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Abstract

Brain gene expression profiling studies of suicide and depression using oligonucleotide 

microarrays have often failed to distinguish these two phenotypes. Moreover, next generation 

sequencing (NGS) approaches are more accurate in quantifying gene expression and can detect 

alternative splicing. Using RNA-seq, we examined whole-exome gene and exon expression in non-

psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) 

and MDD non-suicides (MDD, N=9) in dorsal lateral prefrontal cortex (Brodmann Area 9) of 

sudden-death medication-free individuals postmortem. Using small RNA-seq, we also examined 

miRNA expression (9 samples per group). DeSeq2 identified thirty-five genes differentially 

expressed between groups and surviving adjustment for false discovery rate (adjusted p<0.1). In 

depression, altered genes include humanin like-8 (MTRNRL8), interleukin-8 (IL8), and serpin 

peptidase inhibitor, clade H (SERPINH1) and chemokine ligand 4 (CCL4), while exploratory gene 

ontology (GO) analyses revealed lower expression of immune-related pathways such as 

chemokine receptor activity, chemotaxis and cytokine biosynthesis, and angiogenesis and vascular 

development in (adjusted p<0.1). Hypothesis-driven GO analysis suggests lower expression of 

genes involved in oligodendrocyte differentiation, regulation of glutamatergic neurotransmission, 

and oxytocin receptor expression in both suicide and depression, and provisional evidence for 

altered DNA-dependent ATPase expression in suicide only. DEXSEq analysis identified 

differential exon usage in ATPase, class II, type 9B (adjusted p<0.1) in depression. Differences in 

miRNA expression or structural gene variants were not detected. Results lend further support for 

models in which deficits in microglial, endothelial (blood-brain barrier), ATPase activity and 

astrocytic cell functions contribute to MDD and suicide, and identify putative pathways and 

mechanisms for further study in these disorders.
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Introduction

Major depressive disorder (MDD) is common, with a 1-year prevalence of 10–15%. The 

lifetime mortality due to suicide in MDD reaches 15%. There is a strong association 

between suicide and psychopathologies such as MDD (1), but those at risk also have a 

diathesis with neurobiological underpinnings related to the predisposition to suicide (2). 

Traditional neurotransmitter system abnormalities explain only some of the neurobiology of 

suicide (3), and studies must separate the pathogenesis of MDD from the diathesis for 

suicidal behavior. Exploratory genome-wide brain gene expression profiling offers an 

unbiased way of seeking molecular phenotypes associated with MDD and suicide.

Genome-wide brain expression profiling of suicide and depression using oligonucleotide 

microarrays have identified potentially responsible genes and molecular pathways (3). 

Previous brain expression profiling studies of non-psychiatric sudden death controls (CON) 

compared with MDD found altered expression of synapse-related genes (4), genes 

implicated in the inhibition of cell proliferation (5), neuropeptides involved in stress 

response (6), and genes involved in oligodendroglial differentiation (7). Studies of suicide 

and MDD have found altered expression of GABAergic, glutamatergic and ATP 

biosynthesis related pathways (8–10). However, hybridization-based methods have 

limitations, including reliance upon existing knowledge about genome sequence, high 

background levels due to cross-hybridization (11,12), and a limited dynamic range of 

detection due to both higher background and signal saturation (13). Critically, hybridization-

based oligonucleotide microarrays and protein assays are limited to detecting particular 

(protein coding) mRNA transcripts and protein outputs of a gene, yet it is now evident that 

most multi-exon genes undergo alternative splicing, which greatly increases the functional 

diversity of protein species (14). It has been shown that RNA editing of serotonin receptor 

2C (5-HT2C) results in receptor isoforms that activate G protein less efficiently, and has 

been previously linked to depression and suicide (15). However, it is unknown whether more 

common forms of RNA processing such as alternative splicing play a role in these disorders.

Next generation sequence (NGS) technologies allow sequencing of all RNA transcripts 

produced by a given gene, and hence provide information about the whole exome (16). 

Unlike hybridization-based approaches, RNA-seq is not limited to detecting previously 

identified transcripts, but also novel transcripts including many tissue specific non-protein-

coding RNAs. Another advantage is that RNA-seq has minimal background noise because 

the cDNA sequences can be unambiguously mapped to unique regions of the genome. RNA-

seq has been shown to be highly accurate for quantifying expression levels, confirmed by 

using quantitative PCR (qPCR) (17) and spiked RNA controls of known concentration (18). 

Moreover, RNA-seq allows for the detection of splice junctions and can be used to measure 

differences in splicing events (i.e. differential exon usage, DEU) (19).
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In the current study, we applied NGS whole-transcriptome profiling (RNA-seq) to identify 

genes, miRNA species, and molecular pathways that are altered (via differential expression 

or differential exon usage) in suicide and major depressive disorder (MDD) in dorsolateral 

prefrontal cortex (BA 9). The dorsolateral prefrontal cortex is involved in regulation of 

impulsivity, deicision-making, cognitive control of mood and other executive functions 

related to suicidal behavior (20,21), and functional imaging studies have consistently found 

deficits in perfusion and cortical thickness in prefrontal cortex of suicides prior to death and 

suicide attempters (22,23). Whereas previous studies compared non-MDD suicides, sudden 

death non-psychiatric controls (CON), and MDD suicides (MDD-S) (24), here we compare 

MDD-S to MDD non-suicides (MDD) and CON. This allowed separate evaluation of effects 

of MDD (vs. CON) on gene expression by comparing MDD combined MDD-S vs. CON, 

and the effect of suicide by comparing MDD-S vs. CON combined with MDD. DSM-IV 

diagnosis was done by psychological autopsy using a validated, structured clinical interview 

for axis I and axis II disorders and all subjects were free of neuropathology and had negative 

toxicological screens for psychotropic medication and illicit drugs. In addition to 

exploratory, whole-genome pathway analysis (FDR corrected at p<0.1), we also applied a 

hypothesis-driven approach at a more lenient threshold (p<0.05 uncorrected) to examine 

specific pathways previously reported by a related study of MDD-S, CON and non-

depressed suicides using oligonucleotide microarrays (8).

Materials and Methods

Samples

Fifty-nine clinical samples were obtained from the brain collection of The Division of 

Molecular Imaging and Neuropathology, at the New York State Psychiatric Institute and 

Columbia University. All procedures for brain collection and psychological autopsy were 

approved by the applicable Institutional Review Boards. Psychiatric diagnosis in the suicides 

and depressed individuals as well as absence of diagnoses in the controls was determined by 

the Structured Clinical Interview for DSM IV (SCID-I and II) as part of a validated 

psychological autopsy method described elsewhere (25). All subjects were selected because 

they died suddenly to avoid metabolic complications related to agonal effects. All brains 

were free of gross neuropathology and had negative brain toxicology for psychotropic, illicit 

psychoactive drugs and neurotoxic drugs. There were no diagnoses of Alcohol or Drug Use 

Disorders. Antemortem medication history for three months ruled out recent exposure to 

psychotropic medication and confirmed results of comprehensive peripheral and brain 

toxicology. Brain samples were dissected from Brodmann Area 9 as previously reported (26) 

with an attempt to enrich for gray matter in when dissecting tissue from BA9. However, 

samples inevitably also contained a small amount of white matter.

