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Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for patients
with hematological malignancies. Acute Graft versus host diseases (GVHD) is a major
immune mediated side effect of allo-HCT that can affect the central nervous system (CNS)
in addition to post-allo-HCT vascular events, drug toxicity or infections. Here we
summarize and discuss recent preclinical data on the CNS as a target of acute GVHD
and the known mechanisms contributing to neurotoxicity with a focus on microglia and T
cells. We also discuss open questions in the field and place the findings made in mouse
models in a clinical context. While in mice the neurological deficits can be assessed in a
controlled fashion, in patients the etiology of the CNS damage is difficult to attribute to
acute GVHD versus infections, vascular events, and drug-induced toxicity. Ultimately, we
discuss novel therapies for GVHD of the CNS. Our understanding of the biological
mechanisms that lead to neurotoxicity after allo-HCT increased over the last decade.
This review provides insights into CNS manifestations of GVHD versus other etiologies of
CNS damage in mice and patients.
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INTRODUCTION

Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic
hematopoietic cell transplantation (allo-HCT). About 50% of the patients with severe acute
GVHD fail to respond to corticosteroids, and steroid-refractory severe GVHD has a dismal
prognosis with a 1-year survival rate of less than 20% (1). GVHD was classically considered to
involve the skin, intestinal tract and liver, which was termed as “tissue tropism of acute GVHD”.
The target organs of acute GVHD are affected by commensal bacteria that populate these locations
and that may migrate through damaged epithelial barriers (2) and activate intestinal epithelium (3),
neutrophils (4, 5), dendritic cells, macrophages and monocytes (6). The observation that non-sterile
triggers of tissue damage such as ATP (7, 8) or uric acid (9) may contribute to GVHD support the
concept that also other organs with less commensal bacteria can be affected by GVHD. There is
org October 2021 | Volume 12 | Article 7480191
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increasing evidence that the effects of acute GVHD are not
limited to the three classical target organs, but can also occur
in the central nervous system (CNS). Neurological complications
were reported in 10% of the patients undergoing autologous
(auto)-HCT while over 80% of allo-HCT patients experienced
neurological complications at some time point (10–12) which
indicates that not only the toxicity but also the allo-reactive effect
of the donor immune system may contribute to neurological
complications. Clinical manifestations of CNS-GVHD include
seizures, reduced vision and cognitive impairment. The
symptoms can resemble for example multiple sclerosis or
Guillain-Barre syndrome. Risk factors for neurological
complications during acute GVHD are diverse. Female gender,
high doses of total body irradiation (TBI), myeloablative high
dose chemotherapy-based conditioning, infections and
preexisting cerebrovascular disorders are major risk factors for
the development of neurological complications after allo-HCT
(13–15). CNS-GVHD though considered a rare entity,
significantly affects the mortality and quality of life in allo-
HCT patients (13). In this review, we provide an overview on
the cell types affected by CNS-GVHD and we discuss the diverse
clinical manifestations of the disease as well as infections,
vascular events and drug toxicities affecting the CNS.
STUDIES ON CNS-GVHD IN
PRECLINICAL MODELS

Preclinical studies using mouse models of acute GVHD showed
that the transfer of allogeneic T cells caused CNS infiltration by
effector memory T cells (16). The allogeneic T cells infiltrated
different regions of the CNS including the meninges, vasculature
and parenchyma while a comparable T cell infiltration was not
observed when only syngeneic T cells were transferred (16).
Evidence for CNS-GVHD was not restricted to the murine
model, as other investigators reported that CNS infiltration by
CD8+ T cells was a key feature of GVHD in non-human primates
(17). Conversely, treatment of primates with immune-
prophylaxis after allo-HCT reduced the abundance of T cell
infiltration into the brain (17). These findings indicate that the
donor T cells manage to infiltrate the CNS despite its anatomical
location and immune privilege. Therefore, immune responses
may evolve differently from peripheral tissues. This infiltration
by T cells is likely due to disruption of the blood-brain-barrier,
which under normal conditions controls the influx of immune
cells into the CNS.

