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Multielectrode voltage data are usually recorded against a common reference. Such

data are frequently used without further treatment to assess patterns of functional

connectivity between neuronal populations and between brain areas. It is important to

note from the outset that such an approach is valid only when the reference electrode

is nearly electrically silent. In practice, however, the reference electrode is generally

not electrically silent, thereby adding a common signal to the recorded data. Volume

conduction further complicates the problem. In this study we demonstrate the adverse

effects of common signals on the estimation of Granger causality, which is a statistical

measure used to infer synaptic transmission and information flow in neural circuits from

multielectrode data. We further test the hypothesis that the problem can be overcome

by utilizing bipolar derivations where the difference between two nearby electrodes is

taken and treated as a representation of local neural activity. Simulated data generated

by a neuronal network model where the connectivity pattern is known were considered

first. This was followed by analyzing data from three experimental preparations where

a priori predictions regarding the patterns of causal interactions can be made: (1)

laminar recordings from the hippocampus of an anesthetized rat during theta rhythm,

(2) laminar recordings from V4 of an awake-behaving macaque monkey during alpha

rhythm, and (3) ECoG recordings from electrode arrays implanted in the middle temporal

lobe and prefrontal cortex of an epilepsy patient during fixation. For both simulation

and experimental analysis the results show that bipolar derivations yield the expected

connectivity patterns whereas the untreated data (referred to as unipolar signals) do

not. In addition, current source density signals, where applicable, yield results that are

close to the expected connectivity patterns, whereas the commonly practiced average

re-reference method leads to erroneous results.
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INTRODUCTION

Multielectrode voltage data, recorded typically with respect
to a common reference electrode, form the foundation for
inferring interaction patterns among neuronal ensembles in
the brain. If the electrical activity at the common reference
electrode is not negligible then it becomes a common signal
present at all electrodes. Another source of common signal
is volume conduction (Nunez et al., 1997; Mima and Hallett,
1999; Kajikawa and Schroeder, 2011, 2015; Tenke and Kayser,
2012). Recognizing and overcoming issues associated with the
common signal problem is essential for the proper application
and interpretation of functional connectivity measures derived
from multielectrode data.

To illustrate the common signal problem, consider the impact
of common reference. Let X1(t) and X2(t) denote neural activities
at two recording sites. Let R(t) denote electrical activity at the
reference electrode. It is important to realize that the readings
from the two recording electrodes are X1 (t) − R(t) and X2 (t) −
R(t) rather than X1(t) and X2(t). [Here we refer to X1 (t) − R(t)
and X2 (t) − R(t) as unipolar signals in contrast to the bipolar
signals to be defined below]. If, under ideal conditions, the
magnitude of the common signal R(t) is nearly zero or negligible
in comparison to X1(t) and X2(t), statistical connectivity inferred
fromX1 (t)−R(t) andX2 (t)−R(t) can be equated to that inferred
from X1(t) and X2(t), which in turn reflects the functional
interaction between the neuronal ensembles at the two recording
sites. In practice, however, this is generally not the case. The
magnitude of R(t) is not negligible inmany experimental settings,
and in fact, it can be as large as the neural activities X1(t) and
X2(t) themselves. Our first goal is to examine the adverse effects
of common signals on the estimation of Granger causality, a
measure of synaptic transmission and directional information
flow in neuronal circuits (Ding et al., 2006).

A solution to the common signal problem may lie inherently
in the multielectrode recording itself. It is quite common that
multiple electrodes are placed in the same brain structure or
neuronal ensemble. Examples include tetrodes and multicontact
laminar electrodes (Schroeder et al., 1998; Lakatos et al., 2008;
Hansen et al., 2012; Leopold and Maier, 2012; Kapoor et al.,
2013; Newman et al., 2013; Godlove et al., 2014). Consider
two brain areas. Suppose that X1(t) and Y1(t) denote neural
activities under two electrodes in Area 1 and X2(t) and Y2(t)
denote neural activities under two electrodes in Area 2. Data
from the four electrodes are X1 (t) − R(t), Y1 (t) − R(t), X2 (t) −
R(t), and Y2 (t) − R(t), respectively. The common signal R(t)
can be removed by taking a bipolar derivation within Area 1:
[

X1 (t) − R(t)
]

− [Y1 (t) − R (t)] = X1 (t) − Y1(t) and within
Area 2:

[

X2 (t) − R(t)
]

− [Y2 (t) − R (t)] = X2 (t)− Y2(t). After
such bipolar treatmentX1 (t)−Y1 (t) andX2 (t)−Y2(t) are free of
the common signal, and represent local neuronal activity in Area
1 and Area 2. Volume conduction can be removed this way as
well if the two electrodes in each of the two areas are sufficiently
close. Using bipolar derivations tomitigate the effects of common
reference and volume conduction has been considered in human
scalp EEG by Nunez et al. (1997, 1999). However, in invasive
recordings, because electrodes are closer to the recorded tissue,

this problem has traditionally not been given sufficient attention.
Yet, the same theoretical principle illustrated above applies to
invasive as well as non-invasive recordings. Earlier work using
laminar recordings frommonkey visual cortex demonstrates that
erroneous estimates of Granger causality may arise from unipolar
data and the use of bipolar derivations yielded the expected
results (Bollimunta et al., 2009). Our second goal is thus to
demonstrate that bipolar derivation is an effective method to
overcome the common signal problem.

