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Abstract

Population genetic data from multiple taxa can address comparative phylogeo-

graphic questions about community-scale response to environmental shifts, and a

useful strategy to this end is to employ hierarchical co-demographic models that

directly test multi-taxa hypotheses within a single, unified analysis. This approach

has been applied to classical phylogeographic data sets such as mitochondrial bar-

codes as well as reduced-genome polymorphism data sets that can yield 10,000s

of SNPs, produced by emergent technologies such as RAD-seq and GBS. A strat-

egy for the latter had been accomplished by adapting the site frequency spectrum

to a novel summarization of population genomic data across multiple taxa called

the aggregate site frequency spectrum (aSFS), which potentially can be deployed

under various inferential frameworks including approximate Bayesian computation,

random forest and composite likelihood optimization. Here, we introduce the R

package MULTI-DICE, a wrapper program that exploits existing simulation software

for flexible execution of hierarchical model-based inference using the aSFS, which

is derived from reduced genome data, as well as mitochondrial data. We validate

several novel software features such as applying alternative inferential frameworks,

enforcing a minimal threshold of time surrounding co-demographic pulses and

specifying flexible hyperprior distributions. In sum, MULTI-DICE provides comparative

analysis within the familiar R environment while allowing a high degree of user

customization, and will thus serve as a tool for comparative phylogeography and

population genomics.
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1 | INTRODUCTION

Population genetics has experienced an increasing interest in quanti-

fying shared and idiosyncratic attributes across demographic

histories from multiple independent taxa to address questions

regarding wide-scale biogeographic, ecological and evolutionary

responses to climate and landscape changes, an endeavour com-

monly referred as comparative phylogeography (Arbogast & Kenagy,

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

Received: 6 January 2017 | Revised: 14 March 2017 | Accepted: 14 April 2017

DOI: 10.1111/1755-0998.12686

e212 | wileyonlinelibrary.com/journal/men Mol Ecol Resour. 2017;17:e212–e224.

http://orcid.org/0000-0003-1521-6448
http://orcid.org/0000-0003-1521-6448
http://orcid.org/0000-0003-1521-6448
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/MEN


2001; Avise, 2000; Hewitt, 1996, 2000; Hickerson et al., 2010;

Papadopoulou & Knowles, 2016; Taberlet, Fumagalli, Wust-Saucy, &

Cosson, 1998). These comparative studies can be especially informa-

tive about how key environmental and organismal features (Carnaval,

Hickerson, Haddad, Rodrigues, & Moritz, 2009; Carstens, Gruen-

staeudl, & Reid, 2016; Fouquet et al., 2012; He et al., 2016; Kautt,

Machado-Schiaffino, & Meyer, 2016; Luo et al., 2015; Nada-

chowska-Brzyska, Li, Smeds, Zhang, & Ellegren, 2015; Papadopoulou

& Knowles, 2015; Qu et al., 2015; Rougemont et al., 2017; Smith

et al., 2014; Stone et al., 2012; Wood et al., 2013) and selective

forces (Boyko et al., 2010; Frantz et al., 2015; Gignoux, Henn, &

Mountain, 2011; Hohenlohe et al., 2010; Poh, Domingues, Hoekstra,

& Jensen, 2014; Rougeux, Bernatchez, & Gagnaire, 2016) affect pat-

terns of shared and idiosyncratic histories. One approach in such

investigations is to exploit multi-taxa genetic data for comparative

demographic inference under a hierarchical model, whereby hyperpa-

rameters govern the variability of a certain demographic parameter

across taxa, while all other nuisance demographic parameters freely

vary per each taxon (Beaumont, 2010; Hickerson, Dolman, & Moritz,

2006). In contrast to assembling results from independently per-

formed inferential analyses to qualitatively compare demographic

histories post hoc, this strategy permits explicit hypothesis testing

and inference of multi-taxa questions, as well as allows for gains in

statistical power via the borrowing strength achieved from combin-

ing exchangeable data sets (Congdon, 2001; Gelman, Carlin, Stern, &

Rubin, 2003; Qian et al., 2004), demonstrated previously via simula-

tions (Xue & Hickerson, 2015).

Originally developed for single-locus DNA data sets easily col-

lected from multiple taxa (Burbrink et al., 2016; Hickerson, Stahl, &

Takebayashi, 2007; Ornelas et al., 2013), this methodology has been

extended to accommodate SNP data sets derived via recently

emerging technologies such as RAD-seq and GBS, thereby improving

inferential resolution through vastly greater sampling of independent

gene tree histories across genomes from multiple taxa (Xue & Hick-

erson, 2015). This has been accomplished by exploiting the aggre-

gate site frequency spectrum (aSFS), which has been established to

contain signal of variability in demographic histories across taxa. Pro-

ducing an aSFS involves creating single-population site frequency

spectra (SFS) independently across taxa and combining these accord-

ing to a standardized re-ordering procedure based on relative pro-

portions of total SNPs per allele frequency class. This protocol

therefore does not require sites to be homologous between taxa

and in turn allows data to be collected across distantly-related taxa

(more details about data preparation given in Implementation sec-

tion). Construction of the aSFS can then be applied to coalescent

simulations produced under a hierarchical co-demographic model

that treats taxa as independent, unidentified and exchangeable units,

and coupled with a statistical framework such as approximate Baye-

sian computation (ABC) to make comparative multi-taxa inference

(Prates et al., 2016; Xue & Hickerson, 2015). This simulation

approach could potentially be modified with other techniques,

including machine learning algorithms such as random forest (RF)

