graph.

4.1 Problem
We will cluster seeds by partitioning them based on the minimum
distance between their positions in a sequence graph. To define a
cluster, we consider a graph where each seed is a node and two seeds
are connected if the minimum distance between their positions is
less than a given distance limit. In this graph, each connected com-
ponent is a cluster.

4.2 Algorithm
Our clustering algorithm starts with each position in a separate clus-
ter then progressively agglomerates the clusters (Fig. 6). The algo-
rithm proceeds in a post-order traversal of the snarl tree and, at each
structure, produces clusters of all positions contained in that struc-
ture (Algorithm 5). After iterating over a structure, clusters are also
annotated with two ‘boundary distances’: the shortest distance from
any of its positions to the boundary nodes of the structure. At every
iteration, each cluster can be unambiguously identified with a struc-
ture and so the boundary distances are always measured to the struc-
ture the cluster is on.

The method of agglomerating clusters and computing boundary
distances vary according to the type of structure. For nodes, the

Fig. 5. The distToEndsOfParent calculation described in Table 1. (a) S and E are the

boundary nodes of a structure that contains a child structure N. The minimum dis-

tances from some object in N to the ends of N shown as black arrows. (b) The min-

imum distances from each end of N to �s and e are found using the minimum

distance index. (c) By adding the appropriate distances and taking the minimums,

we can get the minimum distances to s and �e

Table 1. Primitive functions for the minimum distance algorithm

Function Description Complexity

distToEndsOfParent

(struct, dist_left,

dist_right)

Given the distances from a pos-

ition in a structure struct to the

ends of struct, find the distance to

the ends of the parent (Fig. 5)

O(1) using

the distance

index

distWithinStructure

(struct, child_1,

child_2, dist1_l,

dist_2_l, dist2_r)

Given two children of a structure

and distances from positions to

the boundaries of the children,

find the minimum distance be-

tween the positions in struct

O(1) using

the distance

index

Algorithm 1: distToAncestor(position, ancestor): given a pos-

ition and ancestor structure, return the minimum distance

from the position to both sides of a child of the ancestor and

the child

Distance indexing i149



algorithm creates a sorted array of the positions contained in it and
splits the array into separate clusters when the distance between suc-
cessive positions is large enough. For each new cluster, the boundary
distances are computed from the positions’ offsets.

For structures that are snarls or chains, clusters are created from
the clusters on their children (Algorithms 3 and 4). Clusters associ-
ated with child structures are compared and if the distance between
any pair of their positions is smaller than the distance limit, they are
combined. Within a structure, distances to clusters that are associ-
ated with child structures can be calculated using the split distance
property as in the minimum distance algorithm. According to this
property, the minimum distance can be split into the cluster’s
boundary distance and the distance to one of the boundary nodes,
which is found using the index. For snarls, all pairs of clusters are
compared with each other. For chains, clusters are combined in the
order they occur in the chain, so each cluster is compared with
agglomerated clusters that preceded it in the chain. Finally, for each
of the resulting clusters, we compute the boundary distances for the
current structure, once again using the boundary distances of the
children and the index.

In the worst case, every position would belong to a separate clus-
ter and at every level of the snarl tree, every cluster would be com-
pared with every other cluster. This would be Oðdn2Þ where d is the
depth of the snarl tree and n is the number of seeds, so in the worst
case our clustering algorithm is no better than the naive algorithm of
comparing every pair of positions with our minimum distance algo-
rithm. In practice, however, seeds that came from the same align-
ment would be near each other on the graph and form clusters
together, significantly reducing the number of distance comparisons
that would be made (see Section 5).

5 Methods and results

Our algorithms are implemented as part of the vg toolkit. We con-
ducted experiments on two different graphs: a human genome vari-
ation graph and a graph with simulated structural variants. The
human genome variation graph was constructed from GRCh37 and
the variants from the 1000 Genomes Project. The structural variant
graph was simulated with 10 bp to 1 kb insertions and deletions
every 500 bp.

The human genome variation graph had 306 009 792 nodes,
396 177 818 edges and 3 180 963 531 bp of sequence. The snarl
tree for this graph had a maximum depth of 3 snarls with
139 418 023 snarls and 11 941 chains. The minimum distance index
for the graph was 12.2 GB on disk and 17.7 GB in memory.

To assess the run time of our minimum distance algorithm, we
calculated distances between positions on the whole genome graph
and compared the run time of our algorithm with vg’s path-based al-
gorithm and Dijkstra’s algorithm (Fig. 7). We chose random pairs of
positions in two ways. The first method sampled positions uniform-
ly at random throughout the graph. The second method first fol-
lowed a random walk of 148 bp through the graph and then
sampled two positions uniformly at random from this random walk.
This approach was intended to approximate the case of seeds from a
next-generation sequencing read. On average, our minimum dis-
tance algorithm is the fastest of the three algorithms for both sets of
positions. In addition, all three algorithms’ performance degraded
when the positions could be sampled arbitrarily far apart in the
graph, but our minimum distance algorithm’s performance degraded
the least.