Though T cells play a central role for the induction of acute
GVHD, other cell types also contribute to the disease. Studies
reported an increase in the expression of MHC class I and II
molecules in the CNS in a rat model of GVHD.
Immunohistological studies revealed increased expression of
host MHC in parenchymal and vascular regions along with
increased infiltration of T cells (18). In line with the findings, a
fivefold increase in the MHC-II expression was observed in a
CD45loCD11b+ microglial population which further re-iterates
the involvement of microglia in CNS-GVHD pathogenesis (19).
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Microglial activation was not only observed in inflammatory
disease of the CNS but also in several neurodegenerative diseases
including Parkinsons disease and Alzheimers disease (20). Host
derived IL-6 and Indoleamine 2,3 Dioxygenase-1 (IDO-1) were
shown to regulate the behavior patterns and inflammation in the
CNS during acute GVHD (21). Microglia and macrophages were
activated and increased the production of IDO-1 which thereby
resulted in behavioral deficits in a murine model of GVHD (22).
Interestingly, IL-6R inhibitor treated mice had decreased
infiltration of CD4 and CD8 T cells and reduced production of
pro-inflammatory cytokines in CNS. Recent clinical studies
showed that downstream signaling of IL-6R via JAK2/STAT
reduced acute and chronic GVHD in patients (23–25). We have
previously shown that microglia plays a central role in acute
GVHD-induced neurotoxicity (26). Acute GVHD caused an
amoeboid phenotype of microglia with reduced branching
points and dendrites when compared to the syngeneic HCT
controls in a murine model of GVHD (Figures 1A, B). Microglia
cells that were activated during acute GVHD exhibited increased
TNF expression and activated the downstream TAK/MAPK
signaling. Therapeutic inhibition of TAK1 signaling by takinib
reversed the microglial activation and T cell infiltration (26).
Additionally the GVHD induced neurocognitive defects reduced
in mice treated with takinib, suggesting a novel potential
therapeutic avenue for acute GVHD of the CNS.

Consistent with the neurocognitive defects observed in mice
developing GVHD, neuronal damage in the CNS was reported
(16). Allogeneic T cells infiltrating the CNS induced apoptosis of
neurons and neuroglia, which limited the cognitive and
exploratory function in a murine model of GVHD (16). In line
with the findings, an increase in the expression of c-fos was noted
in several cortical regions including occipital and olfactory
regions in a rat GVHD model (27). In contrast, such
inflammatory effects were not observed upon transfer of
syngeneic T cells (27).

Multiple effects involving endothelial damage, T cell
transmigration, cytokine production and ultimately neuronal
damage are involved in CNS-GVHD (Figure 2).
HUMAN STUDIES ON CNS-GVHD

Consistent with findings in preclinical models, human brain
analysis of female sex-mismatched bone marrow transplant
recipients have identified donor (Y-chromosome+) derived cell
infiltrates (28). In addition to this, lymphocytosis was noticed in
CSF together with encephalitis with increased infiltration of T
cells and gliosis with no signs of infection further confirming the
occurrence of CNS-GVHD (29, 30).

Neurological deficits and MRI findings have been reported in
patients developing GVHD (31).

The clinical picture of acute GVHD is often connected to
neurological deficits in patients, morphological CNS white matter
changes detectable by magnetic resonance imaging and
intraparenchymal lymphocytic infiltration of the brain upon
autopsy (31, 32). In line with the findings, studies also reported
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neurological deficits including drowsiness, dysphoria, right
dazedness and MRI findings of abnormal cerebra gyrus
swelling, corpus signal, diffused white matter regions (33).
Biopsy studies on GVHD brains showed axonal depletion
representative of demyelination disease in a patient. CNS-
GVHD is quite heterogeneous and case dependent with
patients most frequently reported with delusion, hemiparesis,
temporary unconsciousness and psychomotor agitation with
neither T cell infiltration to the CNS nor relapse of malignancy
(14, 34). On contrary, some patients also developed metabolic
encephalopathy with neurological deficits ranging from vision
loss, confusion to coma and death (15).

Autopsy studies revealed an increase of Iba-1+ myeloid
cells in the CNS of patients with GVHD when compared to
the allo-HCT patients without GVHD. In addition to this the
microglia from CNS-GVHD patients had increased expression of
TNF (26).

Due to the rarity of CNS-GVHD and the difficulty to
distinguish the disease from other mediators of CNS toxicity,
biomarkers to identify CNS-GVHD would be highly desirable.
IgG index in the CSF is an indicator of neurological disorders like
multiple sclerosis, intrathecal inflammation (35, 36). Another
study indicated that Blood Brain Barrier (BBB) impermeability,
IgG –Synthesis index are early indicators of CNS demyelination
(37). In addition to this, increased BBB permeability, elevated
myelin basic protein in blood and CSF are some of the immune
markers that could be tested for their validity as biomarkers for
CNS-GVHD (36). Identifying the immune biomarkers that
predict damage to neurons, glial cells and myelin membranes
may help diagnose CNS-GVHD. Patients with CNS-GVHD
Frontiers in Immunology | www.frontiersin.org 3
were reported to respond to high dose corticosteroids,
intravenous immunoglobulin treatments, immunosuppressive
medications including methotrexate and etoposide (38).
Chronic CNS-GVHD is a late complication of allo-HCT and
clinical manifestations may include myasthenia gravis, myositis,
demyelination, angiitis (39, 40). Patients can also present with
stroke-like episodes, lacunar syndromes, multiple sclerosis-like
presentations or encephalitis (30). The diagnosis of chronic CNS-
GVHD is often challenging (41). The NIH Consensus Conference
on criteria for clinical trials in chronic GVHD delineated three
types of chronic CNS-GvHD: cerebrovascular disease, CNS
demyelinating disease, and immune-mediated encephalitis (41).
The NIH consensus on criteria for clinical trials in chronic GVHD
recommended that the diagnosis of chronic CNS-GVHD should
be made only when other organs are affected by GVHD and other
neurological differential diagnoses are excluded (41). Differential
diagnoses of chronic CNS-GVHD include in particular drug-
induced toxicities or opportunistic infections.
NON-GVHD RELATED CAUSES FOR
NEUROLOGICAL SYMPTOMS AFTER
ALLO-HCT

