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Abstract: The field of stem cell biology has rapidly evolved in the last few decades. In the area
of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful
tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can
potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal
degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and
other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells
and their functional behavior has been tested in vitro and in vivo in animal models. Additionally,
iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for
novel approaches in disease modeling and drug development platforms. Clinical trials are currently
testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of
iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology
as a viable option for cell replacement therapy in retinal degeneration.

Keywords: age-related macular degeneration; induced pluripotent stem cell; retinal pigment
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1. Introduction

Progress in the area of regenerative medicine has begun to unlock new opportunities in the
way health care providers approach treatment of debilitating disorders. Efforts to develop viable
treatments, such as cell replacement therapy, have begun to become a reality for such disorders as
diabetes, Parkinson, Alzheimer, and multiple sclerosis [1,2]. The field of ophthalmology is no different
and has seen dramatic advancements in the area of stem cell-based treatments. Therapies are being
developed for such visual impairment disorders as age-related macular degeneration (AMD), a leading
cause of blindness in the United States and Western Europe, which has a significant impact on the
quality of life of affected individuals [3]. Pertinently, a search of www.ClinicalTrials.gov reveals a
number of stem cell-based therapies for the treatment of AMD that have progressed to human clinical
trials. The main objective of these trials is to test the safety and efficacy of these treatments in patients
with AMD [4,5].

The development of induced pluripotent stem cell (iPSC) technology has presented a paradigm
shift in the field of stem cell biology and provides an alternative source of pluripotent cells.
The pioneering accomplishment in 2006 by the Yamanaka group had very important implications for
the field with the novel discovery that differentiated somatic cells can be induced into a pluripotent
state using a cocktail of proteins called “Yamanaka factors” [6]. These “reprogrammed” cells, therefore
have the ability to be differentiated into any cell type in the body. With this advancement has come
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many concerns, such as ethical use and a continuous source of embryonic stem cells that have hindered
clinical development. With reprogrammed cells these concerns are negated and the possibility of
developing patient-specific therapies using autologous cells has been introduced.

Induced pluripotent stem cell technology provides a patient-specific source of cells that, from
a clinical standpoint, affords a potential cell replacement therapy that may circumvent immune
rejection [7,8]. The fact that these cells can be directly generated from the patient affords investigators
the opportunity to model a specific disease and provides a relevant investigational tool that is an
alternative to traditional animal models [9–11]. Use of iPSC-derived cells for disease modeling can
allow for the understanding of the pathology and cell biology of retinal diseases such as AMD, and help
elucidate the morphological changes attributed to the aging process and progression of disease [12,13].
These models can also lead to the development of platforms for drug screening and safety studies.
Given the utility of iPSCs, both as a research tool to understand disease pathophysiology and as
a therapeutic for cell replacement therapy, their potential continues to be investigated.

We present a review herein of the current state of iPSCs for the treatment of such retinal
degenerative diseases as AMD. In particular, the merit of iPSC-derived disease models to understand
the pathophysiology of geographic atrophy (GA), as well as the status of ongoing clinical trials using
embryonic stem cells (ESCs) or iPSCs as cell sources will be discussed.

2. AMD and Bruch’s Membrane Pathology

Age-related macular degeneration is a multifactorial disease that affects the outer retina,
choriocapillaris, retinal pigment epithelium (RPE), and Bruch’s membrane (BM) [14,15]. The disease
is characterized by structural changes within BM which then leads to cellular changes in the RPE
including loss of RPE cells and the eventual development of advanced forms of the disorder, such
as GA.

Traditionally, AMD has been classified into two types, exudative (neovascular or “wet”) AMD
or atrophic (“dry”) AMD [3,15–17]. One of the earliest clinical manifestations of AMD is the focal
deposition of acellular, polymorphous debris between the RPE and BM called drusen [15]. With age,
drusen can accumulate and eventually cause damage to the native RPE cells disrupting crucial cellular
functions such as maintaining the integrity of the retina and choriocapillaris, including phagocytosis
of the distal tips of photoreceptor outer segments, transport and isomerization of bleached visual
pigments, maintenance of the blood-outer retinal barrier and maintaining perfusion of the subjacent
choriocapillaris [18–31].

