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Stroke patients with severe motor deficits of the upper extremity may practice

rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although

this technology enables intensive task-oriented training, it may also lead to slacking

when the assistance is too supportive. Preserving the engagement of the patients

while providing “assistance-as-needed” during the exercises, therefore remains an

ongoing challenge. We applied a commercially available seven degree-of-freedom arm

exoskeleton to provide passive gravity compensation during task-oriented training in a

virtual environment. During this 4-week pilot study, five severely affected chronic stroke

patients performed reach-to-grasp exercises resembling activities of daily living. The

subjects received virtual reality feedback from their three-dimensional movements. The

level of difficulty for the exercise was adjusted by a performance-dependent real-time

adaptation algorithm. The goal of this algorithm was the automated improvement

of the range of motion. In the course of 20 training and feedback sessions, this

unsupervised adaptive training concept led to a progressive increase of the virtual training

space (p < 0.001) in accordance with the subjects’ abilities. This learning curve was

paralleled by a concurrent improvement of real world kinematic parameters, i.e., range

of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity

(p< 0.001). Notably, these kinematic gains were paralleled by motor improvements such

as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity

Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining

gravity-compensating assistance with adaptive closed-loop feedback in virtual reality

provides customized rehabilitation environments for severely affected stroke patients.

This approach may facilitate motor learning by progressively challenging the subject in

accordance with the individual capacity for functional restoration. It might be necessary to

apply concurrent restorative interventions to translate these improvements into relevant

functional gains of severely motor impaired patients in activities of daily living.

Keywords: robot-assisted rehabilitation, robotic rehabilitation, individualized therapy, hemiparesis, motor

recovery, upper-limb assistance, reinforcement learning
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INTRODUCTION

Despite their participation in standard rehabilitation programs
(Jørgensen et al., 1999; Dobkin, 2005), restoration of arm and
hand function for activities of daily living is not achieved
in the majority of stroke patients. In the first weeks and
months after stroke, a positive relationship between the dose
of therapy and clinically meaningful improvements has been
demonstrated (Lohse et al., 2014; Pollock et al., 2014). In stroke
patients with long-standing (>6 months) upper limb paresis,
however, treatment effects were small, with no evidence of a
dose-response effect of task-specific training on the functional
capacity (Lang et al., 2016). This has implications for the use
of assistive technologies such as robot-assisted training during
stroke rehabilitation. These devices are usually applied to further
increase and standardize the amount of therapy. They have the
potential to improve arm/hand function and muscle strength,
albeit currently available clinical trials provide on the whole only
low-quality evidence (Mehrholz et al., 2015). It has, notably,
been suggested that technology-assisted improvements during
stroke rehabilitation might at least partially be due to unspecific
influences such as increased enthusiasm for novel interventions
on the part of both patients and therapists (Kwakkel and
Meskers, 2014). In particular, a comparison between robot-
assisted training and dose-matched conventional physiotherapy
in controlled trials revealed no additional, clinically relevant
benefits (Lo et al., 2010; Klamroth-Marganska et al., 2014).
This might be related to saturation effects. Alternatively,
the active robotic assistance might be too supportive when
providing “assistance-as-needed” during the exercises (Chase,
2014). More targeted assistance might therefore be necessary
during these rehabilitation exercises to maintain engagement
without compromising the patients’ motivation; i.e., by providing
only as much support as necessary and as little as possible
(Grimm and Gharabaghi, 2016). In this context, passive gravity
compensation with a multi-joint arm exoskeleton may be a viable
alternative to active robotic assistance (Housman et al., 2009;
Grimm et al., 2016a). In severely affected patients, performance-
dependent, neuromuscular electrical stimulation of individual
upper limb muscles integrated in the exoskeleton may increase
the range of motion even further (Grimm and Gharabaghi,
2016; Grimm et al., 2016b). These approaches focus on the
improvement of motor control, which is defined as the ability
to make accurate and precise goal-directed movements without
reducing movement speed (Reis et al., 2009; Shmuelof et al.,
2012), or using compensatory movements (Kitago et al., 2013,
2015). Functional gains in hemiparetic patients, however, are
often achieved by movements that aim to compensate the
diminished range of motion of the affected limb (Cirstea and
Levin, 2000; Grimm et al., 2016a). Although these compensatory
strategies might be efficient in short-term task accomplishment,
they may lead to long-term complications such as pain and
joint-contracture (Cirstea and Levin, 2007; Grimm et al., 2016a).
In this context, providing detailed information about how the
movement is carried out, i.e., the quality of the movement, is
more likely to recover natural movement patterns and avoid
compensatory movements, than to provide information about