Neurological complications after allo-HCT can have multiple
etiologies such as infections, vascular events and drug-
induced toxicities.

After allo-HCT, patients are immunodeficient and therefore
highly susceptible to a variety of opportunistic infections caused
A

B

FIGURE 1 | (A) Microglia morphology in the CNS of mice undergoing syn-HCT or allo-HCT as previously reported (26). (B) Infiltration of T cells (brown) in the CNS
of mice undergoing syn-HCT or allo-HCT.
October 2021 | Volume 12 | Article 748019

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vinnakota and Zeiser CNS-GVD and Other CNS-Toxicities
by either bacteria, fungi or viruses, which can also affect the CNS.
Acute GVHD further increases the risk of opportunistic
infections, which lead to neurological complications in some
patients (42). CSF analysis of patients undergoing allo-HCT
revealed the presence of cytomegalovirus (CMV), Epstein Bar
(EBV), Human Herpes virus-6 (HHV-6), HHV-8, toxoplasma
infections among others (43). Diffuse microglial hyperplasia
and microglial nodular encephalopathy were reported
in some patients, which indicates microglial activation in
response to infectious complications during GVHD (15).
Meningoencephalitis induced by Aspergillus species was
observed in children and adults undergoing allo-HCT with an
overall incidence rate of up to 30% (15, 44). Cerebral aspergillus
infections can cause stroke like manifestations with focal deficits
(45). Infections related to candida species were reported in allo-
HCT patients with neurological complications ranging from
vasculitis to hemorrhagic abscess (46). Bacterial infections also
account for major neurological complications after allo-HCT, e.g.
CNS infections with streptococcus and staphylococcus (15).
Klebsiella, E coli and Listeria monocytogenes were reported to
cause meningitis and brain stem encephalitis in allo-HCT
Frontiers in Immunology | www.frontiersin.org 4
patients. Toxoplasma gondii encephalitis is a rare infection after
allo-HCT, mostly reported in countries with high prevalence rates
of the toxoplasma (47, 48). Neurotoxoplasmosis is characterized
by the presence of grey and white matter abscesses and can be
diagnosed by CT or MRI scans (49). Patients undergoing allo-
HCT are exposed to a variety of viruses that lead to viral
encephalitis further governing the mortality and morbidity
rates. HHV-6, EBV, Herpes simplex virus, CMV, John
Cunningham (JC) virus, varicella zoster virus, and adenovirus
are the commonly reported viral infections leading to
neurological complications in GVHD patients. Progressive
multifocal leukoencephalopathy is a progressive demyelinating
disorder caused by JC virus primarily affecting oligodendrocytes
in response to monoclonal antibodies (50). Restoration of
anti-viral immune responses is the only available option for
treating JC virus related infections, although tapering
the immunosuppression was unsuccessful in reversing the
neurological deficits in a fraction of patients (51). In addition to
this, a positive correlation between CD8+ T cells in the CNS and
JC virus infected glial cells was reported (52). HHV-6 induced
encephalitis is a serious complication observed mostly within
FIGURE 2 | The simplified sketch shows the proposed mechanism how CNS-GVHD evolves and contributes to neuronal damage ultimately leading to cognitive
deficits. An initial event is the activation of microglia by stimuli that are not well characterized so far, being most likely damage associated molecular patterns (DAMPs)
and pathogen associated molecular patterns (PAMPs). Activated microglia upregulates MHC I and II as well as CD80 leading to increased T cell priming. Additionally
microglia- and macrophage-derived IL-6 impacting IDO-1 induces neurological defects, leading to the clinical picture of CNS GVHD. TNF derived from microglia has
direct neurological toxicity. Donor T cells polarized towards Th1 and Th17 contribute to CNS GVHD as well as macrophages, monocytes and DC from the periphery.
Mф, Macrophage; DC, Dendritic Cells; Tc, T cells; Ly6c+ cells, Monocytes.
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24 days of allo-HCT (53, 54). Patients with high levels of HHV-6
DNA in their plasma are at an increased risk of developing
neurological deficits that include epilepsy, delirium, and
cognitive impairment (53, 55). Pediatric patients receiving
haploidentical CD45RA T cell depleted grafts presented with
a high rate of HHV-6 induced encephalitis (56). Similarly,
HSV related infections can affect the CNS (57). Unlike HSV,
VZV infection typically affects multiple region in the CNS
and the common manifestations include myelitis and vascular
encephalitis. Post-transplant lymphoproliferative diseases
driven by oncogenic EBV pose considerably high risks post
allo-HCT (58). The infections caused by EBV are early onset
and mostly donor derived and risk factors include intensity
of immunosuppression and high-grade GVHD (59). The
manifestations are very similar to CNS lymphomas with
hypercellularity, necrosis and hemorrhages (60). CMV infections
in either lungs or CNS are often associated with extremely high
mortality rates in allo-HCT patients. CMV infection of the CNS is
typically a late onset disease and is associated with encephalitis or
polyradiculopathy (61). Umbilical cord transplantation and
prolonged T cell depletion are the major risk factors associated
with CMV encephalitis (62). Histological manifestations of the
CMV include viral inclusion bodies in the CNS commonly
referred as owls eye inclusions (63). In some patients the viral
load of CMV in the CSF was higher than in the peripheral blood
indicating the significance of monitoring the CMV copy levels in
the CSF when CNS involved by CMV reactivation is suspected
(63, 64). Allogeneic virus-specific T cells were shown to be effective
against CMV and EBV (65–67) and could be used to treat
neurological symptoms caused by virus infections. This strategy
will be most relevant for allo-HCT patients with drug-refractory
CMV infection that lack virus-specific T cells. A recent trial using
stem cell-donor- or third-party-donor-derived CMV-specific T
cells for the treatment of persistent CMV infections after allo-
HSCT reported complete and partial virological response rates in
62.5% and 25%, respectively (68).