In atrophic or “dry” AMD, there is a progressive loss of the RPE and subsequent loss of
photoreceptors and/or choriocapillaris. The decline of this tissue inevitably leads to loss of vision,
observed clinically as central and paracentral scotomas [15,32]. In exudative or “wet” AMD, abnormal
expression of angiogenic factors such as vascular endothelial growth factor (VEGF) can cause
neovascularization to arise from the neural retina or choriocapillaris within BM eventually finding
its way into the subretinal space and/or subretinal pigment epithelium [15,32]. In many cases,
the exudative form can progress and lead to severe vision loss, but with the introduction of intravitreal
antiangiogenic therapy a new standard of care has become a very effective treatment to slow or reverse
vision loss in many individuals [15,33].

The contribution of BM alterations to AMD pathogenesis is significant, particularly in the context
of the development of a cell replacement therapy for advanced disease. These alterations include
diffuse BM thickening; accumulation of drusen, basal laminar, and basal linear deposits [34,35];
collagen cross-linking in the inner and outer collagen layer; calcification and fragmentation of the
elastin layer [36]; and BM lipidization [36–39]. It has also been reported that structural changes within
BM precede cellular changes in the RPE by one or two decades [34,40].

Importantly, these age-related changes within BM can potentially have a negative effect on
the function of transplanted cells [34–38,40–47]. It has been demonstrated that disease and/or
damage within human-aged BM is an important factor that adversely affects transplant survival
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and proliferation. For example, aging of human BM, or damage induced by surgical manipulation of
choroidal neovascularization, can reduce the ability of transplanted RPE cells to attach to human BM,
survive after transplantation, and proliferate to repopulate this structure [42,45,48,49]. Aging of human
BM also reduces the ability of human RPE cells seeded on this surface to ingest rod outer segments [50].
Thus, it is clear that in the advanced stages of AMD, namely GA, age-related changes to BM can
adversely affect the successful transplantation of cells. Interestingly, we have previously shown that
non-enzymatic nitration of the basement membrane is a relevant model system to study BM pathology
and can affect RPE dysfunction, such as altered VEGF secretion, phagocytic ability, and expression
of complement regulatory proteins in a manner that mimics the effects of BM aging in AMD [50–53].
We have further shown that cleaning and coating the surface of BM or nitrite-modified extracellular
matrix (ECM) with such proteins as laminin, fibronectin, and vitronectin can reverse the effects of
damage associated with an aged and/or diseased BM [52,54]. Current trials have transplanted stem
cell-derived RPE as cell suspensions but the pathology of BM may give credence to the use of a
scaffold as a substrate that would allow RPE to attach and proliferate as polarized monolayers [55].
These scaffolds can be made of materials that include collagen and poly(lactic-co-glycolic acid) (PLGA)
and it has been demonstrated that a basal support membrane is critical to long-term RPE survival after
implantation [56]. It will be of interest to determine the most efficient transplantation method as both
single cell suspensions and membrane supports show efficacy [56,57].

3. Induced Pluripotent Stem Cells

Induced pluripotent stem cell (iPSC) technology was originally developed by Yamanaka and
colleagues in 2006 [6]. The group demonstrated that the combination of transcriptional regulators
SRY (sex determining region Y)-box 2 (SOX2), octamer-binding transcription factor 3/4 (OCT3/4),
kruppel-like factor 4 (Klf4), and Myc (c-MYC) had the ability to reprogram mouse fibroblasts into
a pluripotent stem-like state called iPSCs. The combination of these proteins has been coined the
“Yamanaka factors” after its inventor. Methods to generate iPSCs have evolved rapidly since the
introduction of the technology in 2006 and have been used to reprogram somatic cells from a number
of species, including the rat [58], dog [59], rhesus monkey [60], and human [61,62].

A hallmark of these cells is their ability to differentiate into three germ layer cell types (mesoderm,
ectoderm, and endoderm) verifying pluripotency [6,61,63,64]. Given their pluripotent attributes, these
cells can potentially become any cell type in the body, making them a valuable resource in the area of
regenerative medicine and disease modeling.

4. Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium

In advanced atrophic AMD or GA there is a loss of RPE, photoreceptors, and possibly the
choriocapillaris in affected areas, which will require the introduction of replacement cells and/or
trophic factors to reconstruct the outer retinal anatomy [32]. Loss of vision is typically due to atrophy
of the RPE and photoreceptors with secondary loss of the choriocapillaris. The RPE is important for
photoreceptor survival and function, and loss of this cell type is involved in the pathophysiology
of atrophy in AMD [65]. The rationale for transplantation of RPE cells is clear and the potential for
cell-based therapy has been investigated in both animals and humans [66–68].

