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The cerebral cortex is fundamental to the functioning of the mind and body. In vivo
cortical morphology can be studied through magnetic resonance imaging in several
ways, including reconstructing surface-based models of the cortex. However, existing
software for surface-based statistical analyses cannot accommodate “big data” or
commonly used statistical methods such as the imputation of missing data, extensive
bias correction, and non-linear modeling. To address these shortcomings, we developed
the QDECR package, a flexible and extensible R package for group-level statistical
analysis of cortical morphology. QDECR was written with large population-based
epidemiological studies in mind and was designed to fully utilize the extensive modeling
options in R. QDECR currently supports vertex-wise linear regression. Design matrix
generation can be done through simple, familiar R formula specification, and includes
user-friendly extensions for R options such as polynomials, splines, interactions and
other terms. QDECR can handle unimputed and imputed datasets with thousands
of participants. QDECR has a modular design, and new statistical models can be
implemented which utilize several aspects from other generic modules which comprise
QDECR. In summary, QDECR provides a framework for vertex-wise surface-based
analyses that enables flexible statistical modeling and features commonly used in
population-based and clinical studies, which have until now been largely absent from
neuroimaging research.
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INTRODUCTION

The cerebral cortex is integral to human psychological and physical functioning, and has been
studied for centuries (Fan and Markram, 2019). Modern neuroimaging techniques have enabled
non-invasive assessment of the cortex, which has led to a myriad of studies elucidating the
antecedents and consequences of typical and atypical cortical features. One common method for
obtaining in vivo brain scans is with magnetic resonance imaging (MRI). The images begin as a grid
of 3-dimensional grayscale pixels (voxels) which are commonly further processed by classifying
(segmenting) the voxels into gray matter, white matter and cerebrospinal fluid components
(Wright et al., 1995). Other tools subsequently trace and isolate the cortex to create surface-based
representations of the brain as a series of interconnected points (vertices) forming a 2D mesh
(Dale and Sereno, 1993; Fischl, 2012). Specific characteristics of the cortex like its thickness or
curvature can be derived from these surface representations at unique locations across the cortical
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mantle. These maps tend to consist of hundreds of thousands
of vertices, allowing the study of the cerebral cortex at a fine-
grain resolution. With advent of population neuroscience (Paus,
2010) and the introduction of several large-scale open-access
neuroimaging initiatives (Alfaro-Almagro et al., 2018; Casey
et al., 2018), it is imperative that the neuroimaging community
has a repertoire of tools available which are able to accommodate
these massive, high dimensional data sets.

Tools for vertex-wise analyses of brain imaging data have been
around since the creation of surface-based cortical models. One
widely used tool which implements the linear model is Qdec1,
which stands for Query, Design, Estimate, Contrast. Qdec is
bundled with FreeSurfer (Fischl, 2012), an open source software
suite designed to generate surface-based maps of the brain
from structural MRI data. Qdec facilitates whole-brain, vertex-
wise analyses from a graphical user interface. Though brilliantly
user-friendly, the interface has limitations including model
specification (e.g., restrictions on the number of continuous and
categorical variables that can be used) and handling of missing
data. Qdec is the front-end interface which was built on top of
the mri_glmfit program; a tool which was written in C++, works
from the command line, and can handle larger datasets and more
complicated design matrices. Another tool, SurfStat (Worsley
et al., 2009), was developed in MATLAB and has a number of
user-friendly features that mri_glmfit does not have, including
formula-based creation of design matrices. SurfStat is still widely
used (e.g., Albaugh et al., 2019), but has not been updated since
2008 and requires a MATLAB license.

The field of neuroimaging is rapidly developing, particularly
with studies generally growing in sample size due to the advent
of open databases, consortia collaborations, and population
neuroscience initiatives (Paus, 2010). These studies, increasingly
more epidemiologic in nature, require analytical tools that can
handle statistical and epidemiological characteristics like big
datasets, correction for confounding and selection bias, allowing
imputed data to account for missingness, and creating more
flexibility in statistical model specification (Smith and Nichols,
2018). The previously described vertex-wise analysis tools were
designed with vertex-wise analyses as their core purpose, but
may lack features that are now crucial to begin integrating into
neuroimaging as common practice to ensure proper analysis and
interpretation of the data. Furthermore, expansion of features
of those tools is not always straightforward as they were not
designed in a modular fashion. Lastly, each tool is designed
within a software framework which was not originally designed
with statistical computing in mind.