Vascular complications including subarachnoid, subdural,
intraparenchymal and intraventricular hemorrhages were
identified by autopsy studies in the CNS of allo-HCT patients
(15, 69). Low platelet counts, an altered coagulation and pre-
existing vascular events are risk factors contributing to
hemorrhage and thrombosis post allo-HCT (70). Microvascular
injury and endothelial damage leading to increased microvascular
permeability were caused by calcineurin inhibitors in patients
undergoing allo-HCT (71).

Medications given pre- and post-transplant also contribute to
neurological deficits in patients undergoing allo-HCT. In order to
suppress the immune system of the patient and to eliminate
cancer cells, patients receive conditioning therapy. The type of
conditioning regimen mainly depends on the underlying disease,
comorbidities and the age of the patient. Conditioning regimens
can include combinations of high dose TBI with cyclophosmide
and cytarabine. Reduced intensity conditioning regimen (RIC)
often consist of fluradabine and busulphan and minimum dose
conditioning regimens use low dose TBI and busulphan (13, 72).
Cyclophosphamide induces neurotoxicity by generating reactive
oxygen species which further impairs the motor coordination,
Frontiers in Immunology | www.frontiersin.org 5
learning and memory in rats (73). Busulphan, an alkylating agent,
is widely used for conditioning prior to allo-HCT. Busulphan
penetrates the CNS as shown by active CSF drug levels and severe
CNS toxicity was observed in patients treated with this agent (74).
Around 2% of the allo-HCT patients treated with busulphan were
reported to develop tonic clonic seizures (75, 76). A case study
reported disturbances in electroenchephalography (EEG) which
lasted for about 20 days upon busulphan and cyclophosphamide
treatment (77). Phenytoin is effective at preventing busulphan
induced seizures (78). Chemotherapy induced toxic
leukoencephalopathy has an unfavorable prognosis (79).
Autopsies of patients with leukoencephalopathy revealed
activation of astrocytes, infiltration of activated macrophages
and a decrease in microglia expressing TMEM119 along with
gliosis, demyelination in white matter (80).