movement outcome only (Cirstea et al., 2006; Cirstea and Levin,
2007; Grimm et al., 2016a). This feedback, however, needs to be
provided implicitly, since explicit information has been shown
to disrupt motor learning in stroke patients (Boyd and Winstein,
2004, 2006; Cirstea and Levin, 2007). Information on movement
quality has therefore been incorporated as implicit closed-loop
feedback in the virtual environment of an exoskeleton-based
rehabilitation device (Grimm et al., 2016a). Specifically, the
continuous visual feedback of the whole arm kinematics allowed
the patients to adjust their movement quality online during each
task; an approach closely resembling natural motor learning
(Grimm et al., 2016a).

Along these lines, virtual reality and interactive video gaming
have emerged as treatment approaches in stroke rehabilitation
(Laver et al., 2015). They have been used as an adjunct to
conventional care (to increase overall therapy time) or compared
with the same dose of conventional therapy. These studies have
demonstrated benefits in improving upper limb function and
activities of daily living, albeit currently available clinical trials
tend to provide only low-quality evidence (Laver et al., 2015).
Most of these studies were conducted with mildly to moderately
affected patients. In the remaining patient group with moderate
to severe upper limp impairment, the intervention effects were
more heterogeneous and affected by the impairment level, with
either no or only modest additional gains in comparison to dose-
matched conventional treatments (Housman et al., 2009; Byl
et al., 2013; Subramanian et al., 2013).

With respect to the restoration of arm and hand function
in severely affected stroke patients in particular, there is still a
lack of evidence for additional benefits from technology-assisted
interventions for activities of daily living. The only means of
providing such evidence is by sufficiently powered, randomized
and adequately controlled trials (RCT).

However, such high-quality RCT studies require considerable
resources. Pilot data acquired earlier in the course of feasibility
studies may provide the rationale and justification for later large-
scale RCT. Such studies therefore need to demonstrate significant
improvements, with functional relevance for the participating
patients. Then again, costly RCT can be avoided when innovative
interventions prove to be feasible but not effective with regard
to the treatment goal, i.e., that they do not result in functionally
relevant upper extremity improvements in severely affected
stroke patients.

One recent pilot study, for example, applied brain signals to
control an active robotic exoskeleton within the framework of a
brain-robot interface (BRI) for stroke rehabilitation. This device
provided patient control over the training device via motor
imagery-related oscillations of the ipsilesional cortex (Brauchle
et al., 2015). The study illustrated that a BRI may successfully
link three-dimensional robotic training to the participant’s
effort. Furthermore, the BRI allowed the severely impaired
stroke patients to perform task-oriented activities with a
physiologically controlled multi-joint exoskeleton. However, this
approach did not result in significant upper limb improvements
with functional relevance for the participating patients. This
training approach was potentially too challenging and may
even have frustrated the patients (Fels et al., 2015). The

Frontiers in Neuroscience | www.frontiersin.org 2 November 2016 | Volume 10 | Article 518