We designed the QDECR package, a flexible and extensible R
package for vertex-wise analyses. R is a programming language
designed around statistical computing (R Core Team, 2016) and
has become increasingly popular in academia and neuroimaging
(Muschelli et al., 2019). More importantly, R has a standardized
syntax for statistical modeling, arguably has the most extensive
statistical functionality of all existing programming languages,
and its codebase is improving and expanding every day through
a large user base and open source framework. We designed

1https://surfer.nmr.mgh.harvard.edu/

QDECR to fully utilize R’s existing statistical infrastructure. We
also designed QDECR to use the same user-friendly syntax as
all other R modeling functions, so new users are immediately
familiar with the QDECR syntax. Finally, we designed it to be
an extensible and modular framework, where advanced users can
implement their own type of statistical analyses on a vertex-wise
level while still using core features of the framework (e.g., reading
data, generating figures). In this manuscript we will describe the
structure and features of the QDECR package.

MATERIALS AND METHODS

General Work Flow
The general work flow of the QDECR package is shown in
Figure 1.

Input: FreeSurfer-Processed Images
Two sources of data need to be available in order to conduct
analyses. The first stream of data consists of the T1-weighted MR
images, which have been fully processed through the FreeSurfer
analysis suite (i.e., “recon-all”). Of note, after running the full
primary “recon-all” reconstruction, users also need to run the
“qcache” processing with “recon-all.” Activating the “-qcache”
flag will co-register a given dataset into a standard coordinate
system and spatially smooth the surface-based maps with a
set of full width half max (FWHM) values. It outputs these
maps in.mgh file format (Massachusetts General Hospital) in
the “surf” subdirectory of the FreeSurfer output. As part of
the FreeSurfer installation, the “SUBJECTS_DIR” environmental
variable is set to indicate the directory where all of the subject data
are stored; QDECR will recognize this environmental variable,
and users can set (or override) it via an optional argument
when calling QDECR.

Input: Phenotype/Covariate Data
The second stream of data involves the other information
relevant to the research question, specifically the phenotypic
information of interest and covariates (e.g., age and sex). These
data should be loaded into R with the user’s method of choice,
and ideally stored as a standard (imputed) data frame object.
Furthermore, the phenotype data must include the identifier
which was used to store the MRI data in order to link the two
data types during analysis (i.e., the identifier variable the MRI
data are stored on).

Analysis With QDECR
The next step is to run one of the analysis functions from
the QDECR package, for example “qdecr_fastlm” for linear
regression. At minimum, the following input arguments need to
be specified:

• “formula”: a formula object, specifying the linear model to
be used;
• “data”: a data frame containing the non-vertex (e.g.,

phenotype/covariate) data related to the research
question;
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FIGURE 1 | General workflow of the QDECR package, from data collection to post-processing.

• “id”: the name of the column in the data frame that
identifies each subject;
• “hemi”: a hemisphere (“lh” for left, “rh” for right);
• “project”: a project name used for labeling output files.

As an example, to run a vertex-wise analysis to study the effect
of age and sex on cortical thickness of the left hemisphere, the R
code would be:

“qdecr_fastlm(qdecr_thickness ∼ age + sex, data = pheno,
id = “id,” hemi = “lh,” project = “test”)”

where “pheno” is an R data frame object containing at least
the columns “id”, “age,” and “sex”. All rows in “pheno” must
correspond to an existing MRI session in “SUBJECTS_DIR”.
During the analysis, information on the input data as well as
the progress of the analysis will be printed on the console. The
analysis will generate a number of files on disk (Table 1). The
output of the analysis can be stored directly into an R variable, or
it can be loaded back in at a later point in time.