(D�ıaz-Uriarte & Alvarez de Andr�es, 2006; Pudlo et al., 2016; Strobl,

Boulesteix, Zeileis, & Hothorn, 2007; Svetnik et al., 2003) and partial

least squares regression (PLS) (Boulesteix & Strimmer, 2007; Weg-

mann, Leuenberger, & Excoffier, 2009). To elaborate, RF involves

constructing decision trees based on “training” simulations to form a

classification or regression scheme that subsequently can be applied

to observed data, and PLS entails maximizing the variance explained

in response variables in a manner similar to principal component

analysis, which can be employed as a transformation procedure to

potentially mediate high dimensionality of correlated summary statis-

tics, such that inherently exists among aSFS bins. Alternatively, the

aSFS could be deployed within a composite likelihood optimization

(CL) framework, a statistical approach commonly used for demo-

graphic inference based on SFS data (Bustamante, Wakeley, Sawyer,

& Hartl, 2001; Excoffier, Dupanloup, Huerta-S�anchez, Sousa, & Foll,

2013; Gutenkunst, Hernandez, Williamson, & Bustamante, 2009;

Lukic & Hey, 2012; Sawyer & Hartl, 1992).

The aSFS enables researchers to exploit data produced by next-

generation sequencing to explore a variety of hypotheses that relate

climatic and landscape changes with the evolution and demographic

histories of biotic assemblages through hierarchical co-demographic

modelling. Here we make this analytical pipeline available as the R

package MULTI-DICE (Multiple Taxa Demographic Inference of Congru-

ency in Events). To demonstrate and explore implementation of MUL-

TI-DICE, we conducted a series of simulation studies that summarize

an expanded set of options within our aSFS approach, including: (i)

employing RF as an additional inferential tool; (ii) enforcing a “buffer”

on prior space such that co-demographic events have an a priori

minimal difference in time from each other; (iii) truncating the hyper-

prior range for improved hyperparameter estimation.

2 | MATERIALS AND METHODS

2.1 | Hierarchical co-demographic model

Our hierarchical co-demographic model consists of n taxa, which

refer to independent panmictic populations with no assumption of

or requirement for recent shared ancestry (Mazet, Rodr�ıguez, Grusea,

Boitard, & Chikhi, 2016), randomly assigned to Ψ instantaneous

expansion (Figure 1a) or contraction (Figure 1b) times. Of the Ψ

times, there are w times corresponding to synchronous pulse events

that involve at least two taxa, and r times corresponding to idiosyn-

cratic events ungrouped from any pulses with only a single taxon,

such that Ψ = w + r (Table 1). The proportion of n taxa assigned to

any of the w pulses is represented by fT, the proportion of n taxa

belonging to each of the w pulses is described by the associated

hyperparameter vector fs = {f1, . . ., fw}, and the proportions of n

taxa across all Ψ events are indexed by the vector f = {fs, fi,1, . . ., fi,r}.

Here, fT is a single proportion value that ranges from 0.0 to 1.0 and

equals the total sum of fs (i.e., fT =
Pw

j¼1 fj when w > 0), and both fs

and f are hyperparameter vectors that index proportion values

across events. Specifically, each of w elements within the vector fs

ranges from 2/n to 1.0, and f comprises of fs as well as each fi

element = 1/n. The proportion fT and proportions within the vector
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fs may be converted to numbers of taxa ST = fT 9 n and S = fs 9 n,

respectively. Synchronous pulse times are indexed in the vector

ss = {ss,1, . . ., ss,w}, whereas idiosyncratic times are indexed in the

vector si = {si,1, . . ., si,r}, with both vectors arranged in ascending

order from most recent to oldest. To clarify, synchronous pulses are

indexed by the temporal order established by ss = {ss,1, . . ., ss,w},

which thus determines the order of fs such that f1 pertains to the

most recent pulse and fw reflects the most ancient. In the case of

Ψ = w and r = 0, accordingly fT = 1.0 such that all taxa are assigned

to one of w synchronous pulses with no temporally idiosyncratic

taxa. On the other extreme, when Ψ = r = n and w = 0, accordingly

fT = 0.0 with zero elements in the associated fs vector such that

there are no synchronous pulses with all taxa idiosyncratically expe-

riencing population size change across r different times. Other

taxon-specific demographic parameters include each taxon’s ratio of

size change from the ancestral effective population size to current

effective population size is indexed by the vector e = {e1, . . ., en}

and each taxon’s current effective population size indexed by the

vector N = {N1, . . ., Nn}. Additionally, population size change times

may be indexed to coincide with the taxa arrangement of e and N

such that s = {s1, . . ., sn} (Table 1).