In addition to neurotoxicity caused by the conditioning
regimen, the GVHD prophylaxis or treatment, anti-viral drugs,
antibiotics and anti-fungal agents can cause toxicity to the CNS.
The calcineurin inhibitors cyclosporine A (CSA) and tacrolimus
are widely used for GVHD prophylaxis as they block T cell activity
(81). However the expression of calcineurin is not limited to
lymphocytes, but it is also expressed by CNS cells, particularly in
the hippocampus (82). In the CNS calcineurin controls the
function of neurons and its blockade affects the CNS function
(83). Visual disturbances, increase in the occipital lobe density,
cortical abnormalities, seizures, posterior reversible encephalopathy
syndrome (PRES), hallucinations, motor weakness are some of the
most commonly reported side effects of CSA experienced by 10-
28% of the treated patients (84–87). In line with the reports, CSA
treated mixed glial cultures induced cell death of neurons and
oligodendrocytes indicating drug toxicity (88). While most of the
side effects induced by CSA are reversible, some reports indicate
that cyclosporine induced neurotoxicity might result in long-term
toxicity with permanent cortical blindness (89).The mechanism of
action of tacrolimus is quite similar to CSA, while some reports
suggest that CSA caused milder symptoms of neurotoxicity (50).
Tacrolimus induced PRES was reported in children undergoing
allo-HCT for hemoglobinopathies (90–92). Recently the JAK-1 and
JAK-2 inhibitor ruxolitinib has shown activity for the treatment of
corticosteroid-refractory acute and chronic GVHD (23–25). A
major side effects is thrombocytopenia, which may increase the
risk of cerebral hemorrhage after allo-HCT.

Antimicrobials or anti infectious drugs employed in the
treatment of opportunistic infections during GVHD also pose
significant threat to the CNS. Neutropenia together with
encephalitis induced stroke, and vertigo are the major side
effects of medications including acyclovir, gancyclovir (49). In
addition, thrombocytopenia induces vascular complications
ranging from subdural hematoma, hemorrhages and infarct
along with increased infection rate in patients post allo-HCT
(49). Amphotericin B triggers confusion, Parkinsonism, visual
changes and encephalopathies in some cases (49, 93). Cefepime
induced seizures, encephalopathy and myoclonus were noted in
some studies (49).

In aggregate, a plethora of infections, vascular events, and
drug-induced toxicities can cause neurogical symptoms that
need to be ruled out before diagnosing CNS-GVHD.
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DIAGNOSTIC PROCEDURES THAT
SHOULD BE PERFORMED IN CASE OF
CNS SYMPTOMS

The NIH Consensus Conference on criteria for clinical trials in
GVHD recommends the following measures in patients with
suspected CNS-GVHD (41): CSF cell count, serology, culture
and polymerase chain reaction for viral, bacterial or fungal DNA.
Imaging should include MRI of the CNS. MRI and CSF analysis
will reveal the underlying disease of the neurological symptoms
in the majority of cases. CNS-GVHD is an exclusion diagnosis
meaning that other causes should be excluded before
immunosuppressive therapy is started. The presence of other
GVHD manifestations make the diagnosis of CNS-GVHD more
likely. To exclude more rare causes for neurological symptoms
such as post-transplant acute limbic encephalitis in patients with
anterograde amnesia, inappropriate antidiuretic hormone
secretion and EEG abnormalities, it is recommended to
determine HHV-6 reactivation in the CSF and perform MRI of
the brain (41). In case that clinical presentation and MRI suggest
an infection, but serology and PCR from CSF remain negative a
biopsy of the lesion is recommended (41). In particular when
chronic fungal and viral infections as well as progressive
multifocal leukoencephalopathy are suspected (94). Also if
relapse of the hematological malignancy in the CNS is
clinically suspected a biopsy can be considered if the CSF
analysis was not conclusive.
SUMMARY

Despite recent advances in the clinical management of acute
GVHD, CNS-GVHD is still a life threatening complication that
is often difficult to diagnose. Preclinical studies have shown that
Frontiers in Immunology | www.frontiersin.org 6
allogeneic T cells infiltrate the CNS during GVHD and activate
different cell types including microglia and other myeloid cells.
CNS-GVHD causes damage to neurons and endothelial cells.
While CNS-GVHD accounts for some of the neurological
symptoms observed after allo-HCT it is important to also
consider infections, vascular events, and drug-induced toxicity.
Treatment of these complications e.g. reducing CSA when CSA
induced neurotoxicity is suspected could exacerbate CNS-
GVHD. In case of drug toxicities the responsible drugs should
be changed and avoided if CNS symptoms are severe. Therefore,
to improve patient outcome it is desirable to identify biomarkers
that help early identification and diagnosis of CNS-GVHD in
particular when other organs are not affected by GVHD.
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20. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T,
et al. Microglia in Neurological Diseases: A Road Map to Brain-Disease
Dependent-Inflammatory Response. Front Cell Neurosci (2018) 12:488.
doi: 10.3389/fncel.2018.00488