In the current version of QDECR, results which are corrected
for multiple comparisons (i.e., tests across all vertices) are by
default also saved. This is done automatically in “qdecr_fastlm”
using pre-cached smoothed Gaussian Monte Carlo – known
as MCZ – simulations on a cluster level (Hagler et al., 2006).
The cluster-forming threshold can be changed by specifying the
“mcz_thr” argument [default = 0.001 based on previous work
showing correspondence with full permutation tests (Greve and
Fischl, 2018)]. The cluster-wise p-values are further corrected
for performing additional analyses (e.g., in both hemispheres),
which can be set with the “cwp_thr” argument (default = 0.025,
which is 0.05 Bonferroni corrected for running both left and
right hemispheres).

The “qdecr_fastlm” function has many, additional arguments
that users can specify. Information on the function and its
arguments can be obtained by calling “?qdecr_fastlm.” Several
arguments may be of particular interest to users. First, users

can a path to SUBJECTS_DIR into “qdecr_fastlm” directly with
the “dir_subj” argument, and to FREESURFER_HOME with
the “freesurfer_home” argument. Second, the “target” argument
allows for specification of the target template to use. Users can
input templates that are available in SUBJECTS_DIR, but note
that “–qcache” must be run with whichever target template has
been specified. By default, the “fsaverage” template is used. Third,
users can differentiate which level of smoothing (i.e., FWHM)
should be used by using the “fwhm” argument, which is set
to 10 by default.

Inspection of QDECR Output
The output of the analysis can be explored with an array of
functions within the QDECR package. Most of these functions
were built on top of commonly used R functions. For example,
the “print” and “summary” functions – which are familiar to most
R users – can be used to extract information about the analysis
and the significant brain areas (clusters) identified, respectively.
Furthermore, QDECR provides functions to visualize the data
(e.g., “hist” and “freeview”).

Internal Structure
The field of neuroimaging has grown extensively over the last few
decades, and a wealth of analysis methods have been developed.
This can be daunting for new users, who would benefit from
user-friendly and restricted analysis software. However, such
restrictions may deter advanced users who require flexibility
in applying their methods. QDECR was designed with both
audiences in mind: straightforward and intuitive to use for
beginners, yet flexible and extensible for advanced users. To
achieve this, QDECR was designed to contain six modules:

1. Input checking. All input arguments undergo integrity
checks. For example, provided paths are checked if they
already exist in the system, and datasets are checked for
the presence of the variables in the model specification,
i.e., the formula.
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TABLE 1 | Overview of the output files.

Name Per stack Description

“project”.rds no A file that stores the qdecr output object and can be reloaded with “qdecr_load.”

finalMask.mgh no The final mask that was used for the analyses.

fwhm.dat no A file containing the estimated smoothness.

significant_clusters.txt no Contains all significant clusters (the output of “summary(vw, annot = TRUE)”).

stack_names.txt no Contains the link for variable name-stack number.

stack*.coef.mgh yes Contains the vertex-wise regression coefficients from the linear regression.

stack*.se.mgh yes Vertex-wise standard errors from the linear regression.

stack*.t.mgh yes Vertex-wise t-values from the linear regression.

stack*.p.mgh yes Vertex-wise p-values from the linear regression.

stack*.cache.th*.abs.sig.cluster.mgh yes Vertex-wise log10-transformed p-values of the cluster-wise significance.

stack*.cache.th*.abs.sig.cluster.summary yes Text file with summary information about clusters from the "mri_surfcluster" call.

stack*.cache.th*.abs.sig.masked.mgh yes Vertex-wise values after setting the non-cluster vertices to zero.

stack*.cache.th*.abs.sig.ocn.annot yes Vertex-wise annotations for the clusters to which each vertex belongs.

stack*.cache.th*.abs.sig.ocn.mgh yes Vertex-wise values for the clusters to which each vertex belongs.

stack*.cache.th*.abs.sig.voxel.mgh yes Vertex-wise value for the corrected voxel-wise significance.

The “project”.rds file will have the name of the outputted project name. The “stack*” names will be replaced with the stack number, e.g., “stack1.” The “th*” names will be
replaced with the threshold of the cluster-wise threshold. All “.cache.” files are output from mri_surfcluster.

2. Model preparation. The first steps of the statistical
modeling are done here. The user-specified model is
created and all steps that can be done before the vertex-
wise calculations are processed. For example, in linear
regression the portion of the design matrix that is
common to all vertices is generated here.