When implementing this co-demographic model for comparative

demographic inference, there exists flexibility in the hierarchical

parameterization, with several options available in MULTI-DICE. One

such option, similar to the approach described in Chan, Schanzen-

bach, and Hickerson (2014) and Xue and Hickerson (2015), is to

constrain the hyperparameter w to the values within the set {0, 1}

and condition Ψ and r on the hyperparameter fT, which freely var-

ies according to the hyperprior distribution P(fT). This allows scenar-

ios of complete idiosyncrasy, absolute synchrony within a single

pulse, and intermediate degrees of synchronicity belonging to one

pulse with remaining taxa temporally idiosyncratic. Here, f1 is the

only element possible in fs whereby fT = f1 when w = 1 and

fT = 0.0 when w = 0, resulting in the joint posterior distribution P

(fT, s, e, N | Data) / P(Data | fT, s, e, N) P(e, N) P(s | Ψ, r, fT) P(Ψ,

r | fT) P(fT | w < 1). The values for Ψ and r are then determined

by Ψ = 1 + n � ST (when w = 1) and r = n � ST, respectively.

An alternative scheme is to randomly assign the proportions of n

taxa to Ψ times according to the hyperprior distribution for the vec-

tor f, which is conditional on the hyperprior distribution of Ψ, with w

and r accordingly conditional on P(f | Ψ) and P(Ψ). This leads to the

joint posterior distribution P(Ψ, f, s, e, N | Data) / P(Data | Ψ, f, s, e,

N) P(e, N) P(s | Ψ, f, w, r) P(w, r | Ψ, f) P(f | Ψ) P(Ψ). The values for w

and r are then determined by the number of Ψ draws for f that are

above and equal to 1/n, respectively, yielding the so-called Chinese

restaurant process (Aldous, 1985; Blei, Griffiths, Jordan, & Tenen-

baum, 2003) that is similarly applied in msBayes (Hickerson et al.,

2007; Huang, Takebayashi, Qi, & Hickerson, 2011). Similarly, a third

scheme is to condition the hyperprior distribution for the vector fs,

which must have a lower bound greater than 1/n, on the hyperprior

distribution of w, with Ψ and r accordingly conditional on P(fs | w)

and P(w), such that the joint posterior distribution is P(w, fs, s, e, N |

Data) / P(Data | w, fs, s, e, N) P(e, N) P(s | w, fs, Ψ, r) P(Ψ, r | w, fs) P

(fs | w) P(w). The values for Ψ and r are then determined by

Ψ = w + n � ST and r = n � ST, respectively. Optionally, for each

possible value in the w hyperprior, the associated fs, Ψ and r values

may be fixed to specified values rather than allowed to vary.

2.2 | Simulation experiments

We conducted a series of in silico experiments to quantify accuracy

and bias for various inferential frameworks and hierarchical co-

demographic modelling variants. Data were simulated under known

hyperparameter and parameter values with the coalescent simulator

FASTSIMCOAL version 2.5 (Excoffier et al., 2013). To directly generate

single-population folded SFS, the FREQ setting was enabled assum-

ing a set number of independent genealogies per SFS, which was

treated as an approximation for the number of SNPs sampled and

differed between experiments. Each SFS contained 20 haploid sam-

ples, only polymorphic bins and proportional SNP frequencies rather

than total SNP counts. Per individual simulation, a set of 10 SFS cor-

responding to n = 10 populations was converted to a single aSFS

summary vector following Xue and Hickerson (2015). Simulation ref-

erence tables composed of hyperparameter and parameter values

randomly drawn from their respective hyperprior and prior distribu-

tions and their corresponding aSFS summaries were separately
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F IGURE 1 Hierarchical co-demographic models. (a) Example
instantaneous co-expansion model. (b) Example instantaneous co-
contraction model. Both models are such that eight of the ten taxa
are assigned to three synchronous co-demographic pulses (ѱ = 3;
fT = 0.8), with the first pulse containing three taxa (f1 = 0.3), the
second pulse containing another two taxa (f2 = 0.2) and the third
pulse containing yet another three taxa (f3 = 0.3). Pulse 1 occurs at
the most recent time (ss,1), pulse 2 occurs at the intermediate time
(ss,2), and pulse 3 occurs at the most ancient time (ss,3). The
remaining two taxa are then behaving idiosyncratically in time from
all other taxa (si,1 and si,2). Each taxon is allowed nuisance
demographic parameter draws independent from each other ({e1, . . .,
e10} and {N1, . . ., N10})
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produced for each hierarchical co-demographic model variant and

read into the R environment with the R package BIGMEMORY to per-

form hierarchical RF regression (hRF) and hierarchical ABC (hABC)

under the simple rejection algorithm against pseudo-observed data

sets (PODs). PODs were produced under one of two methods, either

independently from the reference table or using the “leave-one-out”

cross-validation procedure. In brief, the “leave-one-out” procedure

involves iteratively treating a single randomly selected simulation

from a reference table as a POD and conducting inference using the

remaining simulations (Csill�ery, Franc�ois, & Blum, 2012). For each

inferential application, Pearson’s r correlation and root mean squared

error (RMSE) were calculated from estimated values against true

POD values.