21. Belle L, Koester E, Hansen E, Lawlor M, Hillard C, Drobyski WR. Host
Interleukin 6 and Indoleamine 2,3 Dioxygenase Regulate Inflammation in the
Brain During Graft Versus Host Disease. Blood (2016) 128(22):2145–5.
doi: 10.1182/blood.v128.22.2145.2145

22. Belle L, Zhou V, Stuhr KL, Beatka M, Siebers EM, Knight JM, et al. Host
Interleukin 6 Production Regulates Inflammation But Not Tryptophan
Metabolism in the Brain During Murine GVHD. JCI Insight (2017) 2(14):
e93726. doi: 10.1172/jci.insight.93726

23. Zeiser R, Polverelli N, Ram R, Hashmi SK, Chakraverty R, Middeke JM, et al.
Ruxolitinib for Glucocorticoid-Refractory Chronic Graft-Versus-Host
Disease. N Eng J Med (2021) 385:228–38. doi: 10.1056/NEJMoa2033122

24. Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al.
Ruxolitinib for Glucocorticoid-Refractory Acute Graft-Versus-Host Disease.
N Eng J Med (2020) 382:1800–10. doi: 10.1056/NEJMoa1917635

25. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK,
et al. Ruxolitinib in Corticosteroid-Refractory Graft-Versus-Host Disease
After Allogeneic Stem Cell Transplantation: A Multi-Center Survey.
Leukemia (2015) 29:2062–8. doi: 10.1038/leu.2015.212

26. Mathew NR, Vinnakota JM, Apostolova P, Erny D, Hamarsheh S, Andrieux
G, et al. Graft-Versus-Host Disease of the CNS Is Mediated by TNF
Upregulation in Microglia. J Clin Invest (2020) 130:1315–29. doi: 10.1172/
JCI130272

27. Furukawa H, Yamashita A, del Rey A, Besedovsky H. C-Fos Expression in the
Rat Cerebral Cortex During Systemic GvH Reaction. Neuroimmunomodulation
(2004) 11(6):425–33. doi: 10.1159/000080154

28. Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W, et al. Male
Donor-Derived Cells in the Brains of Female Sexmismatched Bone Marrow
Transplant Recipients: A Y-Chromosome Specific in Situ Hybridization
Study. J Neuropathol Exp Neurol (1993) 52:460–70. doi: 10.1097/00005072-
199309000-00004

29. Mariotti J, Penack O, Castagna L. Acute Graft-Versus-Host-Disease Other
Than Typical Targets: Between Myths and Facts. Transplant Cell Ther (2021)
27(2):115–24. doi: 10.1016/j.bbmt.2020.09.033

30. Ruggiu M, Cuccuini W, Mokhtari K, Meignin V, Peffault de Latour R, Robin
M, et al. Case Report: Central Nervous System Involvement of Human Graft
Versus Host Disease: Report of 7 Cases and a Review of Literature. Medicine
(2017) 96(42):e8303–3. doi: 10.1097/MD.0000000000008303

31. Shortt J, Hutton E, Faragher M, Spencer A. Central Nervous System Graft-
Versus-Host Disease Post Allogeneic Stem Cell Transplant. Br J Haematol
(2006) 132:245–7. doi: 10.1111/j.1365-2141.2005.05864.x
Frontiers in Immunology | www.frontiersin.org 7
32. Saad AG, Alyea EP, Wen PY, DeGirolami U, Kesari S. Graft-Versus-Host
Disease of the CNS After Allogeneic Bone Marrow Transplantation. J Clin
Oncol (2009) 27:147–9. doi: 10.1200/JCO.2009.21.7919

33. Li M, Zhang Y, Guan Y, Zhang Z, Dong H, Zhao Y, et al. A Case Report of
Central Nervous System Graft-Versus-Host Disease and Literature Review.
Front Neurol (2021) 12:621392(327). doi: 10.3389/fneur.2021.621392

34. Blasiak KP, Simonetta F, Vargas M-I, Chalandon Y. Central Nervous System
Graft-Versus-Host Disease (CNS-GvHD) After Allogeneic Haematopoietic
Stem Cell Transplantation. Case Rep (2018) 2018:bcr–2017-221840.
doi: 10.1136/bcr-2017-221840

35. Bonnan M, Gianoli-Guillerme M, Courtade H, Demasles S, Krim E,
Marasescu R, et al. Estimation of Intrathecal IgG Synthesis: Simulation of
the Risk of Underestimation. Ann Clin Transl Neurol (2018) 5(5):524–37.
doi: 10.1002/acn3.548

36. Lyu H-R, He X-Y, Hao H-J, Lu W-Y, Jin X, Zhao Y-J, et al. Noninvasive Tools
Based on Immune Biomarkers for the Diagnosis of Central Nervous System
Graft-vs-Host Disease: Two Case Reports and a Review of the Literature.
World J Clin cases (2021) 9(6):1359–66. doi: 10.12998/wjcc.v9.i6.1359