Four datasets were analyzed to achieve our goals, including:
(1) simulated data from a neuronal model of two coupled brain
areas where the exact pattern of connectivity is known, (2)
laminar recordings from the hippocampus of an anesthetized
rat during theta rhythm, (3) laminar recordings from V4 of
an awake-behaving monkey during alpha rhythm, and (4)
intracranial ECoG recordings from a human epilepsy patient
during fixation. In each case, a priori predictions can be made on
the directionality of synaptic transmission and information flow,
thereby furnishing the ground truth upon which the performance
of bipolar data and other treatments of data including unipolar
data, average re-referenced data and current source density data
is evaluated.

METHODS

Sources of Data
Simulation Model
The model had two interacting brain areas, XY area and UV area,
with each comprised of two coupled cortical columns where each
column was made up of an excitatory and an inhibitory neuronal
population (Kamiński et al., 2001). A schematic of the model is
given in Figure 1A. The equations governing the dynamics of the
XY area are given by:

d2x1

dt2
+

(

a+ b
) dx1

dt
+ abx1 = −kieQ

(

y1 (t) ,Qm0

)

+ k12Q (x1 (t) ,Qm0)+ξx1(t)

d2y1

dt2
+

(

a+ b
) dy1

dt
+ aby1 = keiQ (x1 (t) ,Qm0) + ξy1(t)

d2x2

dt2
+

(

a+ b
) dx2

dt
+ abx2 = −kieQ

(

y2 (t) ,Qm0

)

+ k12Q (x2 (t) ,Qm0)+ ξx2(t)

d2y2

dt2
+

(

a+ b
) dy2

dt
+ aby2 = keiQ (x2 (t) ,Qm0) + ξy2(t)

and the equations governing the dynamics of the UV area are
given by:

d2u1

dt2
+

(

a+ b
) du1

dt
+ abu1 = −kieQ (v1 (t) ,Qm0)

+ k21Q (u1 (t) ,Qm0)

+ kXUQ (x1 (t) ,Qm0) + ξu1(t)

d2v1

dt2
+

(

a+ b
) dv1

dt
+ abv1 = keiQ (u1 (t) ,Qm0) + ξv1(t)
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FIGURE 1 | Simulation model. (A) Coupling scheme. (B) Granger causality

spectra using bipolar signals which are in agreement with ground truth. (C)

Granger causality spectra using unipolar signals which are not in agreement

with ground truth. (D) Analysis of the unipolar Granger causality UV → XY as a

function of the signal to reference ratio (SRR) (green curve). Black horizontal

lines in (B–D) represents the level of statistical significance (p < 0.05).

d2u2

dt2
+

(

a+ b
) du2

dt
+ abu2 = −kieQ (v2 (t) ,Qm0)

+ k21Q (u2 (t) ,Qm0)

+ kXUQ (x2 (t) ,Qm0) + ξu2(t)

d2v2

dt2
+

(

a+ b
) dv2

dt
+ abv2 = keiQ (u2 (t) ,Qm0) + ξv2(t)

Here x(t), u(t), and y (t) , v(t) represent local field potentials
(LFP) of the excitatory and inhibitory populations, respectively,
kei > 0 gives the coupling gain from the excitatory (X,U) to the
inhibitory(Y,V) population, and kie > 0 is the strength of the
reciprocal coupling. Between XY area and UV area, the model

is constructed in such a way that there is unidirectional driving
from XY area to UV area with a non-zero coupling strength kXU,
resulting in XY → UV > 0, and the driving in the opposite
direction is zero, UV → XY = 0. This is the ground truth
for the connectivity pattern in the simulation model. Neuronal
coupling in the model is assumed to be mediated through
a sigmoidal function Q

(

g,Qmo

)

, which represents the pulse
densities converted from g with Qmo as a modulatory parameter
(Freeman, 1992), and is defined by,

Q
(

g,Qm0

)

= Qm0[1− e−(eg−1)/Qm0 ] if g> − h0

or Q
(

g,Qm0

)

= −1 if g< − h0

where h0 = −ln[ 1 + ln( 1 + 1/Qm0)]. The term ξ(t) in each
equation represents independent Gaussian white noise input.

The above system of differential equations were solved using
a fourth order Runge-Kutta method with a time step of 0.1ms.
The simulated dataset was 100 s in duration, sampled at 200Hz,
and divided into 500ms epochs. The parameter values used were:
a = 0.22/ms, b = 0.72/ms, kXU = 0.25, k12 = 0.001, k21 =

0.001, kei = 0.1, kie = 2.5,Qm0 = 5. The standard deviation σξ of
input white noise process is chosen as 0.2. The common reference
signal R(t) is also a Gaussian white noise process with a standard
deviation of 0.2 for the main simulation. The unipolar signals are
x1 (t) − R (t) , x2 (t) − R (t) , u1 (t) − R (t) and u2 (t) − R (t),
and the bipolar signals representing the XY area and the UV
area are x1 (t) − x2(t) and u1 (t) − u2(t), respectively. The signal
to reference ratio (SRR) was calculated as the ratio between the
amplitude of x1 (t) and R (t). SRR is controlled by changing the
standard deviation of R(t).