2.3 | Testing inferential frameworks

In addition to hRF and hABC, we coupled these frameworks with

transformation of the aSFS by PLS as well as evaluated the

performance of hierarchical CL (hCL). To compare these inferential

strategies, per each of the two hierarchical co-demographic models

of co-expansion and co-contraction (Figure 1), 100 aSFS PODs were

simulated under the hyperprior distribution of w ~ U{0, 5} while per-

mitting idiosyncratic taxa such that fT was allowed to vary from 0.0

to 1.0. These PODs were consistently utilized to independently

estimate w across each inferential approach. A reference table of

1,000,000 simulated aSFS was likewise produced per model under

the same specification as the PODs (Supporting Information). For

hRF, using the R package RANDOMFOREST (Liaw & Wiener, 2002), a

total of 1,000 decision trees, with the default maximum of 33 vari-

ables randomly sampled as candidates at each tree split and from 10

trees per each of 100 cycles of randomly subsampling 1,000 simula-

tions per w (for a total of 6,000 simulations) with replacement after

each cycle, were built per reference table to capture variation in w

and leveraged to predict w for each corresponding POD using the

predict() function. For hABC, using the function abc() from the R

package ABC (Csill�ery et al., 2012), accepted tolerance levels of

0.0050, 0.0010 and 0.0005 were executed per POD against the cor-

responding reference table, and the mean, median and mode of the

according posterior distributions were calculated for point estimates

of w.

For PLS, the plsr() function in the R package PLS (Mevik & Weh-

rens, 2007) was applied to a random subset of 10,000 simulations

against variation in w per reference table. The PLS for each refer-

ence table was subsequently utilized to transform the remaining

990,000 simulations and corresponding PODs into as many compo-

nent values as needed to explain ≥95% of the total variance in the

original summary statistics. The same hRF and hABC protocols were

then executed on the remaining transformed reference tables. For

TABLE 1 Glossary of hyperparameters, parameter summaries, and parameters

Hyper/parameter
(summary) symbol Details

Ψ Number of total events; hyperparameter that directly governs f and in turn governs s; Ψ = w + r

w Number of synchronous pulse events; hyperparameter that directly governs fs and in turn governs ss

fT Total proportion of taxa belonging to any of w pulses; ranges from 0.0 to 1.0; fT =
Pw

j¼1 fj when w ≥ 1

f Vector of proportions of taxa belonging to each event, thus including fs, ordered such: {fs, fi,1, . . ., fi,r}, with

each fi element = 1/n; hyperparameter that directly governs s

fs Vector of proportions of taxa belonging to each pulse {f1, . . ., fw}, ordered from most recent to most ancient;

hyperparameter that directly governs ss; each element ranges from 2/n to 1.0

fi An element of f or fs as the index j iterates from 1 to Ψ or w, respectively

ST Conversion of fT to numbers of taxa by fT * n; n = ST + r

S Conversion of fs to numbers of taxa by fs * n

r Number of idiosyncratic events, and thus idiosyncratic taxa as well; determines length of si

s Vector of times across n taxa in units of number of generations that corresponds to e and N

ss Vector of synchronous pulse times corresponding to fs and thus in coinciding order from most recent to most ancient

si Vector of idiosyncratic pulse times and similarly ordered from most recent to most ancient

e Vector of nuisance size change magnitudes in units of ratio from ancestral NE to current NE; corresponds to s and N;

though not explored here, within MULTI-DICE, this parameter could be hyperparameterized by Ψ/w and f/fs instead

of or in complement to s

N Vector of nuisance NE; corresponds to s and e; though not explored here, within MULTI-DICE, this parameter could be

hyperparameterized by Ψ/w and f/fs instead of or in complement to s

n Total number of taxa in data set

b Pulse buffer value, in units of number of generations, between pulses and thereby modifying the s prior;

though not explored here, if e or N were hyperparameterized, those pulses could be accordingly buffered, and b could

be delineated by be and bN, respectively

Ωs Dispersion index of s, or Var(s)/E(s), a parameter summary describing temporal variation among taxa for which there is

strong inferential power; though not done here, could be calculated for e and N as well
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hCL, a custom pipeline that calls dadi to calculate the expected SFS

(Gutenkunst et al., 2009) and incorporates the multinomially dis-

tributed CL equation utilized in FASTSIMCOAL2 (Excoffier et al., 2013)

and the BFGS optimization algorithm (Liu & Nocedal, 1989) was

implemented (Supporting Information).