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grimm et al. Closed-Loop Adaptation for Stroke Rehabilitation

patients’ cognitive resources for coping with the mental load
of performing such a neurofeedback task must therefore be
taken into consideration (Bauer and Gharabaghi, 2015a; Naros
and Gharabaghi, 2015). Mathematical modeling on the basis
of Bayesian simulation indicates that this might be achieved
when the task difficulty is adapted in the course of the training
(Bauer and Gharabaghi, 2015b). Such an adaptation strategy
has the potential to facilitate reinforcement learning (Naros
et al., 2016b) by progressively challenging the patient (Naros
and Gharabaghi, 2015). Recent studies explored automated
adaptation of training difficulty in stroke rehabilitation of less
severely affected patients (Metzger et al., 2014; Wittmann et al.,
2015). More specifically, both robot-assisted rehabilitation of
proprioceptive hand function (Metzger et al., 2014) and inertial
sensor-based virtual reality feedback of the arm (Wittmann
et al., 2015) benefit from assessment-driven adjustments of
exercise difficulty. Furthermore, a direct comparison between
adaptive BRI training and non-adaptive training (Naros et al.,
2016b) or sham adaptation (Bauer et al., 2016a) in healthy
patients revealed the impact of reinforcement-based adaptation
for the improvement of performance. Moreover, the exercise
difficulty has been shown to influence the learning incentive
during the training; more specifically, the optimal difficulty level
could be determined empirically while disentangling the relative
contribution of neurofeedback specificity and sensitivity (Bauer
et al., 2016b).

In the present 4-week pilot study, we combined these
approaches and customized them for the requirements of
patients with severe upper extremity impairment by applying a
multi-joint exoskeleton for task-oriented arm and hand training
in an adaptive virtual environment. Notably, due to the severity
of their impairment, these patients were not able to practice the
reach-to-grasp movements without the exoskeleton. The set-up
was, however, limited to pure antigravity support, i.e., it provided
passive rather than active assistance. Furthermore, it tested the
feasibility of closed-loop online adaptation of exercise difficulty
and aimed at automated progression of task challenge.

METHODS

We recruited five stroke patients (2 female, mean age: 52 ±

9 [from 41 to 63] years) in the chronic phase after stroke
(65 ± 59 [from 8 to 156] months) who provided written,
informed consent and presented with a severe and persistent
hemiparesis (for details, see Table 1). The modified upper

extremity Fugl-Meyer-Assessment score (i.e., mean motor
UE-FMA score without coordination, speed and reflexes) of
our group of patients was 14.3 ± 5.3 [from 9 to 22.4]. This
study was approved by the ethical review committee of the local
medical faculty. It involved a 20-session training program in the
course of 4 weeks. Each session consisted of brain self-regulation
and proprioceptive feedback with a hand robot (Naros and
Gharabaghi, 2015) prior to a physiotherapy training with a multi-
joint exoskeleton attached to the impaired arm (Grimm et al.,
2016a). Each physiotherapy session consisted of 150 trials of task-
oriented reach-to-grasp exercises resembling activities of daily
living which were randomly distributed in the directions x, y and
z (a total of 50 trials in each direction). The general experimental
set-up has already been described in detail elsewhere (Grimm and
Gharabaghi, 2016; Grimm et al., 2016a,b) and is cited here when
applied in the same way.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints, with seven axes (i.e., degrees of
freedom) providing antigravity support for the paretic arm and
registration of movement kinematics and grip force (Figure 1,
upper row). This device allowed individual adjustments e.g.,
of gravity compensation, thereby supporting subjects with
severe impairment in performing task-oriented practice within
a motivating virtual environment.

We extended these features in-house by using the real-time
sensor data of the exoskeleton to display a three-dimensional
multi-joint visualization of the user’s arm in virtual reality
(Figure 1, lower row). This provided feedback as to the
movement quality, i.e., the absence or presence of compensatory
movements. Such a feedback is more liable to recover movement
patterns used by the subject before suffering a stroke. It can also
avoid compensatory movements rather than merely providing
information about movement execution (Cirstea and Levin,
2007). For this purpose, we used a file mapping communication
protocol to capture the angles of all arm joints and the grip
force from a shared memory block. The virtual arm engine
was programmed in a Microsoft XNATM framework. The arm
model utilized by the engine was constructed as a meshed bone-
skin combination with 54 bones (3Ds Max 2010TM, Autodesk).
The joint angles and grip forces of the device measured with
the exoskeleton were used to modify the bone-vectors of the
meshed model in accordance with the movements of the user,

TABLE 1 | Clinical information.