3. Loading the vertex-wise data. In this step, the dataset and
the provided paths are used to load in the vertex-wise data
into a file-backed matrix.

4. Vertex-wise analysis. This module builds upon step 2 and
runs the statistical model for every vertex. The output of
each model is stored in dedicated file-backed matrices.

5. Multiple testing correction. Once all analyses are
done, multiple testing correction can be applied
across all vertices.

6. Output generation. An R object is compiled to contain all
the information on the QDECR call, and output files are
generated on disk to store the results more permanently.

These modules are implemented into the “qdecr” function.
At its core, “qdecr” can handle any statistical model that is
entered as long as a model preparation module (module #2) and
a corresponding vertex-wise analysis module (module #4) exist.
Functions like “qdecr_fastlm” are wrappers that automatically
use the appropriate modules in “qdecr” to perform vertex-wise
linear regression. Thus, users who only want to perform analyses
do not have to think about any of the modules nor the underlying
“qdecr” function, while advanced users can use the framework to
more easily implement new types of models.

Formula Objects
An important part of regression modeling is the creation of a
design matrix. R uses formula objects in building design matrices.
Formulas usually have three components: (Fan and Markram,
2019) the left hand side (the outcome or dependent variable)
(Wright et al., 1995) the right hand side (the determinants or

independent variables) and (Dale and Sereno, 1993) a tilde to
separate the sides. For example, in the formula “qdecr_thickness
∼ age + sex,” the qdecr_thickness is clearly defined as the
outcome variable, and age and sex are denoted as the determinant
variables. Using R formula objects for design matrix creation has
a number of strengths:

• Categorical variables (like “sex”) are automatically
recoded. By default, the levels will be dummy-coded
according to the default behavior of linear regression in
R, but other contrasts are available.
• Interaction terms can be introduced using the “∗” (main

effects plus interaction) or “:” (interaction only) symbols,
for example “qdecr_thickness∼ age ∗ sex.”
• Variables can be customized within the formula, for

example by adding polynomial terms (e.g., “poly(age, 3)”),
adding splines (e.g., “splines::ns(age, 3)”), standardizing a
variable (e.g., “scale(age)”) and recoding of variables (e.g.,
“cut(age, 3)”).
• New features for formulas can be seamlessly introduced,

such has been done with the “Formula” package
(Zeileis and Croissant, 2010).

Thus, R formula objects – when used properly – allow for
intuitive and extremely powerful behavior related to the creation
of a design matrix. QDECR builds upon these principles, and
in general most functions that manipulate formula objects will
automatically work in QDECR as well, offering users continuity
in syntax they already know from R.

Note that QDECR can handle all vertex-wise measures that
FreeSurfer outputs by default, and the names are simply the
FreeSurfer-assigned names preceded by “qdecr_” (Table 2),
such as “qdecr_thickness” and “qdecr_area.pial.” The only
modification is “w-g.pct,” which is written as “qdecr_w_g.pct”
as the hyphen (or minus sign) has a specific meaning in
R formula objects. In certain cases, users may choose to
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TABLE 2 | Overview of the surface-based measures.

Surface measure
in FreeSurfer

Name in QDECR Description

area qdecr_area Surface area of the white
matter surface

area.pial qdecr_area.pial Surface area of the pial matter
surface

curv qdecr_curv Smoothed mean curvature

jacobian_white qdecr_jacobian_white The Jacobian of the spherical
transformation

sulc qdecr_sulc Average convexity compared to
the average surface

thickness qdecr_thickness Cortical thickness; the distance
between the white and pial
surfaces

volume qdecr_volume Cortical volume

w-g.pct qdecr_w_g.pct Gray to white signal intensity
ratio

white.H qdecr_white.H Mean curvature of the white
surface

white.K qdecr_white.K Gaussian curvature of the white
surface

create custom surface maps (e.g., functional activation maps).
QDECR can be used to analyze those maps, by specifying the
“custom_measure” argument of “qdecr_fastlm.” Users should
supply the name of the vertex measure preceded by “qdecr_”
(e.g., “qdecr_radialdistance”). Furthermore, the surface files must
be placed in the “surf” directory of the FreeSurfer output
of each participant. Finally, the surface files have to follow
the same naming convention as the other surface maps (e.g.,
“lh.radialdistance.fwhm10.fsaverage.mgh”).