Laminar Recordings from Rat Hippocampus
All surgical and other relevant aspects of the experimental
procedure were approved by the Institutional Animal Care and
Use Committee. Hippocampal local field potentials (LFPs) were
recorded from a rat under urethane anesthesia using a 16-channel
linear multicontact electrode with 100µm separation between
contacts (Channel 16 was not used for recording LFPs). The
linear electrode (NeuroNexus A1x10, 50µm in diameter) was
implanted in the dorso-ventral direction to cover a 1.5–2.5mm
segment across CA1, DG, and hilar regions as illustrated in
Figure 2A. Two stainless steel watch screws, driven into the bone
above the cerebellum and digitally averaged, served as reference
electrodes (Kocsis et al., 1999). LFP was recorded using A-M
System Model-3600 amplifiers set at a gain of 5000, sampled at
10 kHz with 12-bit precision, low-pass filtered offline (<250Hz),
and downsampled to 200Hz. Data was divided into epochs of 2 s
in duration. A total of 49 epochs were analyzed here. Contact
impedances were 1.7–2.5 M� at 1000Hz. CA1 and DG regions
were identified by perforant path evoked potentials. Theta
rhythmwas elicited by high frequency (100Hz) stimulation of the
pontine reticular formation (Kocsis et al., 1999). Theta generators
were identified using the PRAT CSD method (Bollimunta et al.,
2008, 2011), where (1) the power spectrum for each channel was
estimated using FFT with 50% overlapping moving windows,
and the channel showing the highest power spectral density at
theta frequency was chosen as the “phase index contact;” (2) a
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FIGURE 2 | Laminar recording from rat hippocampus. (A) Schematic of

the multielectrode with 16 equally spaced (100µm) contacts and theta

generators as identified by phase realigned and averaged (PRAT) CSD

(color-coded) and LFPs (smooth traces, blue). Granger causality spectral

analysis using (B) bipolar data, (C) unipolar data, (D) CSD data, and (E)

average re-referenced data. (F) Comparison of unipolar LFPs from CA1 and

average reference signals. (G) Schematic summarizing the Granger causality

results where “OTHER” includes unipolar data, average re-referenced data and

CSD data. Bipolar results are in agreement with ground truth. Black horizontal

lines in (B–E) represents the level of statistical significance (p < 0.05).

sinusoid of theta peak frequency was then fitted to the phase
index contact for each epoch; (3) the LFP data from all the
channels of one epoch were shifted according to the estimated
phase such that phase relations were conserved; (4) shifted and
realigned signals were averaged across epochs; (5) a second spatial
derivative was calculated to produce the CSD profile (Schroeder
et al., 1995), from which the theta generators were identified. A
similar method was used to study the gamma oscillatory activity
in the hippocampus (Csicsvari et al., 2003).

Anatomically proven pathways exist within the hippocampus
to carry synaptic transmission from DG to CA1 through the
classic three-synaptic network, namely, DG → CA3 → CA1
via mossy fibers and Schaffer collaterals (Andersen et al., 1979;
Amaral andWitter, 1989; Amaral et al., 2007); neurons projecting
from the CA1 to DG are extremely sparse. This provided the
“ground truth” for testing various types of data. Unipolar LFPs

were taken from the channels overlaying the theta dipoles in the
DG hilus region (contact 13) and in CA1 (contact 3). For bipolar
LFPs, the contacts used for the hippocampal bipolar derivations
were: CA1 = LFP(contact 2) − LFP(contact 4) and DG =

LFP(contact 12) − LFP(contact 14), as shown in Figure 2A. For
average re-referenced signals the average across all recording
channels (contacts 1–15) was computed and subtracted from
each channel. The second derivative approximation was applied
to LFPs in each epoch to generate single-trial current source
density (CSD) signals (Mitzdorf, 1985). The ground truth
prediction is that DG → CA1 is expected to be large and
significant whereas CA1→ DG small and insignificant.

Laminar Recordings from Monkey V4
All surgical, training, and other relevant aspects of the
experimental procedure were approved by the Institutional
Animal Care and Use Committee. LFPs were recorded at
2 kHz using a multi-contact linear electrode with 14 recording
contacts spanning all six cortical layers in visual area V4 of a
macaque monkey performing auditory stimulus discrimination
(Schroeder et al., 1998; Mehta et al., 2000; Chen et al., 2007;
see Figure 3A). The separation between contacts was 200µm.
Contact impedances were 0.3 M� at 1000Hz. The epidural guide
tubes positioned over central and frontal sites served as reference
electrodes (Bollimunta et al., 2008). The data was recorded using
Grass P5 amplifiers set at a gain of 5000 and a bandpass of 3Hz–
3 kHz. The data was downsampled to 200Hz and further divided
into epochs of 200ms in duration. A total of 201 epochs were
analyzed here. Laminar layers were identified functionally using
visual evoked potential criteria. Specifically, layer 4 (granular)
was identified by the largest current sink accompanying the
polarity inversion of the N95 component of the visual evoked
potential (Givre et al., 1994; Schroeder et al., 1998).