Age Sex Months post stroke Side of Insult Type of stroke Affected vessel UE FMA

Subject 1 63 female 78 right ischemic ACM 16.1

Subject 2 52 male 156 right ischemic ACI 22.4

Subject 3 59 female 20 left ischemic ACM 10

Subject 4 41 male 62 right ischemic ACM 9

Subject 5 48 male 8 left ischemic ACI 14

ACI, internal carotid artery; ACM, middle cerebral artery.
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FIGURE 1 | Training set-up with the exoskeleton (upper row) and the

provided visual feedback in virtual reality (lower row).

thus providing online closed-loop feedback. The joint angles
of the exoskeleton were directly represented in virtual reality,
whereas the grip forces were augmented to feedback natural
hand function. More specifically, the maximum grip pressure
measured by the force sensor resulted in a full closure of the
virtual hand to a fist independent of the subjects’ actual ability to
perform this particular movement. Prior to each session, subjects
were instructed to perform a natural reach-to-grasp movement
during the task by using distal (elbow) rather than proximal
(shoulder) movements. The three-dimensional visualization of
the arm was then applied during each task as an implicit
online feedback of the movement, since explicit information can
disrupt motor learning in stroke patients (Boyd and Winstein,
2004; Cirstea and Levin, 2007). More specifically, delivery of
explicit instructions has been shown to disrupt implicit motor
learning after stroke regardless of task (either continuous or
discrete movement tasks) or lesion location (involving either the
sensorimotor cortical areas or basal ganglia); this disruption did
not occur in healthy control subjects (Boyd and Winstein, 2006).
In the current set-up, various virtual training paradigms were

designed to allow for different rehabilitation exercises resembling
activities of daily living.

Task Design
In this study, subjects performed a reach-to-grasp movement
toward a ball which changed its position in virtual space
after each trial, thus necessitating three-dimensional transfer
movements. The ball had to be grasped, carried to a distant
basket and then released without the necessity for a final wrist
movement. As soon as it entered a defined range around the ball,
the virtual hand could react with the former. The ball changed
its color according to the hand position (white: out of range,
green: possible to grasp, yellow: possible to transfer, red: possible
to release). The grasping and releasing of the virtual ball was
performed by applying force to the grip sensor and opening the
hand, respectively. The respective thresholds of the grip sensor
were adjusted to the individual strength of the user.

Closed-Loop Adaptation of Task Difficulty
Modification of task difficulty was achieved by adjusting the
virtual training space, i.e., the distance between the ball and the
basket, in the course of one session, and from session to session.
More specifically, during the device calibration, an individual
base point was estimated for every subject at the beginning of
the training and remained stable throughout the sessions. This
base point was projected in the middle of the sagittal body axis
in front of the subject, serving as a reference for symmetrical
transfer movements in x (right-left), y (up-down) and z (front-
back) direction. The basket and ball were randomly distributed
in the virtual space, allowing for 6 movement directions (right,
left, up, down, forward, backward). The distances reached during
each task were recorded throughout the training and gradually
enlarged by the training algorithm. The starting distance between
ball and basket was set at 5 virtual units in x, y or z direction (vu),
corresponding to 7 cm. Upon successful completion of the task,
which was not limited in time, the next task was immediately
presented. Whenever the task was successfully accomplished
twice, an auto-adaptive algorithm progressively enlarged this
distance. In this case, the distance between the objects was
enlarged by 7 cm in the corresponding direction. The reached
distances were stored at the end of each session and provided the
starting distances for the next training day. If the task could not
be accomplished, i.e., if one object (ball or basket) could not be
reached, the distance was reduced again. To allow for enough
time to complete the movement, a timeout of 2 s was given.
Following this period, the object moved slowly toward the virtual
hand at a velocity of 0.5 vu/s until it could be reached. The new,
reduced distance was stored for the next task. Similarly, the grip
force required for initiating the augmented closing and opening
of the fingers of the virtual model was also progressively increased
whenever the respective threshold was achieved three times in
a row, and decreased when the necessary force could not be
applied. These performance-dependent adjustments enabled the
subjects to complete the tasks at their respective capability levels.
The subjects were instructed to perform the tasks as quickly
and as accurately as possible. To maintain their motivation, they
received additional feedback via a point score system: the larger
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the accomplished distance and the faster the performance, the
higher the score per trial. In addition, the total score and the five
highest trial scores were displayed to the subjects at the end of
each session (Figure 2).