Statistical Modeling of Linear Regression
The base model implemented in QDECR is a vertex-wise linear
regression model with the vertex-wise metric, e.g., cortical
thickness, as the outcome. At each vertex, a least squares
regression would be performed:

β = (XTX)
−1

XTy,

where X is anN (subjects)× p (variables) matrix that is the design
matrix, y is an N × 1 vector with the values at a given vertex, and
β is a p× 1 vector of regression coefficients.

Running a linear regression for each separate vertex using
the default “lm” function from the “stats” package would take
a significant amount of time in R as R is an interpreted
programming language. In interpreted languages the interpreting
and execution of a line of code requires some operation time.
Given the thousands of vertices that maps exist of, and given that
linear regressions take milliseconds to perform, the compute time
can become hours to days. The regression coefficients for all m
vertices can be determined in a single step with the formula:

B = (XTX)
−1

XTY,

Where Y is an n×m (number of vertices) matrix with all vertex-
wise values, and B is a p × m matrix of regression coefficients.

Note that the vertex measures are the outcome, and thus the
design matrix for all vertices is identical. In order to decrease run
time QDECR therefore only builds the design matrix once.

The matrices may become exceedingly large given thousands
of vertices, thousands of participants and tens of imputed
datasets. This would then exceed the RAM size of the RAM size
of consumer grade computers. To avoid this, QDECR internally
splits Y into “chunks,” or smaller partitions, so that the analyses
can be run in smaller sets limiting the amount of required RAM
at a given moment. By default, “qdecr_fastlm” creates chunks of
1,000 vertices, but the size can be fine-tuned to a given setup (e.g.,
number of subjects, RAM availability, imputed datasets, etc.) with
the “chunk_size” argument.

Handling Imputed Data
Missing covariate or phenotypic data in datasets can pose
problems for statistical analyses. Previous vertex-wise tools
require complete data, and thus any subjects with missing
covariate or phenotypic data would have to be excluded for
analysis, which could lead to loss of power and an increase in bias
(Rubin, 1976). Rather than using only complete observations,
methods have been developed to impute the missing data,
typically under the assumption that the missingness is random
and that the missingness can be predicted from other available
data. To account for uncertainty in the imputation process, the
imputation is repeated to generate several imputed datasets. For
users who decide imputations are useful and feasible for their
particular set of analyses, QDECR was designed to handle such
imputed datasets from the most commonly used R imputation
packages. Internally, QDECR uses a function called “imp2list”
that converts any prespecified data object to a list of data frames.
Consequently, “qdecr_fastlm” accepts the following object types
for its “data” argument: Data frames, matrices, and lists of
data frames, as well as imputed objects from the following
R packages: mice (van Buuren and Groothuis-Oudshoorn,
2011), mi (Su et al., 2011), amelia (Honaker et al., 2011), and
missForest (Stekhoven and Buhlmann, 2012). Furthermore, users
can implement methods for new classes by converting their object
to a list of datasets. In regression analyses, the estimates across the
imputed datasets are pooled using Rubin’s rules (Rubin, 1987).

Proof of Principle for Vertex-Wise Linear
Regression
To illustrate the QDECR package we performed vertex-wise
analyses in 1,000 randomly selected participants from the UK
Biobank (Alfaro-Almagro et al., 2018). The participants had a
mean age of 63.9 years (standard deviation: 7.7, range: 47.1 – 80.0)
and 52.8% was female. The T1-weighted images were processed
with FreeSurfer version 6.0 (Fischl, 2012). Additionally, in order
to facilitate reproducible benchmarking and testing, a set of
10,000 simulated surface-based cortical thickness maps have
also been made publicly available alongside a full installation of
QDECR at Code Ocean (Lamballais and Muetzel, 2020), and can
be freely explored and tested via the web interface2. A full tutorial

2https://codeocean.com/capsule/6804031/tree/v2
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FIGURE 2 | Examination of the QDECR analysis on the association of age and cortical thickness in a subset of the UK Biobank. (A) The “print” function returns the
key information of the analyzed project, including the input arguments, the included formula, the size of the dataset and the number of included vertices. (B) An
example of output from the “summary” function. Each row represents a statistically significant cluster.

on how to use QDECR can be found in the Supplementary
Materials (Section 1) and via the GitHub repository3.