2.4 | Pulse buffer on prior space

Estimation of w or Ψ can be problematic as it does not necessarily

correlate well with true temporal variability in co-demographic

events. For example, a large number of synchronous events closely

clustered in time would signify a high w value yet have low temporal

variability, whereas a history with two synchronous co-demographic

events that are far apart in time would yield a lower w value (w = 2)

but with higher variance in time. As is the case with previous imple-

mentations of hierarchical co-demographic models (Hickerson et al.,

2014), this inconsistency can hinder the ability to capture meaningful

signal of w contained within the aSFS. To improve w estimation, we

deployed a user-defined temporal pulse buffer that defines a mini-

mal threshold of time b surrounding each co-demographic event

such that for each jth event, all other co-demographic events occur

outside a sj � b window. Mechanistically, this involves sequentially

modifying the prior distribution with every subsequent s draw, with

final assignment of {ss,1, . . ., ss,w} in ascending order such that ss,1 is

the most recent and ss,w is the most ancient. For example, given a

simulation with values w = 2, s ~ U{10,000, 1,000,000} and

b = 20,000, if the first ss draw is 100,000 generations, then the sec-

ond ss draw would be from the set U{10,000, 79,999} ∪ U

{120,001, 1,000,000}; and if the second ss draw is 15,000 genera-

tions, then {ss,1, ss,2} is assigned such that ss,1 = 15,000 and

ss,2 = 100,000. Importantly, a limit on the allowable number of buf-

fered co-demographic events is imposed by the total s prior distribu-

tion across these events and the magnitude of b.

2.5 | Testing pulse buffer on prior space

To gauge how b impacts hyperparameter estimation, two reference

tables with b = 0 generations and b = 30,000 generations were gen-

erated. In the special case of w = 0 for the b = 30,000 reference

table, b was reduced to 10,000 due to the constraint from the s

prior range and to allow more flexibility in the temporal dispersion

for the total idiosyncrasy scenario. Both reference tables contained

100,000 aSFS simulations of instantaneous co-expansion (Figure 1a)

per value of w ~ U{0, 5} for a total of 600,000 simulations each. For

simplicity, idiosyncratic taxa were not permitted and fT = 1.0 was

evenly distributed across the vector fs for each value of w > 0

(Table 2). Importantly, to accommodate the special case of w = 0,

which is equivalent to Ψ = 10, whereas all other values of w result

in Ψ = w, w values were converted to Ψ for estimation purposes.

Single-population SFS were generated from 5,000 independent

genealogies and according to the prior distributions s ~ U{5,000,

250,000} (in units of number of generations), e ~ U(0.01, 0.10) and

N ~ U{50,000, 250,000}.

The “leave-one-out” cross-validation procedure was performed

on each reference table for hRF and hABC hyperparameter esti-

mation of Ψ. This followed the same specifications as for testing

inferential frameworks, except the function cv4postpr() from the R

package ABC (Csill�ery et al., 2012) was deployed for hABC model

selection and the selected PODs were collectively removed from

the reference table for hRF cross-validation. For every reference

table, 20 “leave-one-out” POD iterations per Ψ value yielded a

total of 120 PODs, and an accepted tolerance level of 0.0025

resulting in 1,500 total retained simulations. Each discrete value of

Ψ was treated as a separate model, although the numeric values

of Ψ were exploited to determine the mean and median of the

model posterior distribution. Furthermore, the function cv4abc()

from the R package ABC was utilized for hABC parameter summary

estimation cross-validation of Ωs (Var(s)/E(s), or dispersion index of

s) and E(s), following the same specifications as hABC model

selection cross-validation, across 50 total “leave-one-out” POD

iterations per reference table. In addition, another cross-validation

experiment was conducted on the b = 30,000 reference table with

PODs from the b = 0 reference table. The same protocols for Ψ

hyperparameter estimation with hRF and hABC model selection

and Ωs and E(s) parameter summary estimation with hABC were

performed here, except the functions postpr() and abc() from the R

package ABC were employed for hABC hyperparameter and param-

eter summary estimation, respectively. This particular experiment

can demonstrate the power of parameterizing clustered events

together using a buffer even though real data are not under such

constrictions.

2.6 | Testing truncated hyperprior range

To explore the effect of decreasing hyperprior upper bounds on w,

we took subsets of the aforementioned b = 30,000 reference table

in order to construct new reference tables that corresponded to

w ~ U{0, 5}, w ~ U{0, 4}, w ~ U{0, 3}, w ~ U{0, 2} and w ~ U{0, 1},

respectively (Table 3). By cross-validating these subset reference

tables given reduced hyperprior ranges, we can assess the discrimi-

natory power of w values under differing hyperparameterizations. In

this exploration, cross-validation was restricted to only “leave-one-

out” Ψ estimation via hRF and hABC model selection per reference

table, following the previously outlined specifications for testing the

pulse buffer.