37. Zhang XH, Zhao X, Wang CC, HanW, Chen H, Chen YH, et al. IgG Synthesis
Rate and Anti-Myelin Oligodendrocyte Glycoprotein Antibody in CSF may be
Associated With the Onset of CNS Demyelination After Haplo-HSCT. Ann
Hematol (2018) 97(8):1399–406. doi: 10.1007/s00277-018-3299-4

38. Ruggiu M, Cuccuini W, Mokhtari K, Meignin V, Latour R, Robin M, et al.
Case Report: Central Nervous System Involvement of Human Graft Versus
Host Disease.Medicine (2017) 96:e8303. doi: 10.1097/MD.0000000000008303

39. Hümmert MW, Stadler M, Hambach L, Gingele S, Bredt M, Wattjes MP, et al.
Severe Allo-Immune Antibody-Associated Peripheral and Central Nervous
System Diseases After Allogeneic Hematopoietic Stem Cell Transplantation.
Sci Rep (2021) 11:8527. doi: 10.1038/s41598-021-87989-z

40. Das J, Gill A, Lo C, Chan-Lam N, Price S, Wharton SB, et al. A Case of
Multiple Sclerosis-Like Relapsing Remitting Encephalomyelitis Following
Allogeneic Hematopoietic Stem Cell Transplantation and a Review of the
Published Literature. Front Immunol (2020) 11:668. doi: 10.3389/
fimmu.2020.00668

41. Grauer O, Wolff D, Bertz H, Greinix H, Kühl JS, Lawitschka A, et al.
Neurological Manifestations of Chronic Graft-Versus-Host Disease After
Allogeneic Haematopoietic Stem Cell Transplantation: Report From the
Consensus Conference on Clinical Practice in Chronic Graft-Versus-Host
Disease. Brain (2010) 133:2852–65. doi: 10.1093/brain/awq245

42. Miller HK, Braun TM, Stillwell T, Harris AC, Choi S, Connelly J, et al.
Infectious Risk After Allogeneic Hematopoietic Cell Transplantation
Complicated by Acute Graft-Versus-Host Disease. Biol Blood Marrow
Transplant J Am Soc Blood Marrow Transplant (2017) 23(3):522–8.
doi: 10.1016/j.bbmt.2016.12.630

43. Sakellari I, Gavriilaki E, Papagiannopoulos S, Gavriilaki M, Batsis I, Mallouri
D, et al. Neurological Adverse Events Post Allogeneic Hematopoietic Cell
Transplantation: Major Determinants of Morbidity and Mortality. J Neurol
(2019) 266(8):1960–72. doi: 10.1007/s00415-019-09372-3

44. Dietrich U, Hettmann M, Maschke M, Doerfler A, Schwechheimer K, Forsting
M. Cerebral Aspergillosis: Comparison of Radiological and Neuropathologic
Findings in Patients With Bone Marrow Transplantation. Eur Radiol (2001)
11(7):1242–9. doi: 10.1007/s003300000756

45. Anciones C, de Felipe A, de Albóniga-Chindurza A, Acebrón F, Pián H,
Masjuán J, et al. Acute Stroke as First Manifestation of Cerebral Aspergillosis.
J Stroke Cerebrovascular Dis (2018) 27(11):3289–93. doi: 10.1016/
j.jstrokecerebrovasdis.2018.07.031

46. Lai PH, Lin SM, Pan HB, Yang CF. Disseminated Miliary Cerebral
Candidiasis. AJNR Am J Neuroradiol (1997) 18(7):1303–6.

47. Martino R, Maertens J, Bretagne S, Rovira M, Deconinck E, Ullmann A, et al.
Toxoplasmosis After Hematopoietic Stem Cell Transplantation. Clin Infect
Dis (2000) 31(5):1188–94. doi: 10.1086/317471

48. Fricker-Hidalgo H, Bulabois C-E, Brenier-Pinchart M-P, Hamidfar R, Garban
F, Brion J-P, et al. Diagnosis of Toxoplasmosis After Allogeneic Stem Cell
Transplantation: Results of DNA Detection and Serological Techniques. Clin
Infect Dis (2009) 48(2):e9–15. doi: 10.1086/595709