We applied whole-exome, gene-level analysis of count data using DESeq2 (27) to examine 

differential expression between 21 MDD-S (subjects with major depressive disorder and 

suicide), 9 MDD (subjects with MDD and no suicide), and 29 sudden death healthy control 

(CON) subjects with no MDD and no suicide (59 samples total). Small RNA analysis 

(miRNA differential expression) used an age and sex matched subset that included 9 MDD-

S, 9 MDD and 9 CON. The main results reported throughout the text derive from the full 
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dataset of 59 samples, and adjust for age and gender. Unfortunately RIN scores from two 

samples (one MDD-S and one CON) were not estimated due to an unexpected ribosomal 

ratio, low 18S or low RNA concentration. Given that RIN score captures the integrity of 

ribosomal RNAs but fails to measure total mRNA integrity, and is not necessarily a 

determining factor in generating good quality RNA sequencing data (personal 

communication with Peter Nagy, Director of Columbia University Genomics Core in the 

Department of Pathology), in the main text we present results in the full sample (N=59) 

without covarying for RIN score, and compared these results to an additional analysis that 

includes RIN score as a covariate in a subset of 57 samples (results listed in Supplement). 

See Supplementary Material for further discussion on accounting for the possible effects of 

pH, PMI and RIN. The raw RNA-seq data will be deposited in publically available and 

structured repositories (i.e. Gene Expression Omnibus, see Supplementary Materials for 

more details).

RNA sample preparation and sequencing

RNA was extracted from dorsal prefrontal cortex (BA9) as previously described (26,28) and 

according to the guidelines recommended by the NIH Roadmap Epigenomics Mapping 

Consortium (REMC). We used the Ambion’s mirVana miRNA isolation kit (#. AM1560, 

Life Technologies, Carlsbad, CA, USA) to isolate total RNA from postmortem brain tissue 

(Brodmann Area 9). The coding RNA library was generated using the TruSeq Stranded Total 

RNA Sample Prep kit (Illumina, San Diego, CA, USA) which includes rRNA depletion and 

chemical fragmentation. The miRNA libraries were generated using the TruSeq Small RNA 

Sample Prep Kit (Illumina, San Diego, CA, USA) following the manufacturer’s 

recommendations (no rRNA depletion or chemical fragmentation was performed).

Paired-end, strand specific sequencing for total RNA was performed on Illumina HiSeq 

2500 with 100 bp read lengths, while single-end sequencing was performed for microRNA 

on Illumina MiSeq with 50 bp read lengths. For each clinical sample, raw RNA-seq reads 

were aligned and mapped to the Ensembl GRCh37 human reference genome and assembled 

using Tophat v2.0.9 resulting in BAM files for each of 59 samples. Between 17,000,000 and 

57,000,000 reads were obtained for each sample, and ~75–90% of reads were successfully 

mapped to the genome for each sample. Of these reads, ~10–15% aligned to multiple 

genomic loci. Read statistics for each sample (subject) are listed in Supplementary Table 1. 

Note that at the time of writing of this manuscript, the most recent GTF file compatible with 

Tophat was GRCh37. Hence some of the IDs listed in the main text tables have been 

deprecated and are therefore not included (i.e. they been replaced by one or more IDs) in the 

most recent (GRCh38) EnsEMBL database. The archived GRCh37 database can be accessed 

at http://grch37.ensembl.org/index.html.

For microRNA, the resulting FastQ files (adaptor sequences already trimmed) were first 

converted to FASTA format and processed according to the Small RNA Analysis pipeline in 

CLC Genomics Workbench version 7.5 (http://www.clcbio.com/products/clc-genomics-

workbench/ ) using default settings (i.e. mature length variants were allowed 2 additional or 

missing upstream and downstream base-pairs and 2 mismatched base-pairs, and alignment 

was strand-specific). Unique reads were extracted and counted and subsequently merged and 

Pantazatos et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://grch37.ensembl.org/index.html
http://www.clcbio.com/products/clc-genomics-workbench/
http://www.clcbio.com/products/clc-genomics-workbench/


annotated according to known miRNA species included in miRBase Release 21. Total 

counts for each miRNA (1,353 unique annotations with positive counts for one or more 

samples) were divided by the total library size to arrive at an expression value for each 

sample. As the miRNA data are count data which are not normally distributed, non-

parametric statistical tests were applied. These expression values were submitted to one-way 

Kruskal-Wallis analysis of variance, a non-parametric version of 1-way ANOVA, with three 

levels: MDD-S, MDD and CON. The samples for miRNA group comparisons were matched 

for age and sex (Table 1), and RIN scores and brain pH also did not differ between the 

MDD-S, MDD and CON groups (N=9 each group, p-vals > 0.75, Table 1). Therefore these 

variables were not included as nuisance covariates in the above model.

Gene-level differential expression analyses

We used DESeq2 v.1.6.3 (27) to assess differential expression between groups. DESeq2 

ignores ambiguously mapped reads and applies a Generalized Linear Model (GLM) to count 

data assuming a negative binomial distribution. This approach allows for adjustment of 

nuisance effects (here age, gender and RIN score) and uses shrinkage estimation for 

dispersion (i.e. variance within in group) and fold changes (pooling information both across 

samples and across all genes) to improve stability and interpretation of estimates. See 

Supplementary Materials for R session information and primary R code used to generate 

these results.

For each BAM file resulting from Tophat2, read counts per gene were summarized using the 

‘summarizeOverlaps’ function in the GenomicAlignments R library (29) and a transcript 

database derived from the GRCh37 human genome assembly. For each gene, read counts 

were fit to a GLM with log link function (~ age + sex + condition or ~age + sex + RIN + 

condition), where condition was the factor of interest with three levels: MDD-S, MDD and 

CON. A likelihood ratio test (LRT) was performed, whereby the likelihood of the above 

model given the data was compared to a reduced model which excluded the “condition” 

factor. The LRT was performed in order to test all three levels at once (equivalent to an 

omnibus F-test). For significant testing in the LRT, an analysis-of-deviance between the full 

model (with the condition factor) and the reduced model is computed by means of a χ2 

likelihood-ratio test (19).