Anatomically a canonical circuit has been established in a
cortical column (Lund, 2002; Douglas andMartin, 2004) in which
axons from granular layer (G) cells synapse onto pyramidal
cells in the supragranular layers (SG), which in turn synapse
onto infragranular (IG) pyramidal neurons, and IG pyramidal
neurons complete the circuit by sending axons into the G layers.
Physiologically, alpha current generators have been identified in
SG, G and IG layers of V4 (Bollimunta et al., 2008). Although
largest alpha power is often observed in the SG layers (Haegens
et al., 2015), using a variety of in vitro and in vivo techniques,
past work has demonstrated that the primary alpha pacemaker
is located in the IG layers (Lopes da Silva, 1991; Silva et al.,
1991; Flint and Connors, 1996; Bollimunta et al., 2008), a finding
that is also well-supported by biophysical models of neuronal
oscillations (Carracedo et al., 2013). These considerations
provide the “ground truth” for comparing the performance of
various types of signals. Unipolar LFPs were taken from the
contacts overlaying the alpha generators established by the PRAT
method described above in the granular (G, contact 8) and
infragranular (IG, contact 11) layers. For the bipolar derivations,
the contacts used were: G= LFP(contact 9)− LFP(contact 7) and
IG= LFP(contact 12)− LFP(contact 10), as shown in Figure 3A.
Average re-referenced signals and CSD signals were derived as
described above. The ground truth prediction is that IG → G is
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FIGURE 3 | Laminar recording from monkey V4. (A) Schematic of the

multielectrode with 14 equally spaced (200µm) contacts and alpha generators

as identified by phase realigned and averaged (PRAT) CSD (color-coded) and

LFPs (smooth traces, blue). Granger causality spectral analysis using (B)

bipolar data, (C) unipolar data, (D) CSD data, and (E) average re-referenced

data. (F) Comparison of unipolar LFPs from granular layer and average

reference signals. (G) Schematic summarizing the Granger causality results

where “OTHER” includes unipolar data, average re-referenced data and CSD

data. Bipolar results are in agreement with ground truth. Black horizontal lines

in (B–E) represents the level of statistical significance (p < 0.05).

expected to be large and significant whereas G → IG small and
statistically insignificant.

ECoG Recordings from Human MTL and PFC
Electrocorticogram (ECoG) data were recorded from implanted
subdural electrodes in an epileptic patient. The patient
gave informed consent and participated in the study. The
experimental and recording protocol was approved by the
Institutional Review Board of the University of Florida and the
affiliated Shands Hospital at the University of Florida. Arrays of
platinum–iridium electrodes embedded in silastic sheets (3mm
exposed diameter, 10mm center-to-center spacing; Ad-tech
Medical, Racine, WI, USA) were placed directly on the cortical
surface. Figure 4A illustrates the approximate positions of the
implanted electrode arrays. The electrode grid (20 electrodes)

covered the left lateral prefrontal cortex (PFC) and the electrode
strips (4 electrodes) covered the left medial temporal lobe (MTL).
The reference electrode was an electrode fixed to the scalp
of the subject. During resting state recording, the subject was
instructed to visually fixate on the center of a computer screen,
and minimize eye and body movement. Data were sampled at
400Hz by a Nicolet amplifier system, band-pass filtered offline
from 0.16 to 30Hz, downsampled to 100Hz, and divided into
epochs of 640ms in duration. A total of 321 epochs were analyzed
here.

The pattern of causal interactions between PFC and MTL in
humans is difficult to determine. DTI fiber tracking techniques
cannot furnish directions of fiber projections (Audoin et al.,
2007). However, anatomical studies in rodents have shown
that the MTL structure hippocampus projects directly to PFC,
whereas PFC projects back to the hippocampus indirectly
through other brain structures such as the thalamus (Vertes et al.,
2007; Cassel et al., 2013). Analogously, in rhesus monkeys, with
the aid of anterograde neural tracers, studies have shown that
the MTL structure amygdala projects directly to PFC, whereas
PFC projects back indirectly through other structures such as
orbitofrontal cortex (Rempel-Clower and Barbas, 2000; Barbas
et al., 2005). These anatomical findings suggest that causal
influence fromMTL→ PFC should be larger than PFC→MTL.
This pattern has been found in a human ECoG study of memory
retrieval where the causal influence between PFC and MTL was
further shown to be mediated by theta oscillations (Anderson
et al., 2010). The above considerations become the “ground truth”
(albeit rather weak) for testing the performance of unipolar and
bipolar signals. Bipolar derivations were obtained by taking the
difference of unipolar signals in neighboring electrodes (vertical,
horizontal, and diagonal) within each electrode array (PFC vs.
MTL; Anderson et al., 2010), resulting in a total of 55 bipolar
derivations for PFC and two bipolar derivations for MTL. For
PFC-MTL Granger causality analysis was applied to all pairwise
combinations of PFC signals andMTL signals (80 unipolar inter-
areal pairs and 110 bipolar inter-areal pairs). Granger causality
spectra were computed for each pairwise combination. Pairs
with significant Granger causality (p < 0.05, see below) were
then averaged (see below). Given the weakness of the basis used
for making the prediction, this analysis should be considered
exploratory, rather than confirmatory.

Data Analysis
Estimation of Granger Causality
Each pair of signals was subjected to autoregressive (AR) spectral
analysis in which Granger causality spectral estimates were
derived. The procedure has been described in detail in previous
publications (Ding et al., 2000, 2006; Bollimunta et al., 2008).
Each epoch was treated as the realization of an underlying
stochastic process. The model order m was determined by
a combination of the Akaike information criterion (Akaike,
1974) and further verification by minimizing mean square error
between the spectral estimates from the AR model and that from
the Fourier method. For each dataset analyzed in this study, the
most appropriate m was chosen as a tradeoff between sufficient
spectral resolution and over-parameterization.
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FIGURE 4 | ECoG recording from epilepsy patient. (A) Placement of electrode arrays. (B) Granger causality spectra using bipolar data. (C) Granger causality

spectra using unipolar data. (D,E) Schematic summarizing the Granger causality results where the thickness of the arrows is proportional to the corresponding

Granger causality values.