Our new minimum distance algorithm shows a distinct gain in
performance over the other methods, however, the algorithm must
trade off speed with the memory consumed by the index. A hybrid
approach could be imagined where the index is used to compute the
distance up structures in the common ancestor, then Dijkstra’s

Algorithm 2: minDistance(position 1; position 2): return the

minimum distance from position 1 to position 2; 1 if no

path between them exists

Fig. 6. Clustering of positions (Xs) is done by traversing up the snarl tree and pro-

gressively agglomerating clusters. Positions are colored by the final clusters. (a) Each

position starts out in a separate cluster on a node. Each cluster is annotated with its

boundary distances: the minimum distances from any of its positions to the ends of

the structure it is on. (b) For each snarl on the lowest level of the snarl tree, the clus-

ters on the snarl’s children are agglomerated into new clusters on the snarl. The

boundary distances are extended to the ends of the snarl. (c) For each chain on the

next level of the snarl tree, the clusters on the chain’s snarls are agglomerated and

the boundary distances are updated to reach the ends of the chain. This process is

repeated on each level of the snarl tree up to the root

i150 X.Chang et al.



algorithm could be used to connect the structures. The runtime of
such a hybrid algorithm is in the worst case the same as Dijkstra’s al-
gorithm. Using this approach, the distance index would only need to
store the distance from each node in a snarl to the boundary nodes
of the snarl, rather than the distance between every pair of nodes,
reducing the memory requirement of the index.

In the context of read mapping, we are often only interested in
the exact distance when the minimum distance is small, but when
the minimum distance is large enough the exact distance is not ne-
cessary. In this scenario, the algorithm could be accelerated by stop-
ping early when it is apparent that the minimum distance will be too
large.

We used the structural variant graph to assess whether the min-
imum distance is a useful measure of distance for read mapping. We
compared our minimum distance algorithm with the path-based ap-
proximation, which estimates distances based on linear paths corre-
sponding to scaffolds of a reference genome. To do so, we again
used read-length random walks to select pairs of positions. Further,
we filtered random walks down to those that overlapped a structural
variant breakpoint. We then calculated the distances between pairs
of positions using our minimum distance algorithm and the path-
based approximation and compared these distances with the actual
distances in the random walk, which we take as an approximation
of the true distance on a sequencing read. Overall, the minimum dis-
tance was a much better estimate of distance along the random walk
than the path-based distance approximation (Fig. 8).

For our clustering algorithm, we wanted to estimate the run time
of the algorithm in the context of read mapping. We simulated
148 bp reads from AshkenazimTrio HG002_NA24385_son from
the Genome in a Bottle Consortium (Zook et al., 2016). For each
read, we sampled 15-mer matches from the read and found their
positions in the human genome variation graph using a k-mer look-
up table. We then apply the clustering algorithm to the positions of
these k-mers. The regression line of the log�log plot of run times

suggests the run time of our algorithm is linear in the number of
positions in practice, despite the quadratic worst-case bound
(Fig. 9).

6 Conclusion

Pangenomes have the potential to eliminate reference bias and grow
the inclusiveness of reference structures used in genomics, but sub-
stantial algorithmic challenges remain in adapting existing para-
digms to use them. We have developed a simple and elegant
minimum distance algorithm with run time that is linear in the depth
of the snarl tree. In practice, the algorithm exploits the observation
that real-world genome graphs have an excess of small, local varia-
tions and relatively fewer variations that connect disparate parts of
the graph. The result is that real genome graphs have a shallow snarl
tree, making the calculations fast and effectively constant time in
practice; indeed, we observe the algorithm is substantially faster
than other distance algorithms on queries of arbitrary distance. The
minimum distance we return is an exact distance, unlike the previ-
ous heuristic implementation of distance in vg, resulting in much
more reasonable estimates of distance around the breakpoints of
structural variants. Our minimum distance algorithm will also work
with any sequence graph, whereas the preexisting vg distance algo-
rithm required pre-specified paths. Here we developed a clustering
algorithm for clustering positions on the graph based on the min-
imum distances between them. Clustering is a major component of
many mapping algorithms and calculating distance is a bottleneck
of clustering in genome graphs. Our new clustering algorithm runs
in linear time relative to the number of seeds, whereas many existing

Algorithm 4: clusterChain(chain, child_to_clusters, distance_

limit): given a chain and a map from each snarl in the chain

to its clusters, get clusters of the chain

Algorithm 3: clusterSnarl(snarl, child_to_clusters, distance_limit):

given a snarl and map from children of the snarl to their clusters,

get clusters of the snarl

Distance indexing i151



algorithms, including the current vg mapper’s path-based algorithm,
are (at least) quadratic due to pairwise distance calculations between
seeds. We believe this is an important step in generalizing efficient
mapping algorithms to work with genome graphs; we are now
developing fast mapping algorithms that use this clustering
algorithm.