In addition to the above model in which each group was modeled separately, two additional 

models were estimated whereby by the three levels (MDD-S, MDD and CON) were reduced 

to two levels: one in which MDD-S and MDD groups were combined in order to estimate 

effects of depression (MDD-S + MDD vs. CON), and another in which MDD and CON 

were combined to estimate effects of suicide (MDD-S vs. MDD+CON). Here log2 fold 

changes (LFC, or log2FC) of between-group differences were estimated via contrasts of 

individual coefficients and associated p-values were generated. Note that pairwise group (i.e. 

MDD-S vs. CON, MDD-S vs. MDD, MDD vs. CON) and suicide (MDD-S vs. CON+MDD) 

and depression (MDD-S + MDD vs. CON) comparisons were contrasts of parameter 

estimates generated from the above models which included age and gender as nuisance 

covariates. Hence these contrasts are controlling for age and sex effects.
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In DESeq2, significance testing for group comparisons uses the Wald test, whereby 

shrunken estimates of LFC are divided by its standard error, resulting in a z-score, which is 

then converted to a p-value. See (27) for more details. For both LRT and contrasts, p-values 

for genes surviving an independent filtering step based on overall mean read count were 

adjusted for multiple comparisons correction using Benjamini-Hochberg correction for false 

discovery rate (FDR) at threshold of p<0.1 (as per all defaults in DESeq2, see (27)). For 

main exploratory analyses we did not require a pre-specified effect size (i.e. a minimum 

LFC threshold was not applied). However LFC is reported for each gene surviving multiple 

comparisons correction pairwise group comparisons and pairwise group comparisons 

applied a minimum LFC threshold (10% fold change).

qPCR Validation

RNA Extraction—RNA was extracted from samples using the Qiagen RNeasy Mini Kit 

(Qiagen, Germantown, MD; Cat. no. 74104) according to the manufacturer’s protocol and 

included optional on-column DNase treatment. cDNA Synthesis: RNA was quantitated by 

spectrophotometer and subsequently, 1μg total RNA was used as template to synthesize 

cDNA with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA; Cat. no. 4368814) with a reaction volume of 50μL. Gene Expression Assays: Gene 

expression assays were purchased from Applied Biosystems (Cat. no. 4369016) and are 

supplied as a 20x concentration mix (final primer concentration 900nM each; probe 

concentration 250nM). Specific assay numbers are as follows: ACTB: Hs01060665_g1, 

MTRNR2L8: Hs04235260_sH, CCL4: Hs04421399_gH, MRPS6: Hs01122386_m1, IL8: 

Hs00174103_m1, SERPINH1: Hs01060397_g1. Real Time PCR Analysis: Real time PCR 

was performed on the ABI 7900HT Fast Real Time PCR System (Applied Biosystems) 

using assays specific for each gene of interest. Each reaction well contained μL of TaqMan® 

Universal Master Mix II (Applied Biosystems, Cat#4440039), cDNA equivalent to 20ng of 

total RNA and 0.5μL of each specific gene expression assay in a reaction volume of 10μL. 

Cycling conditions were as follows: 95°C for 10 minutes for polymerase activation, 

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Data analysis was 

performed using Sequence Detection System software from Applied Biosystems, version 

2.4. The experimental Ct (cycle threshold) was calibrated against the endogenous control 

product ACTB. Samples were analyzed for relative gene expression by the ΔΔCt method 

(30).

Gene ontology enrichment analyses

P-values from the LRT test for each gene were used in analyses of gene ontology (GO) using 

the gene score resampling (GSR) method in ErmineJ (v3.0.2) (http://chibi.ubc.ca/ermineJ) 

(31) with default values and 200,000 iterations for P-value estimation (main text). Gene 

Score Resampling (GSR) uses the full list of genes and their scores (i.e the unadjusted p-

values obtained from the DESeq2 analysis). Thus an advantage of this approach is that genes 

that do not meet a statistical threshold for selection can contribute to the score. In addition, 

more information contained in the gene scores is preserved than in a standard 

overrepresentation analysis (ORA), because ORA is essentially rank-based, whereas GSR 

uses the gene scores themselves. See http://erminej.chibi.ubc.ca/help/tutorials/running-an-

analysis-resampling/ for more details. Left and right tailed p-values were also computed 
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from the “two-group” models and entered into ErmineJ in order to assess both up- and 

down-regulated GO terms in comparisons testing for effects of suicide (MDD-S vs. MDD

+CON) and depression (MDD+MDD-S vs. CON). All P-values resulting from ErmineJ are 

two-tailed and are corrected for gene multifunctionality (32) and multiple comparisons 

(FDR < 0.1). Hypothesis-driven gene ontology analyses which examine specific pathways of 

interest based on previous studies (8) report uncorrected p-values (Supplementary Figure 1).

Additional correlation (CORR) analyses were conducted using ErmineJ in order to identify 

potentially spurious results explained by intercorrelated gene sets (as opposed to shared 

effects of group). For these analyses, the rlog transform in DESeq2 was used to produce 

expression values for each gene in each sample (27). The point of the rlog is to remove the 

dependence of the variance on the mean, particularly the high variance of the logarithm of 

count data when the mean is low. Rlog uses the experiment-wide trend of variance over 

mean, in order to transform the data to remove the experiment-wide trend. The resulting 

expression data matrix was input to ErmineJ for CORR analyses. The uncorrected p-value 

testing for correlation in genes within the same GO category are listed in the “Correlated 

Pval” column in main result table (main text only). The GO terms with a low p-value, 

positive findings (i.e. significant effect of group status) for these pathways could have 

resulted from spurious correlations, thus they are noted as such in the tables but not 

discussed as part of the main findings in the text.

Differential exon usage analysis

We applied DEXSeq v1.12.2 (19), an “exon-centric” analysis which explicitly tests for 

differential exon usage by comparing a fully specified GLM (which models an 

exonXcondition interaction) to a reduced GLM (which excludes the exonXcondition term) 

using a likelihood ratio test (LRT, see methods for DESeq2 analysis). For each gene, the 

read counts that map to unique splicing events (i.e. exon deletions, insertions or alternate 

start/end sites, here referred to as “exon bin”) are modeled as ~ sample + exon + 

exon:condition + age:exon + sex:exon in the full model, and ~ sample + exon + age:exon + 

sex:exon in the reduced model. Note that the “sample” term models the overall gene 

expression value for each sample (i.e. read counts mapping to the whole gene), while “exon” 

models the deviation about this mean for each exon bin (i.e. unique splicing event) in the 

gene. Age:exon and sex:exon co-vary for interaction effects of age and gender with “exon”. 