The use of iPSC-derived RPE cells may provide an unlimited source of cells, an inherent limitation
when using other potential sources such as donor adult or fetal RPE cells. Use of patient-specific
iPSC-derived RPE cells offers an autologous source of cells that are suitable as a research tool to
understand disease mechanisms. Many groups, including ours, have differentiated iPSCs into RPE
cells successfully and established reproducible protocols [69–75]. Our laboratory has demonstrated the
ability to differentiate a human iPSC line of RPE cells using an established protocol (Figure 1) [69,76].
These cells are morphologically similar to native RPE cells and express RPE-specific markers, such as
zonula occludens protein-1 (ZO-1) (Figure 2). These cells also have the potential to perform critical
functions such as the ability to process retinoids similar to native RPE. (Figure 3) [76]. The in vivo
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function and safety of iPSC-derived RPE cells have also been demonstrated in animal models of retinal
degeneration [71,77,78].Cells 2016, 5, 44   4 of 14 

 

 
Figure 1. Differentiation of induced pluripotent stem cells (iPSCs) toward a retinal pigment 
epithelium (RPE) fate. Undifferentiated iPSC colony at day 0 (A); embryonic bodies form by day 7 
(B); and eventual formation of neural aggregates (C) by day 14; A pigmented monolayer of iPSC-
derived RPE cells forms by day 45 of the differentiation process (D). With the full permission of all 
authors of the original publication, Figure 3 of [76] has been included here. 

 
Figure 2. Expression of retinal pigment epithelium (RPE) cell markers in induced pluripotent stem 
cells (iPSC)-derived RPE. Immunofluorescent staining of RPE marker ZO-1 (A) in pigmented iPSC-
derived RPE cells; (B) DAPI image of same cells. Scale bars = 50 μm. With the full permission of all 
authors of the original publication, Figure 4 of [76] has been included here. 

Figure 1. Differentiation of induced pluripotent stem cells (iPSCs) toward a retinal pigment epithelium
(RPE) fate. Undifferentiated iPSC colony at day 0 (A); embryonic bodies form by day 7 (B); and eventual
formation of neural aggregates (C) by day 14; A pigmented monolayer of iPSC-derived RPE cells forms
by day 45 of the differentiation process (D). With the full permission of all authors of the original
publication, Figure 3 of [76] has been included here.
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Figure 2. Expression of retinal pigment epithelium (RPE) cell markers in induced pluripotent stem cells
(iPSC)-derived RPE. Immunofluorescent staining of RPE marker ZO-1 (A) in pigmented iPSC-derived
RPE cells; (B) DAPI image of same cells. Scale bars = 50 µm. With the full permission of all authors of
the original publication, Figure 4 of [76] has been included here.
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Figure 3. Retinoid metabolism in induced pluripotent stem cell (iPSC)-derived retinal pigment 
epithelium (RPE) monolayers. iPSC-RPE cells were cultured in 6-well plates until a confluent and 
pigmented monolayer was observed. Retinoid profiles were taken by monitoring the HPLC at 360 
nm, two days post administration of 5 μmol/L all-trans retinol (atRol) in 1% bovine serum albumin. 
iPSC-RPE cell cultures express 11-cis-retinal indicating functional retinoid metabolism. No 
hydroxylamine was used in these experiments; therefore, oximes are not detected. Note that 
significant quantities of the more stable 9-cis isomer are also formed with the administration of all-
trans retinol. With the full permission of all authors of the original publication, Figure 6 of [76] has 
been included here. 

5. Use of iPSC-Derived RPE to Model Age-Related Macular Degeneration 

As mentioned, one of the advantages of using iPSCs is the ability to model a specific disease in 
vitro by developing a disease phenotype and intervening through drug screening [79]. Ocular 
diseases, such as glaucoma and Best disease, have been modeled using iPSCs. These models 
produced disease phenotypes that have advanced our understanding of the genetics of disease 
[80,81]. For example, Singh et al. demonstrated defective photoreceptor outer segment degradation 
and disposal as well as reduced fluid transport in iPSC-derived RPE derived from patients with the 
RPE-specific protein bestrophin-1 (BEST1) mutation [80]. Disease modeling with iPSC derived from 
monogenic degenerative disorder will benefit greatly from this technology [9,12]. 