Outcome Measures
The training space of the exoskeleton (real space) and the virtual
space correspond linearly with an arbitrary point O (0/0/0)
localized in the center of the shoulder joint. All quantitative
data are transformed to SI-Units. Since no direct conversion is
available, raw sensor data are displayed for the grip force. The
kinematic assessment included accuracy, temporal efficiency and
range of motion (volume). Movement accuracy was captured by
calculating changes of movement direction along an optimal path
toward the targets, by estimating the distance function between
the hand-position and the final endpoint, and by calculating
the second derivative of the function to acquire the number
of turning points for each task (Cirstea et al., 2006). Temporal
efficiency was captured as the time required to complete each
task, and as the mean and peak velocity of the hand between
the targets while calculating their distance for x-, y-, and z-
directions in virtual units (vu). The range ofmotion (volume) was
measured according to the orthosis and displayed in degrees. The
range of sensor-data from the grip-sensor was estimated as the

mean change in grip pressure. Furthermore, the raw movement
data of all joints (shoulder, upper-arm, elbow and wrist) was
acquired in degrees. Movements were allowed in 3D space, i.e.,
moving simultaneously in x-, y-, and z-direction, as illustrated
in Figure 2. However, the outcome measure “mean distance”
refers to an arithmetic mean, since the targets were aligned in
one axis (x, y, or z) for each task. The average distance covered
in the corresponding direction thus reflected the increase of the
inter-target distance. Providing the distance in 3D space would
have provided (particularly in the first sessions) false positive
values due to large inaccuracies duringmovement execution. As a
cumulative parameter of the performance evolution in 3D space
we computed the total training volume, which grew along with
the subjects’ abilities. This volume was estimated on the basis of
the performed movement in 3D space (not on the basis of the
inter-target distance).

Statistics
Statistical analysis was performed on a Matlab (2010b) Engine.
The kinematic data (volume, distance, grip pressure and joint
movement) was tested for linear distribution using the Lilliefors-
test (2-sided goodness-of-fit test). The non-parametric Kruskal-
Wallis was used for group comparisons of the UE-FMA score
between pre- and post-training. To estimate the evolution of

FIGURE 2 | Upper row: exemplary kinematic data of movement in the x-direction (patient 5, first training session) with the evolution of the task

distance in the course of the trials, i.e., at the beginning of the session (A) and in the middle of the session (B). Lower row: evolution of achieved distances in

x-, y- and z-direction in the course of one training session (same as above). The trials shown above are marked with (A) and (B).
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parameters during training, a robust multilinear regression
model was fitted. Since the Lilliefors-test revealed normality of
the data, a robust multilinear regression analysis was applied to
minimize the impact of outliers (Holland and Welsch, 1977).
The fitting function was based on an iteratively reweighted least
squares algorithm. The weight of each iteration was calculated by
applying a bi-squared function to the residuals of the previous
iteration. The slope b of coefficient estimates and the ratio of the
standard error of coefficient estimates (t) are presented for every
fitting function. The significance level was set to p = 0.05 for all
tests.

RESULTS

All subjects were able to perform the reach-to-grasp exercises in
virtual space due to gravity compensation and alteration of the
grip force of the exoskeleton.

In the course of 20 sessions, the auto-adaptive algorithm led to
a progressive increase of the training space in accordance with the
subjects’ abilities (Figure 3: individual subjects, Figure 4: group
data normalized to baseline, Figure 5: group data normalized
to maximum). The results are presented in Table 2. The gain
was particularly high in the first 2–3 sessions, and reached a
plateau in the last 3–4 sessions. The mean distance, and the
distances for the y-direction and the z-direction in virtual space

all showed a significant increase throughout all sessions. The
trend in the x-direction (p = 0.057) for all sessions reached
significance when considering the evolution before the saturation
effect, i.e., sessions 1–18.