Age and sex were not included as main effects since overall gene expression is modeled 

separately for each individual sample, thus absorbing any variance attributable to inter-

individual differences in age and sex. Thus this approach explicitly tests for evidence of 

differential exon usage between groups (here modeled using the exon:condition interaction 

term) after accounting for group differences in overall gene expression.

RNA-seq variant discovery

The best practices workflow for calling variants from RNA-seq data using the Genome 

Analysis Toolkit (GATK) v3.4, considered a gold standard for variant calling from NGS data 

(33), was applied to the Tophat realigned BAM files from each sample. Briefly, following 

Picard preprocessing steps (adding read group information, sorting, marking duplicates and 

indexing), the GATK tool SplitNCigarReads was used to split reads into exon segments 
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(getting rid of Ns but maintaining grouping information), hard-clip any sequences 

overhanging into the intronic regions, and reassign mapping qualities. This step was 

followed by indel realignment and base recalibration (BSQR). Finally, insertion-deletions 

and SNPs for each sample were called using GATK (34,35) HaplotypeCaller tool, merged 

and then filtered based on Fisher Strand values (FS > 30.0) and Qual By Depth values (QD < 

2.0). The final merged vcf file was annotated for predicted effects using SnpEff v4.1k (36) to 

classify variants such as missense, nonsense, splice site, synonymous, intronic, or stop gain/

loss etc. and effected genes. SnpSift v4.1 (37) was then used to annotate variant calls with 

dbSNP ids (if available) and estimate case-control (i.e. SuivsNonSui or MDDvsNonMDD) 

differences in genotype frequencies for various inheritance models (i.e. dominant, allelic) 

using Fishers Exact test or Cochran-Armitage test. Variants for the top 34 genes were 

thresholded at p<0.05 uncorrected (with either dominant or allelic model), while whole-

exome results were thresholded at p<0.0001 uncorrected. Multiple comparisons correction 

was also applied using False Discovery Rate (FDR) correction. For more details, see the 

available code in Supplementary Material and (http://gatkforums.broadinstitute.org/

discussion/3891/calling-variants-in-rnaseq and http://snpeff.sourceforge.net/SnpSift.html). 

For a complete list of predicted effects and variant types according to Sequence Ontology 

see http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf.

Results

Demographics

29 sudden death non-psychiatric controls (CON), 21 MDD-S and 9 MDD samples were 

included in the analyses. Mean age, sex ratios and RNA quality scores were not different 

between groups (Table 1). Effects of age and sex on transcript expression were included as 

nuisance covariates and adjusted for prior to subsequent analyses (see below). Although 

mean RIN score was above 6.5 in each group, additional analyses included RIN score (an 

RNA quality measure) as a covariate in order to ensure results were not confounded by 

differences in RNA quality.

Whole-transcriptome brain expression differences in suicide and depression

An ‘omnibus’ test for group differences (likelihood ratio test, LRT, see methods) identified 

34 genes that survived correction for multiple comparisons (p<0.1 corrected, Table 2). Plots 

for the top four differentially expressed genes are shown in Figure 1. These include 

Humanin-like 8 (MTRNR2L8, also known as HN8) which was higher in depression (MDD

+MDD-S vs. CON, log2FC = 0.67, adjusted p=8.2E-5) and higher in suicide (MDD-S vs. 

CON+MDD, log2FC = 0.72, adjusted p=4.1E-9); serpin peptidase inhibitor, clade H (heat 

shock protein 47), member 1 (SERPINH1) which was lower in depression (log2FC=-0.72, 

adjusted p=2.5E-5) and lower in suicide (log2FC=-0.40); interleukin 8 (IL8, also known as 

CXCL8) which was lower in depression (log2FC=-0.53, adjusted p=0.0006), and chemokine 

(C-C motif) ligand 4 (CCL4) which was lower in depression (log2FC=-0.59, adjusted 

p=0.0003). Two of these top four genes showed group differences in an analysis using age- 

and sex-matched subsample (9 MDD-S, 9 MDD and 9 CON, MTRNR2L8: LRT χ2 = 10.9, 

p=0.004, IL8: χ2 = 8.23, p=0.015, CCL4: χ2 = 1.57, p=0.45, SERPINH1: χ2 = 3.18, 

p=0.20, unadjusted p-values, data not shown). Exploratory results showing effect sizes (fold 
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change) for pairwise contrasts between each group are listed in Supplementary Table 2 

(minimum 10% fold change, p<0.001 uncorrected). In the likelihood ratio test (LRT) 

analysis that covaried for RIN score, five of the top 10 differentially expressed genes no 

longer survived p<0.1 adjusted, while 9/10 survived p<0.15 adjusted and all 34 genes 

survived p<=0.001 uncorrected (Supplementary Table 3). Genes that did not survive p<0.1 

adjusted when covarying for RIN score are denoted in Table 2 with an ǂ symbol.

In the main LRT analysis, differential expression for one gene (ENSG00000088881, Gene 

name: early B-cell factor 4, Gene Symbol: EBF4) that did not survive p<0.1 adjusted 

became significant at p<0.1 adjusted in the analysis that covaried for RIN score (shaded row 

in Supplementary Table 3). This effect was driven by greater EBF4 expression in the MDD 

relative to both CON (p=1.2E-4 uncorrected) and MDD-S (p=1.27E-5) groups (data not 

shown). The top ten differentially expressed genes for the model that included RIN score, 

excluding deprecated GrCh37 Ensembl Ids and known unprocessed transcripts or 

pseudogenes, are listed in Supplementary Table 4.

The rightmost columns of Table 2 list the post hoc Wald statistics and uncorrected p-values 

for the depression and suicide contrasts (see methods). Of the differentially expressed genes 

listed in Table 2, all showed a depression-related effect (MTRNR2L8 was higher while the 

majority was lower in depression), while 7 of these genes also showed suicide effects which 

survived FDR < 0.1 (MTRNR2L8 was higher while the majority was lower in suicide). 

None of these genes appeared to show an effect specific to suicide (Table 2, second column 

from the right). The top gene (MTRNR2L8) showed higher expression in MDD (vs. CON, 

log2FC=0.46, p=0.02 uncorrected, data not shown). However, MTRNR2L8 showed highest 

mean (and variance) for the MDD-S group relative to both MDD (MDD-S vs. MDD, 

log2FC=0.87, p=8.2E-7 uncorrected, Supplementary Table 2) and CON groups (MDD-S vs. 

CON, log2FC=1.05, p=1.8E-10 uncorrected, Supplementary Table 2), suggesting that MDD-

S (vs. MDD alone) represents a more severe and heterogeneous phenotype with respect to 

expression of this gene.