RESULTS

Age Associations: Example in the UK
Biobank
Within the UK Biobank sample, we aimed to study the
association between age and vertex-wise cortical thickness,
adjusted for sex. This can be achieved by running the following
code in R:

vw <- qdecr_fastlm(qdecr_thickness ∼ age + sex,
data = pheno, id = “id,” hemi = “lh,” project = “test_project”)

The formula (i.e., qdecr_thickness ∼ age + sex) captures
cortical thickness as the dependent variable, and age and sex

3https://github.com/slamballais/QDECR

as the independent variables. The variable “pheno” contains the
information on age and sex per participant, and the identifier
is “id.” By specifying “hemi = “lh””, we specify that the
left hemisphere should be analyzed. Finally, the project name
“test_project” is used, which will be incorporated in the names
of the files that will be written to disk. The output is stored in the
variable “vw.”

Once the analysis is done, a summary of the analysis
can be viewed with “print(vw)” (Figure 2A). The significant
clusters can be tabulated with “summary(vw)” (Figure 2B),
which shows that a number of clusters have a significant
association with age. Further inspection of the vertex-wise
data can be done with “hist(vw)” (Figure 3A), which generates
a histogram of the vertex-wise mean cortical thickness. The
results can be visualized with the FreeSurfer FreeView tool
by typing “freeview(vw)” (Figure 3B). Within the FreeView
visualization it is clear that cortical thickness generally
decreases with age, particularly in the temporal lobe and
the precentral gyrus.
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FIGURE 3 | Plots of the QDECR analysis results. (A) A histogram of the vertex-wise mean cortical thickness for the study sample, generated with “hist.”
(B) FreeView can be called with the “freeview” function. This panel displays the vertex-wise map for the effect of age on cortical thickness.

Age Associations: Comparison to
mri_glmfit
In order to demonstrate the accuracy and consistency of the
tool, we compared the results from the previous paragraph
to those of mri_glmfit using the same data from the UKBB.
A linear model for the association of age and sex with cortical
thickness was generated in mri_glmfit with a DOSS (Different
Offset, Same Slope) design. A full description of the input
and code is given in the Supplementary Materials (Section
2). The vertex-wise regression coefficients – or betas – for age
were examined. The mean absolute difference in the regression
coefficients for age across the tested vertices was 7.9 · 10−7, which
arose from differences in rounding. The correlation between
the betas was near perfect (Pearson’s r = 1.00, Spearman’s
ρ = 0.9999954).

Performance Benchmark
In order to demonstrate how QDECR performs in terms of
compute time in comparison to other tools, we used simulated
data to benchmark the performance of “qdecr_fastlm.” We
studied the influence of sex and age on cortical thickness
of the left hemisphere in 100, 500, 1,000, 5,000 and 10,000
participants. Further, we tested the impact of multiple imputation
by generating 1, 33 or 100 imputed datasets. Lastly, we studied
the impact of parallel processing by using 1 or 4 CPU cores.
Figure 4A contains the results of the benchmark. The time it took
to perform an analysis on unimputed data ranged from 0.8 min
for a sample of 100 datasets to 26.7 min for a sample of 10,000
datasets. When the dataset with 10,000 was further imputed 100
times for missing covariates, the time increased to 146.4 min (i.e.,
448% longer than unimputed). The performance can be boosted
by recruiting more CPU cores for the analysis. For example, using
4 cores compared to 1 core on 10,000 datasets with 100 imputed
datasets dropped the analysis time from 146.4 to 54.9 min (i.e.,
62.5% reduction).

We further compared the QDECR performance with Qdec
and mri_glmfit (Figure 4B). Both Qdec and mri_glmfit were
faster than QDECR on samples of 100 individuals, and slower for
samples with 333 participants and more. Furthermore, Qdec was
not able to finish the analyses on 3,333 and 10,000 participants
due to errors that arose when merging the underlying MRI
data into a single set. While mri_glmfit did succeed in running
the analyses, compared to QDECR it was much slower for
the set of 3,333 individuals (42.8 vs. 6.8 min with QDECR)
and 10,000 individuals (313.1 vs. 26.7 min with QDECR).
Finally, we compared the peak memory use of QDECR with
that of mri_glmfit (Figure 4C). Overall, QDECR had a higher
peak memory use than mri_glmfit. Where QDECR reached
a peak memory use of 8.4 GB for 3,333 individuals and
20.8 GB for 10,000 individuals, mri_glmfit used 5.3 and 14.4
GB, respectively.