This learning curve was paralleled by an improvement of
kinematic parameters (Figure 5, Table 2): The mean training
volume increased over the time course of training (pre:
18054 cm3

± 26053 cm3; post: 35572 cm3
± 15069 cm3), reaching

a robust average increase of at least 100% of the starting volume
from the 6th session on. This improvement was paralleled by
a temporary (i.e., sessions 7–18) increase of volume variability,
indicating the potential for relevantly larger gains in some of the
subjects.

This gain in range of motion was not at the expense of other
kinematic parameters. By contrast, both the inaccuracy (number
of turning points) and movement speed- related parameters such
as peak velocity and time per task also improved. The peak
velocity revealed a robust average increase of at least 50% of
the starting speed from the 10th session on. The variability also
increased steadily, suggesting that subjects have different specific
slopes of increased speed.

Notably, these kinematic gains were also paralleled by
significant motor improvements for grip force and elbow
movement. The degree of elbowmovement increased throughout
all sessions by an average of 50% from the 11th to the 16th
session, before reaching a saturation level later on. The average

FIGURE 3 | Evolution of mean arithmetic distance of all directions together and distances for x-, y- and z-directions in the course of the training for

each patient. Each point represents the mean across 50 trials in each direction for each subject. The color indicates the different patients. One session was

performed per day. The solid lines indicate the linear regressions in the course of training.
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FIGURE 4 | The figure shows the across subject evolution of the distance traveled in the x, y, and z directions. The median distance is estimated across

subjects, where the distance is the average distance covered in the corresponding direction across trials per session per subject. The data is normalized to the

baseline session. Represented are the median group values (dots), the 95% confidence interval and the linear regression (solid line). The subplots shows the evolution

of the (A) arithmetic mean distance, (B) the distance in the x- direction, (C) the distance in the y-direction and (D) the distance in the z-direction.

grip force also increased relevantly, but showed the largest
variability of all the parameters (Figure 6: individual subjects,
Figure 7: group data normalized to baseline, Figure 8: group data
normalized to maximum). Shoulder movement and upper-arm
movement showed an improvement but missed significance; the
wrist movement did not change in the course of the training. The
UE-FMA score changed significantly (p= 0.026) from 14.3± 5.4
[from 9 to 22] before to 16.9 ± 6.1 [from 10 to 26] after the
intervention.

DISCUSSION

This pilot study demonstrates the feasibility of progressively
increasing the range of motion of chronic stroke patients with
a severe impairment of the upper extremity in the course of 20

training sessions. A multi-joint exoskeleton for the paretic arm
allowed the subjects to perform task-oriented practice within
a virtual environment (Housman et al., 2009). Notably, unlike
other studies with similarly affected stroke patients, where active
robots completed a movement when started once (Klamroth-
Marganska et al., 2014; Brauchle et al., 2015), this assistive
technology delivered antigravity-support only and provided no
guidance. Patient engagement was maximized by default in the
present study, leaving no room for slacking; the continuous visual
feedback of the arm kinematics enabled the patients to adjust
their action online during each task; an approach that closely
resembles natural motor learning.

Such a closed-loop framework follows an operant
conditioning rationale. It provides contingent feedback to
facilitate the targeted activity which is considered to be
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FIGURE 5 | The figure shows the across subject evolution of the distance traveled in the x, y, and z directions. The mean distance is estimated across

subjects, where the distance is the average distance covered in the corresponding direction across trials per session per subject. The data is normalized to the

maximum performance achieved in each parameter. The subplots shows the evolution of the (A) arithmetic mean distance, (B) the distance in the x- direction, (C) the

distance in the y-direction and (D) the distance in the z-direction.

TABLE 2 | Parameter progression over training.