It has been difficult, historically, to model age-related disorders, such as GA, in the animal, 
particularly in the lower vertebrates such as the mouse who do not have a macula [82]. While animal 
models are an extremely valuable and indispensable tool for research, developing models of GA 
using human iPSCs from patients with AMD that could mimic or accelerate the aging process could 
prove valuable. Moreover, iPSC phenotypes from patients with a particular disease, such as 
exudative or atrophic AMD, may differ from what is observed in the animal and serve as a valuable 
source for comparative study [82,83]. 

Several studies have demonstrated that risk factors such as advanced age, race, and mutations 
in complement alleles such as complement factor H are associated with AMD [84]. It is clear that the 
deleterious effects of drusen accumulation on BM contribute to RPE dysfunction and chronic 
inflammation [51], which are both hallmarks of AMD pathology. Model systems that mimic the 
effects of BM aging can be used to determine the contribution of ECM damage on the cellular function 
and pathology of the overlying RPE cells [51,52,85]. Moreover, the use of patient-specific iPSC-
derived RPE cells from patients with high and low risk alleles for AMD may reveal how these 
alterations contribute to RPE dysfunction and atrophy. This area is particularly valid in light of the 
disorder being an interplay between multiple genetic susceptibility factors and environmental 

Figure 3. Retinoid metabolism in induced pluripotent stem cell (iPSC)-derived retinal pigment
epithelium (RPE) monolayers. iPSC-RPE cells were cultured in 6-well plates until a confluent and
pigmented monolayer was observed. Retinoid profiles were taken by monitoring the HPLC at
360 nm, two days post administration of 5 µmol/L all-trans retinol (atRol) in 1% bovine serum
albumin. iPSC-RPE cell cultures express 11-cis-retinal indicating functional retinoid metabolism.
No hydroxylamine was used in these experiments; therefore, oximes are not detected. Note that
significant quantities of the more stable 9-cis isomer are also formed with the administration of all-trans
retinol. With the full permission of all authors of the original publication, Figure 6 of [76] has been
included here.

5. Use of iPSC-Derived RPE to Model Age-Related Macular Degeneration

As mentioned, one of the advantages of using iPSCs is the ability to model a specific
disease in vitro by developing a disease phenotype and intervening through drug screening [79].
Ocular diseases, such as glaucoma and Best disease, have been modeled using iPSCs. These models
produced disease phenotypes that have advanced our understanding of the genetics of disease [80,81].
For example, Singh et al. demonstrated defective photoreceptor outer segment degradation and
disposal as well as reduced fluid transport in iPSC-derived RPE derived from patients with the
RPE-specific protein bestrophin-1 (BEST1) mutation [80]. Disease modeling with iPSC derived from
monogenic degenerative disorder will benefit greatly from this technology [9,12].

It has been difficult, historically, to model age-related disorders, such as GA, in the animal,
particularly in the lower vertebrates such as the mouse who do not have a macula [82]. While animal
models are an extremely valuable and indispensable tool for research, developing models of GA using
human iPSCs from patients with AMD that could mimic or accelerate the aging process could prove
valuable. Moreover, iPSC phenotypes from patients with a particular disease, such as exudative or
atrophic AMD, may differ from what is observed in the animal and serve as a valuable source for
comparative study [82,83].

Several studies have demonstrated that risk factors such as advanced age, race, and mutations
in complement alleles such as complement factor H are associated with AMD [84]. It is clear that
the deleterious effects of drusen accumulation on BM contribute to RPE dysfunction and chronic
inflammation [51], which are both hallmarks of AMD pathology. Model systems that mimic the effects
of BM aging can be used to determine the contribution of ECM damage on the cellular function and
pathology of the overlying RPE cells [51,52,85]. Moreover, the use of patient-specific iPSC-derived
RPE cells from patients with high and low risk alleles for AMD may reveal how these alterations
contribute to RPE dysfunction and atrophy. This area is particularly valid in light of the disorder
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being an interplay between multiple genetic susceptibility factors and environmental components [86].
Continued advancement in this area will lead to a novel understanding of a multifactorial and
complex disease.