Interpretation of Granger Causality
Statistically, for two simultaneously measured time series, one
series can be called causal to the other if we can better predict
the second series by incorporating past knowledge of the first one
(Wiener, 1956). This concept was later adopted and formalized
by Granger (1969) in the context of linear regression models of
stochastic processes. Specifically, if the variance of the prediction
error for the second time series at the present time is reduced
by including past measurements from the first time series in
the linear regression model, then the first time series can be
said to have a causal (directional or driving) influence on
the second time series. Reversing the roles of the two time
series, one repeats the process to address the question of causal
influence in the opposite direction. Here, in our simulation
model as well as our three experimental preparations, directions
of causal influence are equated with directions of synaptic
transmission of neuronal activity (Ding et al., 2006; Bollimunta
et al., 2008).

Testing of Statistical Significance
To test whether the estimated Granger causality in a given
direction is greater than 0, we utilized a random permutation
approach (Brovelli et al., 2005; Ding et al., 2006). In this approach
a baseline null-hypothesis distribution is constructed from which
statistical significance threshold can be derived. Specifically, for
the two given time series, the epoch index from onewas permuted
randomly against that from the other to create a synthetic
dataset, in which the temporal structure within each epoch is
preserved but the interdependence between them destroyed.
Granger causality spectra were derived from the synthetic dataset
and the largest value was taken. This random permutation
procedure was repeated five hundred times to yield the null-
hypothesis distribution of Granger causality spectra. Granger
causality values from the actual dataset were compared against
the distribution and considered significant if they exceeded the
95th percentile value of the null hypothesis distribution (p <

0.05), plotted as black lines in Figures 1–4.

RESULTS

Simulation Model
As shown in Figure 1A, the model contained two brain areas,
the XY area (red) and UV area (blue), with each composed of
two interacting cortical columns. Each cortical column has an
excitatory population and an inhibitory neuronal population that
reciprocally interact. The full set of equations for the model was
given in Methods. Unipolar signals are x1(t) − R(t), x2(t) −

R(t), u1(t) − R(t), and u2(t) − R(t), and the bipolar signals
representing XY area and UV area are x1(t) − x2(t) and u1(t) −
u2(t), respectively. Here the common reference signal R(t) is a
Gaussian white noise process.

Using bipolar signals, the Granger causality spectra in
Figure 1B shows a unidirectional driving pattern, namely, XY→

UY > 0 and UV→ XY= 0, in agreement with the ground truth.
In contrast, using unipolar signals, the Granger causality spectra
in Figure 1C show a bidirectional driving pattern, namely, XY→

UV > 0, UV → XY > 0, which is inconsistent with the ground
truth. To examine the effect of the magnitude of the common
signal R(t), we computed UV → XY using unipolar signals
x1(t) − R(t) and u1(t) − R(t), and plotted it as a function of
the ratio between the magnitude of x1(t) and that of R (t) . As
can be seen in Figure 1D, for sufficiently small R(t) , UV → XY
falls below significance level, indicating that UV → XY become
statistically indistinguishable from zero, namely, UV→ XY = 0.
This suggests that the correct network topology can be identified
using unipolar signals only when the common reference activity
is negligible.

Laminar Data from Rat Hippocampus
Based on the CSD profile of theta generators established by the
PRAT method (Bollimunta et al., 2008) in Figure 2A, unipolar
LFPs were taken from the channels overlaying the theta dipoles
in DG hilus (contact 3) and CA1 (contact 13). For bipolar LFPs,
the contacts used were: CA1 = LFP(contact 2) − LFP(contact 4)
and DG= LFP(contact 12)− LFP(contact 14).
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In Figure 2B, the bipolar LFP Granger causality spectra
exhibit a clear peak at ∼5Hz in the DG → CA1 direction.
The causality in the other direction, CA1 → DG, is below the
significance threshold p = 0.05 (depicted as a black line in
Figures 2B–E). This unidirectional Granger causality pattern,
consistent with the ground truth, indicates that theta rhythm is
directed from the largest dipole in DG to CA1 through the classic
three-synaptic network of the hippocampus. In comparison,
Figure 2C shows that Granger causality analysis using unipolar
LFPs yielded bidirectional causal influence betweenDG andCA1,
which is inconsistent with the ground truth. In Figure 2D, the
Granger causality spectra based onCSD signals correctly detected
the unidirectional causality in the DG → CA1 direction but
failed to completely eliminate causal influence in the CA1 →

DG direction. Figure 2E shows the Granger causality spectra
derived from average re-referenced signals. Again the results
showed causal influences both from CA1 → DG as well as in
the opposing DG → CA1 direction. Figure 2F shows that the
magnitude of the average reference signals from a typical epoch
and that of the unipolar LFP from CA1 is comparable. The
main results from the analysis of this dataset are schematically
summarized in Figure 2G: unipolar and average re-referenced
signals have resulted in connectivity patterns inconsistent with
the anatomical prediction. Elimination of common signals by
bipolar derivations allowed the detection of the correct causal
influence directions predicted by anatomical connectivity. CSD
treatment, which also eliminates common signals, yielded results
that are close to the predicted connectivity pattern. The non-zero
DG→ CA1 component may be understood from the standpoint
of noise amplification via differentiation (see Discussion Section).