For miRNA, no differences survived the applied threshold for significance after correction 

for multiple comparisons (Kruskal-Wallis ANOVA with 3 groups: MDD-S, MDD and CON, 

p < 0.1 FDR corrected). Based on a recent review which identified specific miRNA species 

as playing a role in depression and/or suicide (38), we also restricted miRNA expression 

analyses to mir-185 and mir-491–3p using an uncorrected threshold, but did not observe 

group differences (p>0.2, data not shown).

Gene set analyses

Gene ontology (GO) functional enrichment analyses identified significant differences in 49 

functional pathways at p<0.1 corrected (Table 3). The most significant GO gene sets include 

“chemokine receptor binding” (Figure 2), “cellular response to lipopolysaccharide” (Figure 

3), and “positive regulation of angiogenesis, which were all lower in both depression and 

suicide comparisons groups, with suggestive evidence for lowest expression in the MDD-S 

group (Supplementary Table 2, see Supplementary Discussion). GO groups remained 

consistent when covarying for RIN scores (Supplementary Table 5).
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In both suicide and depression contrasts (see methods), there was lower expression of 

transcripts involved in immune-related and microglial cellular functions (i.e. cellular 

response to type 1 interferon, regulation of leukocyte chemotaxis, regulation of cytokine 

biosynthetic process, etc. Table 3, Supplementary Table 6 and 7, bottom halves). None of the 

main results from Table 3 (LRT testing for overall effect of modeling group status) included 

GO sets which were higher in suicide or depression. Several GO terms appear to be more 

expressed higher in suicide and/or depression in exploratory contrast analyses: however, 

many of these results are driven by relatively weak effects, and all but a few consist of 

highly inter-correlated genes (Supplementary Tables 6 and 7, top halves).

Hypothesis-driven GO pathway analyses in suicide and depression

In addition to exploratory, whole-exome GO analyses above, we examined specific gene sets 

and pathways which were identified by published studies that used oligonucleotide 

microarrays to examine brain expression differences in MDD-S, CON and non-depressed 

suicides (8). In contrast to exploratory analyses, which were stringently corrected for 

multiple comparisons, we report uncorrected p-values for these hypothesis-based analyses.

Glial cell pathology—Previous studies implicate a central glial cell pathology and/or 

reduction in suicide and depression (8,39,40). Here, GO analyses were restricted to gene-

sets which contained the keywords “oligodendrocyte” and “astrocyte”. Altered expression of 

genes with functions related to ‘oligodendrocyte differentiation’ (p=0.004, Supplementary 

Figure 1A) was observed, with lower expression in depression (p=0.016) but not suicide 

(p=0.17, data not shown). Altered expression of genes involved in ‘astrocyte cell migration’ 

(p=0.002, Supplementary Figure 1B) was observed, with lower expression in depression 

(p=1.5E-05) and in suicide (p=0.002, data not shown).

GABAergic and glutamatergic neurotransmission—Previous findings suggest 

altered expression of genes involved with GABAergic and glutamatergic neurotransmission 

in depression and suicide (8). The glutamatergic NMDA receptor antagonist ketamine 

appears to improve depressive symptoms much faster than traditional antidepressants, and 

greater expression of glutamatergic receptors in dlPFC has been observed in MDD-S (41). 

Here, we did not observe altered expression of transcripts in gene sets related to GABAergic 

neurotransmission (Supplementary Figure 1C), however we found less expression of 

transcripts involved in ‘regulation of synaptic transmission, glutamatergic’ (p=0.03, 

Supplementary Figure 1D), in both depression (p=0.05) and suicide (p=0.05, data not 

shown). The top gene in this GO set was the oxytocin receptor (OXTR) whose expression 

was lower in both depression (p=0.008) and suicide (p=0.001, data not shown).

ATP biosynthesis and ATPase coupled transmembrane activity—A previous 

study found altered expression of genes involved in adenosine 5′-triphosphate (ATP) 

production in the tricarboxylic acid (TCA) cycle and ATPase activity coupled to transport of 

ions across the cell membrane (8). Here we did not observe evidence for dysregulation in 

these pathways in suicide or depression (all p>0.7, Supplementary Figure 1E). However, we 

note that genes involved in ‘DNA-dependent ATPase activity’ were higher in the suicide 

comparison but not in the depression comparison (p<0.1 corrected, Supplementary Table 5). 
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A post-hoc contrast in MDD-S vs. MDD groups only (no CON included) confirmed that this 

increase was specific to suicide (p=3.6E-06 uncorrected, Supplementary Figure 2).

Differential exon-usage in suicide and depression

We applied DEXSeq (19) to whole-exome RNA-seq data (see methods) in order to test for 

differential exon usage (DEU, i.e. differential splicing) in MDD with or without suicide. An 

exon in the gene for ATPase, class II, type 9B (ATP9B) was significant at p<0.1 after 

correction for multiple hypothesis testing (FDR adjusted p=0.087, Table 4, first row, Figure 

5). Transcripts (splice variants) for the ATP9B gene in reference to exon bin 21 are shown in 

Supplementary Figure 3. As an exploratory analysis, we list the top 10 genes showing 

evidence for DEU in Table 4. These genes include microtubule associated serine/threonine 

kinase 3 (MAST3, adjusted p=0.14) and eukaryotic translation initiation factor 3, subunit K 

(EIF3K, adjusted p=0.36).

Structural gene variant association analysis

An exploratory gene association analysis was conducted in search of novel or rare (primarily 

exonic) SNPs or insertions/deletions (indels) that may be of interest in terms of altered 

expression or damaging non-synonymous mutations (see RNA-seq Variant Discovery in 

Methods). We assessed case-control differences in allele frequencies in SUI vs NonSUI and 

MDD vs NonMDD groups. No gene variants survived correction for ultiple comparisons 

(FDR <0.1). In an exploratory analysis, variants in the top 34 genes listed in Table 2 reached 

threshold at p<0.05 uncorrected, while variants from whole-transcriptome reached threshold 

at p<0.0001 uncorrected. Supplementary Table 8 lists the putative effects and relative impact 

(i.e. non-synonymous mutation, exon-ablation etc. would have HIGH impact) of these 

variants according to snpEff v4.1 (36). None of these variants were predicted to have 

MODERATE or HIGH impact. Due to the limited number of samples with called variants 

(many samples were missing calls likely due in part to differences in sequencing depth 

across samples, see Supplementary Table 8) we did not attempt eQTL analyses.