6. Current Status of iPSC Therapies for the Treatment of Retinal Disorders

The use of iPSCs as an option for cell replacement therapy in humans is the ultimate end-goal
of this technology. There are a number of advantages to using iPSCs including alleviation of ethical
concerns that have hampered ESC clinical development. Moreover, iPSCs present the opportunity to
produce autologous cells and, thus avoid the need to find a human leukocyte antigen (HLA)-compatible
cell donor and the need for immunosuppression [87]. Table 1 describes the interventional trials that
are currently (2016) cited at the www.ClinicalTrials.gov registry and are now in progress investigating
the safety and efficacy of human ESC-derived RPE for the treatment of disorders, such as atrophic
AMD and Stargardt macular dystrophy [65,88,89]. There are also a number of trials being conducted
internationally investigating the safety and efficacy of human ESC-derived RPE in the treatment of
exudative and atrophic AMD. As of 2016, leading the way in ongoing trials labeled as “interventional”
are such companies as the Astellas Institute for Regenerative Medicine and Pfizer. Groups at
The Federal University of São Paulo, the Southwest Hospital (China), Regenerative Patch Technologies,
LLC, and Cell Cure Neurosciences Ltd. are sponsoring “interventional” trials that are actively
recruiting. Interestingly, the Regenerative Patch Technologies, LLC trial is investigating the use
ESC-derived RPE seeded on a polymeric substrate (Table 1). Long-term survival of these cells on these
types of substrates will be of great interest in determining the most efficient and efficacious means of
transplantation. It should be noted that there are groups investigating the use of other sources of stem
cells such as those derived from the human brain and grown as neurospheres (human central nervous
system stem cells; HuCNS-SC®) (Table 2) [90]. Stem Cells, Inc. recently completed a trial that tested
the safety and efficacy of HuCNS-SC in the treatment of AMD [89].

Table 1. ESC and iPSC-derived RPE-based cell types in clinical trials for inherited and non-inherited
macular degeneration. Study type: Interventional. Last updated 25 October 2016.

Sponsor Cell Type or
Intervention Condition Phase of

Trial

Type of
Delivery
(Intervention)

ClinicalTrials.gov
Identifier Status

Regenerative
Patch
Technologies,
LLC

CPCB-RPE1; human
ESC-derived RPE
seeded on
polymeric substrate

Advanced, dry
age-related
macular
degeneration
(AMD)

Phase I
and II

Subretinal
implantation NCT02590692 Recruiting

Astellas Institute
for Regenerative
Medicine

MA09-hRPE;
human ESC-derived
RPE

Advanced, dry
age-related
macular
degeneration
(AMD)

Phase I
and II

Subretinal
implantation NCT01344993 Completed

Astellas Institute
for Regenerative
Medicine

MA09-hRPE;
human ESC-derived
RPE

Stargardt macular
dystrophy (SMD)

Phase I
and II

Subretinal
implantation NCT01469832 Completed

CHABiotech
Co., Ltd.

MA09-hRPE;
human ESC-derived
RPE

Advanced, dry
age-related
macular
degeneration
(AMD)

Phase I
and II

Subretinal
implantation NCT01674829 Unknown

Astellas Institute
for Regenerative
Medicine

MA09-hRPE;
human ESC-derived
RPE

Stargardt macular
dystrophy (SMD)

Phase I
and II

Subretinal
implantation NCT01345006 Completed

University of
California,
Los Angeles

MA09-hRPE;
human ESC-derived
RPE

Myopic macular
degeneration
(MMD)

Phase I
and II

Subretinal
implantation NCT02122159 Withdrawn

www.ClinicalTrials.gov
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Table 1. Cont.

Sponsor Cell Type or
Intervention Condition Phase of

Trial

Type of
Delivery
(Intervention)

ClinicalTrials.gov
Identifier Status

Cell Cure
Neurosciences,
Ltd.

OpRegen: human
ESC-derived RPE

Advanced,
dry-form
age-related
macular
degeneration
(geographic
atrophy, GA)

Phase I
and II

Subretinal
implantation NCT02286089 Recruiting

CHABiotech
Co., Ltd.