TABLE 2 fs values given even distribution of fT = 1.0 for each
value of w > 0

w value fs values

w = 1 f1 = 1.0

w = 2 {f1, f2} = 0.5

w = 3 {f1, f2, f3} = {0.4, 0.3, 0.3} (in random

order per simulation)

w = 4 {f1, f2, f3, f4} = {0.3, 0.3, 0.2, 0.2} (in random

order per simulation)

w = 5 {f1, f2, f3, f4, f5} = 0.2
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3 | RESULTS/DISCUSSION

3.1 | Testing inferential frameworks

The inferential frameworks that demonstrated the highest accuracy

and precision in estimating w were hRF (r = .600–.807,

RMSE = 1.77–2.22) and hABC mean estimates (r = .500–.802,

RMSE = 1.76–2.41; Table 4). Interestingly, there was improvement in

estimating w with hRF compared to hABC, as well as estimating w

under the co-contraction model in contrast to the co-expansion

model. Importantly, PLS transformation worsened performance con-

siderably in nearly all cases, suggesting that it is not a viable option

within this context, especially considering its large memory require-

ments. Furthermore, hCL performed very poorly, which likely can be

attributed to insufficient sampling of the vast multi-taxa and multi-

level parameter space by hCL’s intensive optimization approach. The

hCL implementation that we used could potentially be improved, for

example, using a different exploration tactic for nuisance parameters

and more independent optimization replicates. Indeed, accurate esti-

mates should be achievable provided an intensive sampling of the

parameter space. Nonetheless, given finite computational resources,

the quite poor performance here heavily suggests that likelihood

approaches generally are not advised for our set of hierarchical co-

demographic models, unlike other inferential applications on single-

taxon SFS data sets (Excoffier et al., 2013; Gutenkunst et al., 2009;

Lukic & Hey, 2012). This is especially relevant for large data sets

considering that computational requirements scale unfavourably with

increasing taxa membership due to the growth of hyperparameter

space. On the other hand, the stronger performances of hRF and

hABC suggest that these are sensible inferential choices to pair with

the aSFS. Moreover, they offer computational and statistical advan-

tages such as ease in parallelizing simulation efforts, minimal effort

needed to exploit a single reference table for conducting multiple

empirical estimates as is done in a cross-validation analysis with

PODs, and flexibility in specifying nuisance parameters.

3.2 | Improved Ψ estimation with pulse buffer b
and truncated hyperprior

According to our cross-validation experiments, there is greater relia-

bility in estimating Ψ with both hRF and hABC by incorporating a

pulse buffer on s prior space (Table 5). Moreover, when incorporat-

ing the b = 30,000 reference table against PODs simulated under

b = 0, there was improved Ψ estimation for both hRF and hABC in

TABLE 3 Specifications of subset reference tables for truncating hyperprior range simulation experiment

Subset reference
table hyperprior

Total simulations
(based on 100,000
per w value)

Total PODs (based
on 20 per w value)

Total sub-sampled
simulations for each cycle
of 10 hRF decision trees
(based on 1,000 per w value)

Remaining simulations for
hRF sub-sampling
once PODs removed

hABC accepted
tolerance level
(leading to 1,500
retained simulations)

w ~ U{0, 5} 600,000 120 6,000 599,880 0.00250

w ~ U{0, 4} 500,000 100 5,000 499,900 0.00300

w ~ U{0, 3} 400,000 80 4,000 399,920 0.00375

w ~ U{0, 2} 300,000 60 3,000 299,940 0.00500

w ~ U{0, 1} 200,000 40 2,000 199,960 0.00750

TABLE 4 Results for testing inferential frameworks simulation
experiment

Instantaneous
co-expansion

Instantaneous
co-contraction

r RMSE r RMSE

hRF prediction of Ψ .600 2.22 .807 1.77

hRF coupled with PLS

prediction of Ψ

.469 2.44 .831 1.73

hABC hyperparameter estimation of Ψ

tol. = 0.0050

Mean .500 2.41 .800 1.77

Median .426 2.85 .733 2.03

Mode .413 3.19 .602 2.67

tol. = 0.0010

Mean .534 2.36 .800 1.77

Median .428 2.85 .735 2.03

Mode .427 3.05 .631 2.53

tol. = 0.0005

Mean .547 2.34 .802 1.76

Median .495 2.71 .758 1.95

Mode .481 2.94 .666 2.40

hABC coupled with PLS hyperparameter estimation of Ψ

tol. = 0.0050

Mean .323 2.75 .612 2.83

Median .251 2.75 .392 2.99

Mode .234 2.75 .301 2.99

tol. = 0.0010

Mean .384 2.67 .641 2.61

Median .267 2.74 .466 2.82

Mode .277 2.76 .385 2.88

tol. = 0.0005

Mean .402 2.64 .665 2.52

Median .221 2.77 .457 2.84

Mode .202 2.85 .397 2.90

hCL optimization of Ψ .027 4.10 .259 3.49
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comparison with the “leave-one-out” cross-validation on the b = 0

reference table. Additionally, buffering appears to benefit hyperpa-

rameter estimation without substantially affecting hABC estimation

of parameter summaries Ωs and E(s). Notably, hRF again outper-

formed hABC in Ψ estimation, although this was minimal.