Laminar Data from Monkey V4
Based on the CSD profile of alpha generators established by the
PRAT method (Bollimunta et al., 2008) shown in Figure 3A,
unipolar LFPs were taken from channels overlaying the alpha
generators in infragranular (IG, contact 11) and granular (G,
contact 8) laminae. For bipolar LFPs, the contacts used were:
IG = LFP(contact 10) − LFP(contact 12) and G = LFP(contact
7)− LFP(contact 9).

The bipolar LFP Granger causality spectrum of IG → G
exhibits a clear peak at ∼10Hz (Figure 3B), whereas Granger
causality in the other direction G → IG is not significant (p =

0.05 threshold line plotted in black), consistent with the ground
truth. Figure 3C shows the Granger causality spectra using
unipolar LFPs where a bi-directional causal influence pattern
between IG and G layers was seen over a broad frequency range,
which is not consistent with the ground truth. In Figure 3D,
the Granger causality spectra based on CSD signals essentially
identified the expected connectivity pattern, although the G →

IG spectrum is at the threshold level, not quite under the
threshold. Again, noise amplification that occurs during repeated
differentiation may have played a role here (see Discussion
Section). Figure 3E shows the Granger causality spectra derived
from average re-referenced signals, which again shows a bi-
directional causal influence pattern between IG and G layers
over a broad frequency range, similar to the unipolar Granger
causality spectra. Figure 3F shows that the average reference

signal and the corresponding unipolar LFP from G layer have
comparable magnitude. The main results from the analysis
of this dataset are schematically summarized in Figure 3G:
again, except for bipolar signals and somewhat less so for CSD
signals, unipolar and average re-referenced signals resulted in
connectivity patterns inconsistent with ground truth prediction.
The presence of common signals is the main reason for the
latter two types of signal treatments not being able to reveal the
expected connectivity pattern.

ECoG Data from Human PFC and MTL
ECoG data were recorded from implanted subdural electrodes
covering the prefrontal cortex (PFC) and medial temporal lobe
(MTL; Figure 4A) during fixation. In Figure 4B the Granger
causality spectra calculated using the bipolar derivations shows a
bidirectional flow of information, with the causal influence from
MTL to PFC greater than the causal influence from PFC to MTL
at the theta peak frequency ∼5Hz, namely, MTL → PFC >

PFC → MTL. This pattern is consistent with what was found
during memory recall (Anderson et al., 2010). Figure 4C shows
the same functional relationship calculated using unipolar LFPs.
In this case, the Granger causality spectra are also bidirectional,
but with the causality from PFC → MTL greater than MTL →

PFC. Figures 4D,E schematically summarizes the results.

DISCUSSION

Multielectrode signals are the basis for assessing the patterns of
functional connectivity betweenneuronal ensembles and between
brain areas. Because such signals are recorded against a common
reference electrode, and the common reference electrode is
generally not electrically silent, it is important to study the impact
of such common signals on functional connectivitymeasures. Past
work has discussed and demonstrated the confounding effects
of common reference and volume conduction on functional
connectivity measures in human scalp EEG recordings (Nunez
et al., 1997; Nolte et al., 2004). Yet, in invasive recordings, this
problemhas received insufficient attention, possiblydue to the fact
that the electrodes are closer to the tissue being recorded from and
as such it is therefore thought to be immune from the problem.
Moreover, a series of reports estimate that the spatial spread of the
LFP was very confined, on the order of a few hundred microns
(Xing et al., 2005; Katzner et al., 2009), although the volume
conduction model used in these reports has been questioned
(Kajikawa and Schroeder, 2011, 2015). In light of these and
earlier findings (Bollimunta et al., 2009), the present study aimed
to examine the adverse effects of common signals on Granger
causality estimation andpropose toovercome these adverse effects
by using bipolar derivations. To accomplish this we analyzed four
datasets: a simulationmodel where connectivity pattern is known
a priori and three neuroscientific electrophysiological examples
where some degree of ground truth can be gained from past
studies.

Simulation Model
Simulation is an essential tool for testing methods because the
exact answer (ground truth) is known a priori. We applied
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the simulation technique to address the effects of common
signal on Granger causality estimation. Interacting brain areas
with built-in causality patterns were simulated by coupled
non-linear differential equations to yield data that mimicked
local field potential recordings. We used a simulation model
(Kamiński et al., 2001) comprised of two interacting brain areas,
denoted XY area and UV area, with each area comprised of
two coupled cortical columns, where each column contained
excitatory and inhibitory populations that interact with one
another. The model parameters are chosen in such a way that the
XY area unidirectionally drive the UV area. The results clearly
showed that the network connectivity is correctly identified using
bipolar signals. However, using unipolar signals, UV → XY
is greater than zero, indicating that the causal connectivity is
incorrectly identified. To further elucidate the adverse influence
of the common signal, we used unipolar signals to examine the
dependence of UV → XY on the magnitude of the common
signal, and found that correct connectivity pattern can be
identified only when the magnitude of the common signal is
negligible.