Mean pre Mean post Linear regression

b t p

Mean arithmetic distance in cm 24.0±12.6 31.2± 20.9 0.058 6.4 <0.001

Distance x-direction in cm 33.6±26.1 49.6± 22.1 0.05 5.1 <0.001

Distance y-direction in cm 21.7±10.0 39.5± 11.8 0.049 5.9 <0.001

Distance z-direction in cm 16.7±6.4 26.8± 6.9 0.042 7.7 <0.001

Volume in cm3 18054±26053 35572± 15069 0.089 4.4 0.008

Inaccuracy in number of errors 13.5±9.4 9.5± 5.7 0.004 0.9 0.01

Peak velocity in cm/s 6.9±2.7 8.9± 2.6 0.4 6.8 <0.001

Time per task in s 14.9±5.8 7.4± 3.0 s 0.005 1.5 0.01

Elbow movement in ◦ 8.9±3.3 13.7± 5.5 0.021 3.0 0.001

Grip force in pu 0.031±0.01 0.069± 0.03 0.0023 3.1 0.001

UE-FMA 14.3±5.4 16.9± 6.1 − − −

beneficial for recovery, and might ultimately lead to functional
gains (Gharabaghi et al., 2014c,d; Bauer and Gharabaghi,
2015a). These restorative approaches may, however, pose a
considerable challenge for the patients (Bauer and Gharabaghi,
2015b; Fels et al., 2015) who might explore alternative,

i.e., therapeutically undesirable, strategies (Gharabaghi
et al., 2014b). Moreover, particularly in patients with severe
impairments, non-successful trials may cause frustration,
thereby limiting motor learning. In this context, closed-loop
adaptation of exercise difficulty, as practiced in the present
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FIGURE 6 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for each

patient. Each point represents the mean across 150 trials for each patient. The color indicates the different patients. One session was performed per day. The solid

lines indicate the linear regressions in the course of training.

study, may help to avoid frustration by tailoring the range
of motion in accordance with the actual ability of each
patient.

Previous adaptation approaches provided different types of
assistance (Colombo et al., 2012), applied a lead-lag performance
model for robotic assistance (Chemuturi et al., 2013), or adjusted
the robot/patient’s interaction forces (Vergaro et al., 2010). The
adaptation approach implemented in this study was differed
conceptually from the previous algorithms in that it modulated
the virtual task difficulty, not the degree of assistance. This
passive gravity compensation remained stable throughout the
exercises. Nonetheless, the patients were challenged continuously
in our study since the difficulty level increased progressively
as soon as task accomplishment was repeated successfully. This
performance-dependent online adjustment of task challenge
facilitated reinforcement learning and resulted in a progressive
increase of the virtual training space with a concurrent
improvement of real world range of motion and other kinematic
parameters such as accuracy and movement velocity. Notably,

these gains followed unsupervised training algorithms and
were paralleled by motor improvements such as increased
elbow movement, grip force and upper extremity Fugl-Meyer-
Assessment score. Whether or not these motor improvements
were caused by the specific performance-dependent training
algorithm applied here cannot be concluded from the present
data, since a control group, i.e., dose-matched training without
online adaptation of task difficulty, was not included in this
study. Furthermore, this set-up did not assess whether its
effects would be limited to chronic and severely affected stroke
survivors. The dataset was also small and the heterogeneity of
subjects, injuries or time from stroke might influence the gains
observed.

However, these limitations do not compromise the major
finding of this study, namely the feasibility of progressively
increasing the assisted range of motion of severely impaired
stroke patients by applying closed-loop virtual reality feedback
for unsupervised motor learning. As in all previous studies
in chronic stroke patients with severe motor impairments
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FIGURE 7 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for the

group. Data is normalized to the first day. Represented are the median group values (dots), the 95% confidence interval and the linear regression (solid line).

of the upper extremity (e.g., Lang et al., 2016), the clinical
improvement within 20 training sessions was, in any case, too
modest to lead to relevant functional gains of the patients in
their activities of daily living. A sufficiently powered, randomized
and adequately controlled but costly trial is, therefore, currently
not justified on the basis of this specific approach and the
dose of practice applied here. However, the implemented set-
up may prove suitable as the basis and training framework
for other concurrently applied restorative interventions (see
below).