Better performance in Ψ estimation is apparent when truncated

hyperprior ranges were employed, with w ~ U{0, 3} possibly the

best compromise here between a more flexible hyperprior and

greater accuracy (Table 6). This is perhaps unsurprising considering

that there likely is decreasing identifiability between higher Ψ values,

such that higher Ψ values are both quantitatively and qualitatively

less distinguishable. For example, higher Ψ values may be expected

to have more broadly overlapping Ωs values, and the difference

between four and five pulses may be biologically less important than

between one and two. The decreased accuracy in Ψ estimation at

wider hyperprior ranges highlights that it is impractical to construct

a model that distributes significant prior space across values that are

statistically indistinguishable and not qualitatively or biologically mean-

ingful (Massatti & Knowles, 2016; Rannala, 2015). Indeed, as with any

statistical model, sensible prior distributions given data and model con-

straints ought to be established (Bertorelle, Benazzo, & Mona, 2010;

Lopes & Beaumont, 2010), especially when considering efficiency with

respect to a finite sampling of parameter space (Hickerson et al., 2014).

In the case here of hierarchical co-demographic models, rather than

using Ψ or w, as well as other parameters such as s, in an arbitrary

manner to merely construct the model, it can instead be specified

meaningfully to gain insight about the variability in demographic

changes across taxa given the temporal scale of interest.

4 | IMPLEMENTATION

Informed by our test of statistical frameworks, we offer MULTI-DICE as

an R package, available on github with minimal dependencies (SCHOOL-

MATH, BIGMEMORY and FBASICS), to facilitate simulations under a hierar-

chical co-demographic model with subsequent conversion to the

aSFS or multi-taxa mitochondrial summary statistics for inference

within an hRF and/or hABC framework (Figure 2). Importantly,

although inferential procedures are not conducted with MULTI-DICE

itself, users are recommended to exercise sound and sensible statisti-

cal practices when analysing empirical data, such as evaluating

uncertainty, implementing simulation-based tests of robustness

TABLE 5 Results for pulse buffer on prior space simulation experiment

b = 0 generations b = 30,000 generations
PODs: b = 0 reference
table: b = 30,000

r RMSE r RMSE r RMSE

hRF prediction of Ψ .609 2.32 .758 1.91 .666 2.26

hABC model selection of Ψ

Mean .600 2.37 .750 1.96 .617 2.43

Median .557 2.65 .686 2.20 .596 2.71

Mode .507 3.07 .722 2.18 .527 2.91

hABC parameter summary estimation of Ωs

Mean .932 7555 .874 9750 .904 11009

Median .886 12616 .860 11120 .905 11042

Mode .846 13727 .889 12775 .826 15227

hABC parameter summary estimation of E(s)

Mean .945 14550 .927 12539 .962 13072

Median .920 14199 .946 11738 .962 12923

Mode .915 15983 .949 12222 .957 13644

TABLE 6 Results for truncating hyperprior range simulation experiment

ѱ ~ U{0, 1} ѱ ~ U{0, 2} ѱ ~ U{0, 3} ѱ ~ U{0, 4} ѱ ~ U{0, 5}

r RMSE r RMSE r RMSE r RMSE r RMSE

hRF prediction of Ψ .987 0.73 .897 1.79 .809 2.08 .756 2.07 .758 1.91

hABC model selection of Ψ

Mean .963 1.22 .901 1.79 .808 2.13 .754 2.10 .750 1.96

Median .900 2.01 .830 2.35 .705 2.65 .711 2.37 .686 2.20

Mode .900 2.01 .864 2.11 .811 2.16 .744 2.35 .722 2.18

e218 | XUE AND HICKERSON



(Bertorelle et al., 2010) and assessing goodness of fit with tech-

niques such as prior and posterior predictive checks (Gelman et al.,

2003; Lemaire, Jay, Lee, Csill�ery, & Blum, 2016). For MULTI-DICE, we

employed BIGMEMORY for efficient memory usage, necessary for the

large simulation data requirements of hRF and hABC. Moreover,

MULTI-DICE requires minimal effort to parallelize for greater computa-

tional efficiency. It is currently coded to call upon FASTSIMCOAL2,

which must be installed separately with its path specified in MULTI-

DICE, for simulation purposes. We expressly chose FASTSIMCOAL2 for

its efficient coalescent-based simulation of the SFS directly, growing

user base, and approachable yet powerful modelling interface. How-

ever, given the architecture of the open source code, it is fairly

straightforward to extend MULTI-DICE to usage with other simulators,

including those that accommodate different forms of natural selec-

tion (Ewing & Hermisson, 2010; Kern & Schrider, 2016), or analytical

calculations of the SFS (Kamm, Terhorst, & Song, 2017; Wakeley &

Hey, 1997). Notably, although our focus here is on the aSFS and

accordingly reduced representation data sets (e.g., SNPs, RAD-seq,

GBS), we acknowledge the great value in utilizing widely available

mitochondrial/barcode-type data (Burbrink et al., 2016) and there-

fore implement this functionality following the procedure in Chan

et al. (2014).