DISCUSSION

QDECR provides a framework to perform vertex-wise analyses
in R. It has the same base functionality as other vertex-wise
tools and adds several functionalities. We have shown that
QDECR runs faster on large datasets than other tools, and can
additionally handle imputed datasets to minimize bias or loss
of power due to exclusion of participants. Moreover, we aimed
to maximize user friendliness for individuals familiar with R
through the implementation of formula objects to handle design
matrix specification and through writing functions with similar
arguments as other base functions. Finally, QDECR sets the stage
for further development of statistical applications to study the
cerebral cortex in population neuroscience settings.

QDECR has a number of limitations. The primary focus
of the package has been to implement vertex-wise analyses in
R. In contrast, glmfit has a myriad of options for the MRI
data available. It works with both voxel-wise and vertex-wise
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FIGURE 4 | Computation time benchmark of the QDECR package. (A) Displays the computation time of an analysis with QDECR when varying sample size, number
of cores (threads) used and number of imputed datasets that were included. (B) Compares the computation time for mri_glmfit, QDEC and QDECR when using a
single core (thread) and unimputed data. For QDEC we used the time that the analysis took, without loading or assembling of the data or the multiple testing
correction. For mri_glmfit we measured the time it took to run three commands: (Fan and Markram, 2019) mri_preproc to assemble the FreeSurfer output, (Wright
et al., 1995) mri_glmfit to run the analysis and (Dale and Sereno, 1993) mri_glmfit-sim to perform the multiple testing correction. **Note: QDEC returned errors when
attempting to run the analyses on 3,333 and 10,000 participants and is thus not represented for those sample sizes in panel (B). (C) Compares the peak memory
use in gigabytes (GB) for mri_glmfit and QDECR when using a single core (thread) and unimputed data.

data with all volume files that are recognized by the FreeSurfer
mri_convert function (.mgh,.nii, etc.). It also has several options
related to the analysis that are not available in QDECR yet,
such as different methods for multiple testing correction (e.g.,
permutation testing) and weighted least squares. However,
QDECR is still in development, and these options will likely
be available in the future. Another limitation for part of the
potential users is that QDECR is only available in R. Qdec will
therefore remain more feasible for users with little programming
experience, and MATLAB and Python users would have to learn
basic R skills in order to use it. Furthermore, developing new
modules requires mastery of R. Still, we opted for R as it provides
an ideal environment to further develop the statistical options
for vertex-wise analyses. Furthermore, R is gaining popularity
in medical research, especially with the advent of Bioconductor
(Huber et al., 2015) and more recently Neuroconductor
(Muschelli et al., 2019).

While QDECR presents a substantial contribution to vertex-
wise analyses, several areas of opportunity for expansion and
improvement exist. First, at the moment only the general linear
model is implemented. We envision logistic regression, linear
mixed models, and structural equation models to be the next key
targets for future implementation. Next, though QDECR relies
on multiple testing correction that is native to the FreeSurfer
library, new modeling techniques may require new methods for
adjusting analyses for multiple comparisons. Thus, another target
for development is implementing permutation testing and other
state-of-the-art methods in the field of neuroimaging. Finally,
QDECR in its first implementation can handle the mgh file
format and assumes a FreeSurfer image reconstruction. In the
future, new methods should be implemented to accommodate
other file format types [e.g., Minc/Civet (Ad-Dab’bagh et al.,
2006)], and allow for 3D voxel data in addition to surface data
(e.g., Nifti format data).
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CONCLUSION

QDECR extends the capabilities of existing whole-brain vertex-
wise statistical software for neuroimaging data analysis, allowing
for larger (population-based) datasets, incorporation of novel
epidemiological and statistical concepts, and elegant expansion
within the widely used and open-source R statistical framework.
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