Confirmation of differential expression results using available microarray data and qPCR

We sought further confirmation of RNAseq differential expression findings using a subset of 

subjects (2 CON and 3 MDD-S) for whom microarray data were also available from a 

previously published study from our group (26). This previous microarray study compared 

MDD-S vs. CON groups, thus replication analyses were restricted to those genes reported 

for MDD-S vs. CON differences listed in Supplementary Table 2. Briefly, probeset signal 

intensities were extracted with the robust multi-array average (RMA) algorithm (42) and 

averaged for each gene. There were 23 total genes identified by RNAseq (Supplementary 

Table 2), all having greater expression in CON vs. MDD-S, that were also included on the 

Affymetrix U133A platform. Due to limited sample size we did not attempt to conduct 

statistical inference within each gene. Instead, we tested for overall agreement in the 

directionality of findings across the 23 genes using a sign-test over their effect sizes for 

CON vs. MDD-S differences. Consistent with our RNA-seq findings, the majority of genes 

(17/23) had greater mean expression in the CON vs. MDD-S group (sign-test p=0.03, see 

Supplementary Table 9).
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In addition, we sought further confirmation of results in the top 5 genes using qPCR over the 

full sample dataset. In general, qPCR results were consistent with RNA-seq results with the 

exception of MTRNR2L8 (see Supplementary Table 10).

Discussion

Exploratory whole-exome analysis revealed higher expression of humanin-like 8 

(MTRNR2L8, or HN8) in both suicide and depression (Figure 1, Supplementary Table 2). 

MTRNR2L8 is an isoform of the humanin gene (HN) (43), a newly discovered 

mitochondrial-derived 24 amino acid peptide (44), which is coded by nuclear DNA. 

According to Uniprot, MTRNR2L8 plays a role as a neuroprotective and antiapoptotic 

factor. Accumulating evidence indicates HN plays a strong role in stress resistance through 

its neuroprotective, anti-apoptic and anti-inflammatory properties (45). Here, increased 

expression of MRTNR2L8 suggests a compensatory and constitutive up-regulation in 

response to the chronic stress in MDD.

With the exception of MRTNR2L8, differentially expressed genes (p<0.1 FDR corrected, 

Tables 3 and 4) had lower expression in depression and/or suicide (Supplementary Tables 5 

and 6). This observation is consistent with reports of increased DNA methylation observed 

in depressed suicides (46). Studies that combine methylation and gene expression data will 

help further clarify the relationship between DNA methylation, gene expression and 

psychopathology (46).

Spermidine/spermine N-1 acetyltransferase (SAT1, or SSAT) is associated with suicide 

based on microarrays and has lower brain expression postmortem in depressed suicides 

(3,24,47), a finding which has been replicated in this dataset at more lenient threshold 

(p<0.005 uncorrected). See (48) for isoform-level profiling of the SAT1 gene and putative 

miRNA regulators (49) in the current sample. See Supplementary Material for further 

discussion of hypothesis-driven gene ontology and miRNA expression results.

Altered immune-related gene expression in depression and suicide

The most pronounced brain expression differences in depressed subjects with and without 

suicide were found in molecular pathways involved in microglial and immune system 

functions (in particular genes for chemokine receptors and ligands such as chemokine ligand 

2 and 4 (CCL2 and CCL4) (50)) and expression was lower in MDD and MDD-S groups. 

Transcripts for Interleukin-8 (IL8, or CXCL8), a leukocyte chemotactic activating, pro-

inflammatory cytokine (chemokine) (51), showed the greatest deficit in MDD relative to 

CON. No separate suicide effect was detected. Our findings of altered immune related gene 

expression are consistent with a closely related microarray gene expression study which 

found pathways involved in “immune cell activation” in BA46 (a region in frontal cortex 

adjacent to BA9) were altered in MDD and suicide (Table 1 in (8)).

Although cytokines do not appear to be essential mediators of depressive illness (52), they 

are thought to play a role in immune-mediated depressive disorders and may contribute to 

depressive symptoms in some patients (53). While many studies have found higher 

expression of pro-inflammatory cytokines such as IL6 in MDD (54), others have reported 
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lower serum levels of IL6 (55). Other studies have found that plasma and CSF levels of IL-8 

and chemokines were lower in suicide attempters compared to non-attempters (56), while 

one study found that proinflammatory cytokines such as IL6 and TNF-a were higher in the 

brain (BA10) of teenage suicides(57)

Others have found less expression of immune-related genes such as CD44, MARCH1 and 

CD300LB in frontal cortex of depressed suicides (58). A recent study used RNA-seq to 

examine whole-exome expression differences in blood from a large live sample and found 

higher expression of type I interferon signaling in MDD compared with healthy volunteers 

(59). Our finding of lower chemokine and immune related gene expression in MDD-S 

appear to contradict recent findings of increased microglia priming and chemokine gene 

expression in white matter (dorsal anterior cingulate) of MDD-S postmortem (60) although 

are consistent with recent meta-analyses and studies which found lower levels of pro-

inflammatory cytokines such as IL8 (61–63) as well as chemokines such as CCL2 and 

CCL4 (64) in CSF of suicidal patients vs. non-suicidal patients and controls. Despite robust 

experimental evidence indicating that elevated chemokine expression and subsequent 

recruitment of macrophages into the brain is detrimental, increasing evidence suggests that 

chemokines also possess pleiotropic and beneficial properties beyond chemotaxis (50). 

CCL2 may be important in neurogenesis as recombinant CCL2 was first shown to promote 

glial cell proliferation and growth in vitro (65), while recent evidence suggests that CCL2 

may direct differentiation of precursor cells into neurons, astrocytes and oligodendrocytes 

(66). Additional neuroprotective and neurotrophic functions of the ligands CXCL8, CXCL1, 

and CXCL2 have been shown, which include mediating self-defense mechanisms against 

Fas-initiated apoptotic cell death, and modulating synaptic transmission through altering 

calcium channel excitability and neurotransmitter release (50). Other lines of research show 

that microglia serve important functions in the uninjured brain through pruning of unwanted 

synapses, (67) and it has been shown that primary deficits in microglia lead to deficient 

synaptic pruning, decreased functional brain connectivity, deficits in social interaction and 

increased repetitive behavioral phenotypes in mice (68).

Our results show marked lower expression of genes associated with microglia cell functions 

(chemokine activity, regulation of cytokine biosynthetic process) in depression, suggesting 

that altered microglia-mediated synaptic pruning may be present in MDD (68). In addition, 

mounting evidence suggest reductions in astrocytes and aberrant astrocyte function in MDD 

and MDD-S (69–71). Since chemokine and immune related genes are expressed in microglia 

and astrocytes during normal physiological conditions and play a role in neuron-glia 

communication (72,73) and neuroprotection (74), our findings of reduced chemokine and 

immune-related gene expression may reflect cellular abnormalities (i.e. reduced astrocytes) 

present in the brain of MDD-S. Indeed, three of the top 4 genes listed in Table 1 appear to be 

expressed specifically in microglia and/or astrocytes according to gene expression data from 

mouse cortex (http://oganm.github.io/celltypes, Ogan Mancarci, Lilah Toker and Paul 

Pavlidis, personal communication, see Supplementary Figure 4). Moreover, our findings are 

consistent with a recent PET study examining neuroinflammation marker translocator 

protein (TPSO) and which failed to find evidence for increased neuroinflammation in mild 

to moderate depressed individuals (in fact 70% of the depression sample showed lower 

[11C]PBR28 binding relative to genotype matched controls (75). PET brain imaging of 
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microglial activation after lipopolysaccharide administration (76) in larger samples of 

depressed and/or suicidal individuals may help clarify whether increased neuroinflammatory 

activity is associated with these phenotypes. Lower immune-related gene expression in 

MDD may also depend on tissue-type (brain vs. blood) as well as location in the brain (77). 