Funding

This work was supported, in part, by the National Institutes of Health [award

numbers: 5U54HG007990, 5T32HG008345-04, 1U01HL137183,

R01HG010053, U01HL137183 and 2U41HG007234].

Conflict of Interest: none declared.

References

Akiba,T. et al. (2013) Fast exact shortest-path distance queries on large net-

works by pruned landmark labeling. In Proceedings of the 2013

International Conference on Management of Data - SIGMOD’13, ACM

Press, New York, NY, USA, p. 349.

Dave,V.S. and Hasan,M.A. (2015) TopCom: index for shortest distance query

in directed graph. In Q Chen. et al. (eds) Database and Expert Systems

Applications, Lecture Notes in Computer Science, Springer International

Publishing, Cham, pp. 471–480.

Dijkstra,E.W. (1959) A note on two problems in connexion with graphs.

Numer. Math., 1, 269–271.

Djidjev,H.N. (1997) Efficient algorithms for shortest path queries in planar

digraphs. In: Goos, G. et al. (eds) Graph-Theoretic Concepts in Computer

Science. Vol. 1197, Springer, Berlin, Heidelberg, pp. 151–165.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Algorithm 5: cluster(snarl_tree, positions, distance_limit):

Cluster positions based on the distance limit

Fig. 7. Run times for distance algorithms. Random pairs of positions were chosen

from either within a read-length random walk (dark colors) or randomly from the

graph (light colors)

Fig. 8. Distance calculations on a graph with simulated structural variants. Read-

length random walks were simulated near the junctions of structural variants. The

distance between two random positions along each walk was calculated using the

path-based method and our minimum distance algorithm and compared with the ac-

tual distance in the walk

Fig. 9. Run time growth of our clustering algorithm. The regression line suggests

that the run time of our algorithm is approximately linear in the number of positions

in practice

i152 X.Chang et al.



Hart,P.E. et al. (1968) A formal basis for the heuristic determination of min-

imum cost paths. IEEE Trans. Syst. Sci. Cybernetics, 4, 100–107.

Jain,C. et al. (2019) Validating paired-end read alignments in sequence graphs.

In: Huber, KT. et al (eds) 19th International Workshop on Algorithms in

Bioinformatics (WABI 2019)., Vol. 142, Leibniz International Proceedings

in Informatics (LIPIcs), Dagstuhl, Germany: Schloss Dagstuhl –

Leibniz-Zentrum fuer Informatik, pp.17:1–17:13.

Lauther,U. (2004) An extremely fast, exact algorithm for finding shortest paths in

static networks with geographical background. In: Raubal, M. et al. (eds)

Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung,

IfGI prints, Vol 22, Institut für Geoinformatik, Münster, pp.219–230.

Li,H. (2016) Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32, 2103–2110.

Möhring,R.H. et al. (2005) Partitioning graphs to speed up Dijkstra’s algo-

rithm. In: Hutchison, D. et al. (eds) Experimental and Efficient Algorithms.

Vol. 3503, Springer, Berlin, Heidelberg, pp. 189–202.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Paten,B. et al. (2018) Superbubbles, ultrabubbles, and cacti. J. Comput. Biol.,

25, 649–663.

Qiao,M. et al. (2012) Approximate shortest distance computing: a

query-dependent local landmark scheme. In: 2012 IEEE 28th International

Conference on Data Engineering, IEEE, Washington, D.C., USA, 1-5 April

2012, pp. 462–473, ISSN:2375-026X,1063-6382.

Rakocevic,G. et al. (2019) Fast and accurate genomic analyses using genome

graphs. Nat. Genet., 51, 354–362.

Rautiainen,M. et al. (2019) Bit-parallel sequence-to-graph alignment.

Bioinformatics, 35, 3599–3607.

Schneeberger,K. et al. (2009) Simultaneous alignment of short reads against

multiple genomes. Genome Biol., 10, R98.

The Computational Pan-Genomics Consortium. (2016) Computational

pan-genomics: status, promises and challenges. Brief. Bioinformatics, 19,

118–135.

Vaddadi,K. et al. (2019) Read Mapping on Genome Variation Graphs. In:

Huber, KT. et al (eds) 19th International Workshop on Algorithms in

Bioinformatics (WABI 2019), Vol. 142, Leibniz International Proceedings

in Informatics (LIPIcs), Dagstuhl, Germany: Schloss Dagstuhl –

Leibniz-Zentrum fuer Informatik, pp.7:1–7:17.

Zook,J.M. et al. (2014) Integrating human sequence data sets provides a re-

source of benchmark SNP and indel genotype calls. Nat. Biotechnol., 32,

246–251.

Zook,J.M. et al. (2016) Extensive sequencing of seven human

genomes to characterize benchmark reference materials. Scientific Data, 3,

160025.

Distance indexing i153