Different, mutually non-exclusive reasons might be
responsible for the current limited functional gain: Since
the dose of stroke rehabilitation therapy has been shown to
correlate positively with clinically meaningful improvements
(Lohse et al., 2014; Pollock et al., 2014), the approximately
3000 movement attempts, i.e., exercise trials, performed
in the course of 20 sessions during this 4-week study
might have been insufficient to induce functionally more
relevant improvements. On the other hand, even higher
doses of motor therapy (i.e., 6400 or 9600 repetitions in
the course of 8 weeks and 32 sessions, 4 days/week) in

chronic stroke patients with long-standing (>6 months)
upper limb paresis, did not result in a larger functional
improvements than in patients who received a therapy dose
(3200 repetitions) similar to the one applied here (Lang et al.,
2016).

However, the trajectories of kinematic and clinical parameters
in the course of the training of the present study suggest
that a plateau level of improvement, i.e., a ceiling effect, has
not been achieved yet and that further practice sessions, i.e.,
a longer intervention period, would result in larger gains.
Moreover, the huge performance variability of the patients
in some sessions, e.g., between 100 and 1000% increased
ranges of motion, suggests a general capacity for even larger
improvements for at least some of the patients. These windows of
opportunity might, however, necessitate additional interventions
to maximally exploit and consolidate the salvaged restorative
potential.

Brain stimulation may facilitate such additive effects for
assisted reach-to-grasp exercises: Bilateral transcranial direct
current stimulation, for example, has led to improved motor
performance of healthy patients beyond the natural learning
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FIGURE 8 | Evolution of the kinematic parameters volume, peak velocity, elbow movement and mean grip force in the course of the training for the

group. The data is normalized to the maximum performance achieved in each parameter.

curve when applied prior to training with the very same
multi-joint arm exoskeleton as applied in the present work
(Naros et al., 2016a). Brain state-dependent transcranial
magnetic stimulation has, moreover, been demonstrated to
induce robust increases of corticospinal excitability (Kraus
et al., 2016b; Royter and Gharabaghi, 2016) and may thereby
amplify use-dependent plasticity when applied in conjunction
with assistive rehabilitation devices (Gharabaghi, 2015;
Massie et al., 2015). Concurrent state-dependent transcranial
magnetic stimulation may thereby unmask latent corticospinal
connectivity after stroke (Gharabaghi et al., 2014a) which
can be detected and monitored with refined motor mapping
techniques (Kraus and Gharabaghi, 2015, 2016; Mathew
et al., 2016). Applying phase-dependent stimulation (Raco
et al., 2016) synchronized to maximum gains of assisted
range of motion, may furthermore consolidate the involved
corticospinal circuits in accordance with Hebbian-like plasticity
rules.

The scope for recovery may also be improved when
using advanced assistive rehabilitation technology based
on brain-robot interfaces, since these devices were found

to constitute a back-door to the motor system (Gomez-
Rodriguez et al., 2011; Bauer et al., 2015). Exercises
based on brain-robot feedback of motor-imagery related
sensorimotor beta-band desynchronization may result in
connectivity changes of cortico-cortical motor networks
(Vukelić et al., 2014; Vukelić and Gharabaghi, 2015a,b),
lead to a re-distribution of cortico-spinal connections
(Kraus et al., 2016a) and to behavioral gains (Naros et al.,
2016b). Combining these tools with an adaptive virtual
environment similar to that applied in this study may thus
maximize the impact of both approaches on sensorimotor
function.

In summary, combining gravity-compensation with auto-
adaptive closed-loop feedback in virtual reality provides
customized rehabilitation environments for severely affected
patients and may facilitate unsupervised motor learning by
balancing the patient’s challenge in accordance with the
individual capacity for functional restoration; a proposal that
requires investigation in a larger cohort of stroke patients in
comparison to sham adaptive and non-adaptive feedback as well
as to dose-matched, conventional physiotherapy.
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