Future studies are required to further understand the function of pro-inflammatory cytokines 

and immune response pathways in cerebral cortex and their role in depression and suicide.

Reduced angiogenesis gene expression in depression and suicide

Chemokines are also known to play an important role in the regulation of angiogenesis (78). 

Gene ontology analysis revealed lower expression of other genes involved in regulation of 

angiogenesis (Supplementary Table 5, Figure 4). Although little is known about the role of 

angiogenesis in depression, hippocampal angiogenesis has been shown to be coupled to 

neurogenesis, and both are greater in antidepressant-treated major depression (79). Our 

results are consistent with some previous studies which showed high serum levels of 

endostatin, an angiogenesis inhibitor, were associated with late-life depression (80). These 

findings warrant future studies to further understand the role of cortical angiogenesis in the 

dorsal prefrontal cortex in major depression.

Here we observed lower expression as well as evidence for alternative splicing of 

SERPINH1 in MDD and MDD-S (Figure 1, Table 3). SERPINH1, a member of the serine 

proteinase inhibitor gene family, encodes HSP47, which was initially identified as a gelatin 

binding protein named colligin (81). Functional polymorphisms and/or missense mutations 

in the SERPINH1 gene have been linked to preterm premature ruptures of membranes in 

African Americans (82) and osteogenic disorders (83). Although a putative role for this gene 

in depression and/or suicide remains unclear, GO analysis revealed lower expression of other 

genes involved in ‘serine-type endopeptidase inhibitor activity’, in both MDD and MDD-S 

groups (Table 4, Supplementary Tables 5 and 6). Serine endopeptidases are ubiquitous 

enzymes that cleave peptide bonds in serine proteases, in which serine serves as the 

nucleophilic amino acid at the enzyme's active site (84). Serine proteases are known to play 

a regulatory role in angiogenesis and vasculogenesis by activation, liberation and 

modification of angiogenic growth factors, degradation of the endothelial and interstitial 

matrix, and modification of the properties of angiogenic growth factors and cytokines (85). 

Excessive proteolysis causes loss of endothelial cell-matrix interaction and impairs 

angiogenesis. Thus lower expression and/or alternative splicing of serine peptidase inhibitor 

activity could potentially account for reduced expression of angiogenic growth factors 

observed here in the MDD and MDD-S groups.

Differential exon usage analyses

Interestingly, the gene with the strongest evidence for differential splicing (alternate exon-

usage) in MDD and suicide was ATPase, class II type 9B (p<0.1 corrected, Table 4, Figure 

5). In particular, exon bin 21 (corresponding to exon 5 of the primary protein coding 

transcript ATP9B-001, see Supplementary Figure 2) was higher in both MDD and MDD-S 

groups, suggesting a relationship to MDD, leaving unclear whether there is any specific 

relationship to suicide. This gene belongs to several GO categories previously implicated in 

depressed suicides, which include “ATPase activity, coupled to transmembrane movement of 
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substances” and “hydrolase activity, acting on acid anhydrides, catalyzing transmembrane 

movement of substances” (8). ATP9B is a Type IV P-type ATPases (P4-ATPase), a class of 

putative phospholipid flippases that translocate phospholipids from the exoplasmic 

(lumenal) to the cytoplasmic leaflet of lipid bilayers (86). P4-ATPases play diverse and 

essential roles in membrane and transport vesicle biogenesis, and deficiency in P4-ATPases 

has been linked to liver disease in humans (87). In addition to their putative role in 

establishing and maintaining plasma membrane asymmetry, P4-ATPases are thought to be 

involved in vesicle-mediated protein transport in the exocytic and endocytic pathways as 

well as non-vesicular intracellular trafficking of sterols (87). Relatively little is known about 

the functions of ATP9B, other P4-ATPases and their roles in disease (88), and more research 

is necessary to understand the pathophysiological consequences of alterations in and 

alternative splicing of the ATP9B gene and its putative role in MDD and suicide.

Limitations

The main limitation of this study is modest sample sizes, but it is difficult to obtain larger 

sample sizes of cases and controls assessed in such detail clinically, neuropathologically and 

known to be medication and drug-free. Additionally, we examined a group of MDD subjects 

who did not die by suicide and were not treated with antidepressants, a group exceedingly 

difficult to obtain that has not been previously examined in the literature. In this study we 

did not observed significant effects specific to suicide and not depression (i.e. MDD-S vs. 

MDD). This is most likely due in part to the small sample size of the MDD non-suicide 

group (N=9). However, for several of the top genes and pathways it appeared that expression 

mean difference (and variance) were higher in the MDD-S relative to the MDD group (i.e. 

MTRNR2L8 was higher and angiogenesis and chemokine receptor binding were lower in 

MDD-S vs. MDD, see Supplemental Discussion). We anticipate that larger sample sizes of 

well-matched psychiatric control samples (i.e. medication-free MDD without suicide, a hard 

to obtain group) in future studies should help parse out effects of suicide vs. depression.

A second limitation is that we only examined one brain region and did not distinguish 

between neurons and glia. It is difficult to obtain sufficient transcript for quantification from 

each cell type. qPCR validations of the top 5 genes were consistent with RNA-seq results 

with the exception of one gene (MTRNR2L8). Because qPCR uses an exponential 

amplification system that introduces different types of biases and variability that are not 

observed with direct RNA-seq, it is arguable that RNA-seq should be the gold standard for 

differential expression microarray and qPCR analyses (89,90). Although RNA-seq has been 

shown to be highly accurate and has been well validated by others (17,18,88) new findings 

from this study (for MTRNRL28 in particular, and new findings from any other single 

study) should be regarded as provisional until replicated in independent samples.

In the current study, gene expression was quantified using most or all known RNA that is 

transcribed from a given gene, and that includes non-coding and alternate protein-coding 

isoforms, while gene ontology analyses ascribed functions to each gene based on only one or 

few protein-coding products each gene. However, it should be noted that RNA products from 

the same gene could have different, or even opposing functions (14). Our knowledge of non-

coding (ncRNA) and isoform-level protein function is currently very limited, but as this 
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knowledge grows so will the ability to conduct functional pathway analyses at the isoform 

level (14). Furthermore, alterations in gene expression in the cerebral cortex of MDD cases 

who died by suicide or other means does not necessarily confirm a causal relationship 

between altered expression and MDD or suicidal behavior.