MA09-hRPE;
human ESC-derived
RPE

Stargardt macular
dystrophy (SMD) Phase I Subretinal

implantation NCT01625559 Unknown

Federal
University of
São Paulo

Human
ESC-derived RPE in
suspension; human
ESC-derived RPE
seeded in a
substrate

Age-related
macular
degeneration

Phase I
and II

Subretinal
implantation NCT02903576 RecruitingExudative,

age-related
macular
degeneration

Pfizer
PF-05206388;
human ESC-derived
RPE

Acute, wet
age-related
macular
degeneration Phase I

Intraocular
implantation NCT01691261

Active, not
recruiting

Rapid vision
decline

Southwest
Hospital, China

Human
ESC-derived RPE

Macular
degeneration,
Stargardt macular
dystrophy

Phase I Subretinal
transplantation NCT02749734 Recruiting

ESC, embryonic stem cell; iPSC, induced pluripotent stem cell; RPE, retinal pigment epithelium.

Table 2. Stem cell-based cell types for inherited and non-inherited macular degenerations. Study type:
Interventional. Last updated 25 October 2016.

Sponsor Cell Type or
Intervention Condition Phase of Trial

Type of
Delivery
(Intervention)

ClinicalTrials.gov
Identifier Status

StemCells,
Inc.

Human central
nervous system
stem cells
(HuCNS-SC)

Geographic atrophy
(GA) of age-related
macular
degeneration
(AMD)

Phase I and II Subretinal
transplantation NCT01632527 Completed

University of
São Paulo

Autologous
bone marrow
stem cells

Macular
degeneration Phase I and II Intravitreal

injection NCT01518127 Recruiting

Al-Azhar
University

Autologous
bone marrow
stem cells

Dry, age-related
macular
degeneration
(AMD)

Phase I and II Intravitreal
injection NCT02016508 Unknown

Bioheart,
Inc.

Adipose-derived
stem cells

Dry, macular
degeneration Not reported Intravitreal

injection NCT02024269 Withdrawn

Retina
Association
of South
Florida

Bone-marrow
delivered stem
cells (BMSC)

Retinal disease

Not reported

Retrobulbar

NCT01920867 Recruiting

Macular
degeneration Subtenon

Hereditary retinal
dystrophy Intravenous

Optic nerve disease Intravitreal

Glaucoma Intraocular
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Table 2. Cont.

Sponsor Cell Type or
Intervention Condition Phase of Trial

Type of
Delivery
(Intervention)

ClinicalTrials.gov
Identifier Status

University of
California,
Davis

CD34 + bone
marrow stem
cells

Non-exudative,
age-related macular
degeneration

Phase I
Intravitreal
injection NCT01736059 Enrolled by

invitation

Diabetic retinopathy

Retinal vein
occlusion

Retinitis pigmentosa

Hereditary macular
degeneration

Red de
Terapia
Celular

Autologous
bone marrow
stem cells

Retinitis pigmentosa Phase I

Intravitreal
injection;
subconjunctival
injection of
saline

NCT02280135 Recruiting

StemCells,
Inc.

Human central
nervous system
stem cells
(HuCNS-SC)

Age-related macular
degeneration Phase II Subretinal

transplantation NCT02467634

Terminated;
based on a
business
decision
unrelated to any
safety concerns

CD34, cell-cell adhesion factor that mediates the attachment of stem cells to bone marrow extracellular matrix.

Current efforts to conduct clinical trials using iPSC-derived RPE have been extremely limited.
To date, there has been one trial attempt to treat exudative AMD using autologous iPSC-derived
RPE cells [65,88,89,91,92]. In 2014, a Japanese woman with exudative macular degeneration was
implanted with an iPSC-derived RPE sheet generated from her own fibroblasts [93]. Even though the
first patient suffered “no serious adverse effects” of treatment, the trial has been put on hold due to
the discovery of genetic mutations identified in the iPSCs that were to be used in a second patient
in 2015 [94,95]. While it is not clear whether these genetic abnormalities were induced during the
reprogramming process or originated from the patient’s somatic cells, these genomic instabilities must
be evaluated before entering human trials. Moving forward, one goal of Sugita et al., is to use iPSCs
from partially-matched donors rather than the autologous cells from the same individual to avoid the
potential of genomic abnormalities. Sugita and colleagues have demonstrated that cells from major
histocompatibility complex (MHC) homozygous donors can be used in histocompatible recipients for
treatment of retinal disease [96]. In that study, investigators transplanted iPSC-derived RPE cells in
MHC homozygous animals and found no immune response or rejection of iPSC-derived RPE allografts
when using MHC-matched animal models without immunosuppression. These studies show that if
the donor is MHC or HLA-matched, iPSC-derived RPE cell donor transplantation may be successful
with little to no immunosuppression [96,97]. These promising results for iPSC-derived cell types are
continuing to be investigated. It has recently been reported that the Riken Center for Developmental
Biology will resume its clinical trial using donor cells [98].