49. Dulamea AO, Lupescu IG. Neurological Complications of Hematopoietic Cell
Transplantation in Children and Adults. Neural regener Res (2018) 13(6):945–
54. doi: 10.4103/1673-5374.233431
October 2021 | Volume 12 | Article 748019

https://doi.org/10.1016/j.bbmt.2007.07.013
https://doi.org/10.1016/j.bbmt.2007.07.013
https://doi.org/10.1016/j.bbmt.2009.07.013
https://doi.org/10.1038/sj.bmt.1702140
https://doi.org/10.1182/blood-2012-09-456590
https://doi.org/10.1182/blood-2014-01-547612
https://doi.org/10.1073/pnas.84.7.2082
https://doi.org/10.3389/fncel.2018.00488
https://doi.org/10.1182/blood.v128.22.2145.2145
https://doi.org/10.1172/jci.insight.93726
https://doi.org/10.1056/NEJMoa2033122
https://doi.org/10.1056/NEJMoa1917635
https://doi.org/10.1038/leu.2015.212
https://doi.org/10.1172/JCI130272
https://doi.org/10.1172/JCI130272
https://doi.org/10.1159/000080154
https://doi.org/10.1097/00005072-199309000-00004
https://doi.org/10.1097/00005072-199309000-00004
https://doi.org/10.1016/j.bbmt.2020.09.033
https://doi.org/10.1097/MD.0000000000008303
https://doi.org/10.1111/j.1365-2141.2005.05864.x
https://doi.org/10.1200/JCO.2009.21.7919
https://doi.org/10.3389/fneur.2021.621392
https://doi.org/10.1136/bcr-2017-221840
https://doi.org/10.1002/acn3.548
https://doi.org/10.12998/wjcc.v9.i6.1359
https://doi.org/10.1007/s00277-018-3299-4
https://doi.org/10.1097/MD.0000000000008303
https://doi.org/10.1038/s41598-021-87989-z
https://doi.org/10.3389/fimmu.2020.00668
https://doi.org/10.3389/fimmu.2020.00668
https://doi.org/10.1093/brain/awq245
https://doi.org/10.1016/j.bbmt.2016.12.630
https://doi.org/10.1007/s00415-019-09372-3
https://doi.org/10.1007/s003300000756
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.031
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.031
https://doi.org/10.1086/317471
https://doi.org/10.1086/595709
https://doi.org/10.4103/1673-5374.233431
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vinnakota and Zeiser CNS-GVD and Other CNS-Toxicities
50. Ayas M, Al-Jefri A, Al-Seraihi A. In Cyclosporine Induced Neurotoxicity, Is
Tacrolimus an Appropriate Substitute or Is It Out of the Frying Pan and Into
the Fire? Pediatr Blood Cancer (2008) 50(2):426; author reply 427–6. doi:
10.1002/pbc.21211

51. Avivi I, Wittmann T, Henig I, Kra-Oz Z, Szwarcwort Cohen M, Zuckerman T,
et al. Development of Multifocal Leukoencephalopathy in Patients
Undergoing Allogeneic Stem Cell Transplantation-Can Preemptive
Detection of John Cunningham Virus Be Useful? Int J Infect Dis (2014)
26:107–9. doi: 10.1016/j.ijid.2014.03.1381

52. Wüthrich C, Kesari S, Kim WK, Williams K, Gelman R, Elmeric D, et al.
Characterization of Lymphocytic Infiltrates in Progressive Multifocal
Leukoencephalopathy: Co-Localization of CD8(+) T Cells With JCV-
Infected Glial Cells. J Neurovirol (2006) 12(2):116–28. doi: 10.1080/
13550280600716604

53. Ogata M, Fukuda T, Teshima T. Human Herpesvirus-6 Encephalitis After
Allogeneic Hematopoietic Cell Transplantation: What We Do and Do Not
Know. Bone Marrow Transplant (2015) 50(8):1030–6. doi: 10.1038/bmt.2015.76

54. Zerr DM. Human Herpesvirus 6 and Central Nervous System Disease in
Hematopoietic Cell Transplantation. J Clin Virol (2006) 37(Suppl 1):S52–6.
doi: 10.1016/s1386-6532(06)70012-9

55. Zerr DM, Fann JR, Breiger D, Boeckh M, Adler AL, Xie H, et al. HHV-6
Reactivation and Its Effect on Delirium and Cognitive Functioning in
Hematopoietic Cell Transplantation Recipients. Blood J Am Soc Hematol
(2011) 117(19):5243–9. doi: 10.1182/blood-2010-10-316083

56. Inui Y, Yakushijin K, Okamura A, Tanaka Y, Shinzato I, Nomura T, et al.
Human Herpesvirus 6 Encephalitis in Patients Administered Mycophenolate
Mofetil as Prophylaxis for Graft-Versus-Host Disease After Allogeneic
Hematopoietic Stem Cell Transplantation. Transplant Infect Dis (2019) 21
(1):e13024. doi: 10.1111/tid.13024
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