Laminar Data from Rat Hippocampus
Testing methods on experimental data is not always
straightforward. The main reason is that the ground truth
is often unknown. This makes it difficult to differentiate methods
based on their performance. In this study we have identified
three examples where some degree of ground truth can be
derived from the literature. The first example concerns theta
(4–8Hz) oscillations elicited by brainstem stimulation in a
rat under urethane anesthesia where hippocampal LFPs were
recorded via a multicontact linear electrode. In the classic
three-synaptic circuit of the hippocampus, DG neurons synapse
on pyramidal cells in CA3 via mossy fibers, which in turn
synapse on CA1 pyramidal cells via Schaffer collaterals, resulting
in an anatomically unidirectional DG → CA3 → CA1 pathway
(Andersen et al., 1979; Amaral and Witter, 1989; Amaral et al.,
2007). This predicts that the theta generator in DG should exert
a significant unidirectional influence on the CA1 theta generator
whereas the causal influence in the opposite direction is small
and may be negligible. As expected, bipolar derivations yielded
a unidirectional information flow from DG to CA1, consistent
with the ground truth, whereas unipolar signals resulted in
a bidirectional causal influence with a significant CA1 →

DG, which is inconsistent with the anatomical prediction. We
also pursued other signal treatments. Average re-referencing
again did not yield the correct connectivity pattern. The CSD
treatment, which eliminates common signals, correctly detected
the causality in the DG → CA1 but did not completely remove
the causal effect in the CA1 → DG direction, potentially due to
noise amplification that occurs through repeated differentiation
(see below). This example clearly supports our hypotheses that
common signals adversely impact Granger causality and that the
problem can be overcome by using bipolar derivations.

Laminar Data from Monkey V4
Our second experimental example concerns alpha oscillations
(8–12Hz) in V4 in awake-behaving macaque where LFPs were

recorded via a multicontact linear electrode. Anatomically, axons
from granular layer cells synapse onto pyramidal cells in the
supragranular layers. These neurons in turn send axons that
synapse onto infragranular pyramidal neurons. Infragranular
pyramidal neurons send axons into the granular and upper
layers and complete the circuit. This is known as the canonical
circuit (Douglas and Martin, 2004). Physiologically, early work
on the genesis of the cortical alpha rhythm proposed that
layer five pyramidal neurons are the pacemaker cells (Lopes da
Silva, 1991). This hypothesis was supported by in vitro studies
on isolated slices of rat sensorimotor neocortex where layer
five pyramidal neurons were found necessary and sufficient to
produce synchronized oscillations of 5–12Hz (Silva et al., 1991)
and by studies in awake-behaving macaques where the alpha
generator in the infragranular layers acts as primary pacemaker
of alpha (Bollimunta et al., 2008). Anatomical and physiological
evidence thus converge to predict that the alpha generator in
IG layers should exert a significant unidirectional influence on
the G layer alpha generator whereas the causal influence in the
opposite direction is small and may be negligible. The bipolar
Granger causality is consistent with the ground truth, whereas
unipolar signals yielded bidirectional causal influence between
IG and G layers, which is not consistent with the ground truth.
Average re-referencing again did not help to overcome the
problem. The CSD treatment, which also eliminates common
signals, essentially identified the correct pattern of interaction,
but the G → IG magnitude is at or slightly above the
threshold level, depending on frequency. This may again be
understood through noise amplification via differentiation (see
below).

ECoG Data from Human Subject
Functional MRI studies show that PFC and MTL functionally
interact during memory-related cognitive processing (Grady
et al., 2003; Gazzaley et al., 2004; Nee and Jonides, 2008).
Anderson et al. showed that the interaction between MTL
and PFC is mediated by theta oscillatory synchrony (Anderson
et al., 2010). Whereas ground truth regarding the pattern of
the MTL-PFC causal interactions is difficult to ascertain in
humans, in rodents and non-human primates, it is known
that MTL structures project to PFC directly, whereas PFC
projection back to the MTL structures is indirect, mediated
by other brain areas (Rempel-Clower and Barbas, 2000;
Barbas et al., 2005; Vertes et al., 2007; Cassel et al., 2013).
This might suggest that MTL → PFC is larger than PFC
→ MTL in the theta frequency band. A previous human
ECoG study found this pattern during memory retrieval
(Anderson et al., 2010). Analyzing intracranial ECoG data
from an epilepsy patient undergoing presurgical evaluation
for surgical therapy, we examined Granger causality between
MTL and PFC during fixation, using both unipolar and
bipolar signals. Connectivity patterns calculated using bipolar
derivations agree with the expectation whereas that using
unipolar signals contradict the expectation. It is worth noting
however, that because of the lack of strong ground truth in this
example, the results should be seen as exploratory rather than
confirmatory.
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Average Reference
In addition to the comparison between unipolar and bipolar
signals, we have also considered the average re-referencing
method. In this method data is averaged across all channels
and this average is subtracted from each channel. Average re-
referencing is widely used in human scalp EEG studies. For
laminar recordings, theoretical work shows that voltage averaged
across the entire cortical column should be zero (Nicholson
and Freeman, 1975). Recent works have implemented average
referencing in invasive recordings (Pohlmeyer et al., 2014;
Steinmetz and Moore, 2014). Furthermore, Ludwig et al. (2009)
note the common use of average referencing in scalp EEG and
propose to use common average referencing in microelectrode
arrays to generate a more ideal reference. In terms of overcoming
the common signal problem, the average re-referencing method
will work well if the average produces near-zero activities.
However, this is often not the case, and previous studies have
cautioned that an average reference may also produce erroneous
connectivity estimates (Nunez et al., 1997). Here, for both the rat
laminar data and monkey laminar data, average re-referencing
yielded erroneous Granger causality results. Further examination
demonstrates that the average reference signal is not close to zero
and its magnitude is comparable to data from individual unipolar
recording channels.