While there is much promise in moving iPSC technology to clinical applications, there is still
work to be done in our understanding of tumorigenicity and cell survival post-transplantation before
entering the human. Work done by Kanemura et al., has demonstrated in animal models that the
tumorigenic potential of iPSC-derived RPE is negligible in rodent models. More in vivo studies will
need to be conducted [99]. The initial iPSC lines will have to be extensively characterized, particularly
in light of the U.S. Food and Drug Administration (FDA) and regulatory approval to ensure safety.
Given that the FDA classifies pluripotent stem cells as human cellular and tissue products that are
“more than minimally manipulated and used in a non-homologous manner”, it is critical that the
issues as discussed above be addressed before iPSC therapies progress to Phase I–III clinical trials [100].
Table 3 describes examples of “observational” trials investigating the feasibility for use of iPSC-derived
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RPE cells for the treatment of various types of macular degeneration. In addition to the above concerns,
the issue of cost must be addressed given the extensive amount of time and resources to develop lines
and then test safety [94]. As the technology develops this cost may be greatly reduced.

Table 3. iPSC-derived RPE-based studies for inherited and non-inherited macular degenerations.
Study type: Observational. Last updated 25 October 2016.

Sponsor Cell Type Condition ClinicalTrials.gov
Identifier Status Objective

Moorfields Eye
Hospital

Human
iPSC-derived
RPE

Age-related macular
degeneration NCT02464956

Not yet
recruiting

Successful production of a retinal
epithelial layer of cells that fulfills
Regulatory Regulation for
Transplantation.

NHS Foundation
Trust

Mayo Clinic
Human
iPSC-derived
RPE

Autosomal recessive
bestrophinopathy (ARB)

NCT02162953 Recruiting

To collect DNA, RNA, and skin
samples from individuals with
ARB or other diseases due to
mutations in the gene BEST1.
These models will be used to
identify and test therapeutic
approaches to treating
these diseases.

Best vitelliform macular
dystrophy (BVMD)

Adult-onset vitelliform
dystrophy (AVMD)

Autosomal dominant
vitreoretinalchoroidopathy
(ADVIRC)

Retinitis pigmentosa (RP)

National Eye
Institute (NEI)

Human
iPSC-derived
RPE

NCT01432847 Recruiting

To collect hair, skin, and blood
samples to study three eye
diseases that affect the retina
(Best disease, L-ORD, and AMD)

iPSC, induced pluripotent stem cell; RPE, retinal pigment epithelium; NHS, National Health Service
(of England); ARB, angiotensin receptor blockers; L-ORD, late-onset retinal degeneration; AMD, age-related
macular degeneration.

7. Conclusions

The use of induced pluripotent stem cells for the treatment of age-related macular degeneration
holds great potential, but there are still important obstacles that must be addressed. iPSC technology
has afforded novel understanding in the area of retinal degeneration through autologous iPSC
development and disease modeling. Moving forward, it will be important to optimize reprogramming
methods, develop efficient methods to produce large numbers of cells ready for clinical use, test safety
and integrity, and understand the long-term survival profiles of cells post-transplantation. Even with
these current limitations, the 2006 discovery has the unique opportunity to make new inroads in
regenerative medicine and change the face of the field.
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Abbreviations

iPSC Induced pluripotent stem cell
AMD Age-related macular degeneration
RPE Retinal pigment epithelium
ESC Embryonic stem cell
BM Bruch’s membrane
ZO-1 Zonula occludens protein-1
GA Geographic atrophy
HLA Human leukocyte antigen
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MHC Major histocompatibility
FDA U.S. Food and Drug Administration
ECM Extracellular matrix
VEGF Vascular endothelial growth factor
SOX2 (Sex determining region Y)-box 2
OCT3/4 Octamer-binding transcription factor 3/4
Klf4 Kruppel-like factor 4
c-MYC Regulator gene that codes for a transcription factor; Myc
BEST1 RPE-specific protein bestrophin-1
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