Finally, lack of replicability in case-control studies is often attributed to the phenotypic 

heterogeneity of both MDD and suicide (i.e. two individuals can both have a diagnosis of 

MDD but share only a few symptoms) which has contributed to lack of robustly replicated 

genetic loci contributing to the MDD (89,90) and has helped prompt the Research Domain 

Criteria (RDoC) initiative to study dimensions of behavior personality that cut across binary 

disorder labels (91)).

Conclusion

In the current study, whole-exome sequencing (RNA-seq) of dorsolateral prefrontal cortex 

(BA9) was used to examine group differences in brain gene and miRNA expression between 

depressed suicides, depressed non-suicides, and sudden death non-psychiatric controls. 

Exploratory and hypothesis-driven GO functional pathway analyses revealed lower (higher) 

expression of genes involved in immune response, microglial and glial cell functions, 

angiogenesis, regulation of glutamatergic neurotransmission, (anti-apoptosis and 

neuroprotection) in suicides with or without MDD, while differential exon usage analysis 

suggests alternative splicing in ATP9B, a P4-ATPase transmembrane flippase involved in 

vesicular membrane biogenesis and protein transport. These effects appear to be driven 

primarily by depression, with the exception of genes involved in ‘DNA-dependent ATPase 

activity’, which appear to be greater in suicide but not depression. Results suggest cortical 

gene expression related to microglial, endothelial and glial cell functions may contribute 

toward or be altered in MDD and suicide, and identify the putative genes and pathways 

which may play a functional role in these disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Top four differentially expressed genes among in MDD with and without suicide (Table 2, 

p<0.1 FDR corrected). Top left panel: Humanin-like 8 (MTRNR2L8) is higher in 

depression (MDD+MDD-S vs. CON, log2FC = 0.67, adjusted p=8.2E-5) and higher in 

suicide (MDD-S vs. CON+MDD, log2FC = 0.72, adjusted p=4.1E-9). Top right panel: 
Serpin peptidase inhibitor, clade H (heat shock protein 47), member 1 (SERPINH1) is lower 

in depression (log2FC=-0.72, adjusted p=2.5E-5) and lower in suicide (log2FC=-0.40). 

Lower left panel: Interleukin 8 (IL8) is lower in depression (log2FC=-0.53, adjusted 

p=0.0006). Lower right panel: Chemokine (C-C motif) ligand 4 (CCL4) is lower in 

depression (log2FC=-0.59, adjusted p=0.0003).
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Figure 2. Details for GO gene set “chemokine receptor activity”
Each row corresponds to a gene that is included in the same set. “Element” column lists 

ensemble ID, “score” refers to the uncorrected p-value for the likelihood ratio test (LRT) 

when comparing the full model with condition (three levels: CON, MDD-S and MDD) vs. 

the reduced model (~ age + sex + condition vs. ~ age + sex, see methods), “QQ Score” 

graphs the scores: blue lines represent the observed scores, light grey line shows the 

expected distribution based on chance, “multifunctionality” indicates the multifunctionality 

of the gene. The number in parentheses is the number of annotations (e.g., GO terms) the 

gene has, which is roughly proportional to the multifunctionality, but the exact 

multifunctionality score takes into account the size of the groups to which the gene belongs, 

“QQ Multifunct” is similar to the QQ Score column but for the multifunctionality. If the 

gene set has “typical” multifunctionality, the pink line will tend to be near the grey line.
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Figure 3. Details for GO gene set “cellular response to lipopolysaccharides”
See Figure 2 legend for description of columns.
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Figure 4. Details for GO gene set “positive regulation of angiogenesis”
See Figure 2 legend for description of columns.
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Figure 5. Exon-level expression in ATP9B after adjusting for group differences in gene-level 
expression
Top plot shows mean normalized counts for each of 50 splicing events (i.e. bins, or “exons”, 

see methods) in the ATP9B gene across for the three groups CON, MDD and MDD-S. There 

was a significant group effect in mean normalized counts in exon 21 (circled, adjusted 

p=0.087, see Table 1) after removing overall effect of gene expression and correcting for 

multiple comparisons across the whole exome. Blue lines indicate differentially expression 

exons surviving a more lenient threshold (adjusted p<0.1 correcting for only the 50 tests 

within this gene). The bottom row depicts 50 of 93 total unique splicing events (here 

referred to as “exon”) along the ATP9B gene. Exon bin 21 in reference to the 26 known 

ATP9B transcripts (isoforms) according to Human genome assembly GRCh37 is shown in 

Supplementary Figure 2.
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Table 1
Demographics of Study Groups

Total RNA MDD-S CON MDD

Sample size N = 21 N = 29 N = 9 Statistic

Age (yrs, mean, sd) 52.0 (21.7) 43.5 (21.3) 57.7 (15.5) F(2,56)= 2.0, p = 0.14

Sex (Number, % Female) 8 (38%) 6 (21%) 3 (33%) ChiSq = 1.9, p = 0.39

RIN (mean, sd) 6.6 (1.5) 7.1 (1.3) 7.4 (1.1) F(2,53)=1.2, p=0.32

PMI (hrs, mean, sd) 16.1 (7.0) 13.2 (4.7) 15.1 (4.4) F(2,54)=1.6, p=0.22

Brain pH (mean, sd) 6.4 (0.3) 6.5 (0.3) 6.4 (0.3) F(2,55)=0.8, p=0.46

Micro RNA

Sample size N = 9 N = 9 N = 9

Age (Mean Years, sd) 59.2 (14.2) 56.7 (16.0) 57.7 (15.5) F(2,24)= 0.06, p = 0.94

Gender (Number, % Female) 3 (33%) 3 (33%) 3 (33%) ChiSq = 0, p = 1

RIN (mean, sd) 7.7 (0.9) 7.4 (1.3) 7.4 (1.1) F(2,23)=0.3, p=0.77

PMI (mean, sd) 13.3 (6.0) 16.7 (3.8) 15.1 (4.4) F(2,24)=1.1, p=0.36

Brain pH (mean, sd) 6.3 (0.3) 6.4 (0.4) 6.4 (0.3) F(2,24)=0.2, p=0.82

MDD-S = depressed suicides, CON= sudden death non-psychiatric controls, MDD = depressed non-suicides; RIN=RNA integrity score; 
PMI=postmortem interval. Last column shows statistic when testing for group differences in the corresponding demographic variable in each row.
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