Current Source Density
CSD involves the second spatial derivative of the laminar LFPs
and is an index of cross-membrane current flow. Taking the
second spatial derivative removes the common signal but at the
same time amplifies noise. To see the reason assume that noise
ξA and ξB from electrodes A and B are independent. The noise
in the bipolar signal derived from A and B is ξA − ξB whose
variance is equal to σ2ξA + σ2ξB. In other words, the noise level
is amplified through subtraction (first derivative). Three different
LFP channels, A, B and C, are required to compute CSD. The
noise of the second spatial derivative A + C − 2B has a variance
of σ2ξA + σ2ξC + 4σ2ξB which represents further amplification of
noise level. It has been shown that enhanced noise can cause
spurious effects when computing Granger causality (Nalatore
et al., 2007). In particular, the direction with zero Granger
causality can become significant under the influence of noise.
This may underlie the observed CSD-derived Granger causality
patterns in both rat and monkey data. In both cases, although
the expected connectivity patterns are close to being correctly
identified, CA1 → DG in the rat and G → IG in the monkey
showed Granger causality above or at the significance threshold,
inconsistent with ground truth prediction and the bipolar results.
The reason is likely noise amplification through differentiation.
Future work may consider combining CSD-derived Granger
causality with denoising approaches (Nalatore et al., 2007, 2009).

Additional Remarks
First, methods based on independent component analysis (ICA)
have been proposed to localize neural signals. Korovaichuk et al.
have suggested the combined use of ICA and CSD as high
resolution methods to identify LFP components in Schaffer and
perforant pathways and to quantify ongoing activity in selective

electrical stimulation of known rat hippocampal pathways
(Korovaichuk et al., 2010). Nolte and colleagues have suggested
that ICA can be used as a method to test for artifacts of volume
conduction prior to applying functional connectivity analyses
(Shahbazi et al., 2010). However, there are also arguments against
the use of PCA and ICA, citing that assumptions of orthogonality
in such methods as invalid in the context of interacting neuronal
populations (Gratiy et al., 2011). This concern is particularly
relevant for the laminar data considered in this study as the
neurons within the recorded compact structures are expected
to be highly interactive. Despite such concerns, combining ICA
and other source localization methods with Granger causality,
especially in large-scale networks, is a promising approach and
expected to be a fruitful area of exploration in the future.

Second, although the bipolar solution proposed here to deal
with the common signal problem may impact experimental
design, especially electrode placement, we are by no means
proposing the use of bipolar montage for data acquisition, as
this may lead to the irreversible loss of information. Rather, what
we proposed is to use bipolar derivation as a post hoc analysis
step, prior to computing functional connectivity measures such
as Granger causality.

Third, bipolar derivation is shown to be readily applicable
in many recording setups and makes minimum amount of
assumptions. How to choose the two electrodes depends on the
problem. For both the rat example and the monkey example, to
avoid subtracting out signals, we did not use adjacent electrodes
for bipolar derivations. However, the two electrodes cannot be
too far apart so as to sample activities from different generators.
The CSD profiles provide a useful guide for making that decision.
Even with precaution there might be significant signal loss
especially in the low frequency bands as low frequency activities
may be more widely shared among electrodes. For the ECoG
example this is not a major concern as the electrodes are
sufficiently far apart and the question asked concerns large-scale
brain structures.

Fourth, how common signals impact Granger causality
estimation is a complex problem. Different kinds of signals may
impact GC differently. An analytical treatment of this problem is
not yet available. Some insight may be gained from the studies
investigating the impact of measurement noise on Granger
causality (Nalatore et al., 2007) since common signals are additive
similar to measurement noise. Note that this situation is different
from the common input problem which occurs at the level of
neuronal processing. When a common input is introduced to
the noise terms of a multivariate autoregressive process, and
participates in the driving of the dynamics, we would expect
that the causal relations among the variables are not substantially
changed, because the common inputmainly impacts the so-called
instantaneous causality which is a separate quantity different
from the commonly used directional Granger causality (Ding
et al., 2006; Rajagovindan and Ding, 2008).

CONCLUSION

Common reference and volume conduction introduce common
signals in all recording electrodes. These unipolar signals
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may create a confounding influence on such connectivity
measures as Granger causality and leads to erroneous results.
Bipolar derivations are proposed here as a way to overcome
the problem. For both simulation and experiments, the results
show that bipolar derivations yield interpretable connectivity
patterns, supported by independent lines of evidence,
whereas unipolar signals do not. Average re-referencing
magnifies uncertainties along several dimensions and does
not help to overcome the problem. Second-derivative (CSD)
treatment, where applicable, eliminates common signals but
amplifies noise and related uncertainties in interpretation.
However, it is possible that CSD when combined with

denoising approaches may recover the interpretable causal
relations.
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