4.1 | R functions

MULTI-DICE is composed of the functions build.dice(), roll.dice(), play.dice(),

dice.sims(), dice.aSFS() and dice.sumstats(). These functions are called

to: (i) specify a hierarchical co-demographic model; (ii) simulate

under this model independent single-population summary statistics

(e.g., SFS) to accommodate each population with known parameter

values drawn from user-defined prior distributions and identical

sampling specifications as the data; (iii) convert these independent

single-population summary statistics within both the simulations

and empirical multi-taxa data set into the aSFS or multi-taxa single-

sequence summary statistics (Figure 2). This pipeline is carried over

multiple functions to increase user customization and control,

although the functions build.dice(), roll.dice() and play.dice() can

together be called upon by dice.sims(), enhancing convenience by

enabling consecutive function execution through a single command

line. Additionally, a user may manually run any subset of these

functions as antecedent functions are embedded and output may

be piped into successive functions. For example, a user can con-

struct hyperprior distributions using build.dice() and then immedi-

ately begin performing simulations through dice.sims(). After

simulations are complete, either dice.aSFS() or dice.sumstats() is

called to process the simulated and empirical data, which are then

funnelled with the associated simulated parameter values into other

software for inferential purposes, such as RANDOMFOREST or ABC in R.

In its simplest operation then, MULTI-DICE can construct a reference

table of simulated multi-taxa summary statistic vectors produced

under a hierarchical co-demographic model for hRF and/or hABC

in just two command lines, that is, dice.sims() and dice.aSFS()/dice.-

sumstats().

4.2 | Workflow

The function build.dice() is deployed first to construct hyperpriors

across discrete hyperparameter values (i.e., Ψ, w, fT, f and fs), allow-

ing the following distributions: (i) a discrete uniform hyperprior on Ψ

or w, depending on how the associated f vector is specified, then for

fT within each discrete Ψ or w value, and finally across all combina-

tions of the vector f or fs, respectively, within each discrete fT value;

(ii) a Dirichlet-process hyperprior (Oaks, 2014) that weighs equally all

allowable combinations of Ψ/w and f/fs; (iii) customized hyperprior

distributions that may employ maximum and/or minimum value rules

on fT, f and/or fs. To clarify for the uniform hyperpriors, each dis-

crete Ψ or w value is first weighted with equal hyperprior probability,

then all discrete fT values are weighted equally per Ψ/w value, and

finally every possible associated vector f/fs is weighted equally per

fT value, thus underscoring that Ψ/w operates on another hierarchi-

cal level above fT, f and fs. Next, roll.dice() generates random draws

from the hyperprior distributions as well as shared pulse values (e.g.,

{ss,1, . . ., ss,w}). Downstream to these steps is play.dice(), where

taxon-specific parameter values are generated and parameter sum-

maries are calculated (e.g., Ω). Importantly, as both roll.dice() and

play.dice() use the sample() function for random draws, each value in

a user-specified distribution is treated as unique even when values

are repeated (e.g., w 2 {0, 0, 0, 1, 2}), thus any discrete distribution

(e.g., ln, gamma, beta) may be deployed for hyperpriors and priors.

Together, build.dice(), roll.dice() and play.dice() specify the hierarchical

co-demographic model, as well as administer hyperparameter, param-

eter summary and taxon-specific parameter draws given this model.

Notably, data partitioning may be performed here (Prates et al.,

2016), which allows heterogeneous specification of demographic

scenarios (e.g., expansion, contraction), prior distributions, and data

content and format (e.g., sampling of individuals, sampling time,

polarization) across taxa within a data set; for example, data parti-

tioning can accommodate a co-demographic model of expanders

mixed with contractors at a pre-determined ratio.

In succession is dice.sims(), where FASTSIMCOAL2 is called to simu-

late data independently per taxon. Here, heterogeneous generation

times across taxa may be specified (Xue & Hickerson, 2015). Impor-

tantly, for genomic-scale data, either the FREQ setting may be acti-

vated to directly generate SFS, or the SNP setting may be employed,

which allows the option of using a mutation rate prior and thus

monomorphic sites; for single-locus data, the SNP setting is

deployed. Simulated summary statistic vectors and associated hyper-

parameter draws, taxon-specific parameter values and optional

parameter summaries are outputted to a user-specified directory as

simple text files. The total number of outputted files equals the num-

ber of simulated taxa plus one file per hyperparameter, taxon-speci-

fic parameter vector and parameter summary chosen for output. As

aforementioned, all the functions described thus far can be imple-

mented together automatically within dice.sims(), although indepen-

dently calling functions may afford enhanced customization.

Following dice.sims() is either dice.aSFS() or dice.sumstats(), depending

on the data scale (i.e., genomic or single locus, respectively). For
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dice.aSFS(), the independent taxon-specific SFS are rearranged into a

single aSFS according to the procedure outlined in Xue and Hicker-

son (2015), and for dice.sumstats(), the first four moments (i.e., mean,

variance, skewness and kurtosis) are calculated for each of the four

summary statistics (i.e., number of haplotypes, haplotype diversity,

nucleotide diversity and Tajima’s D) of the single-locus sequence

block across the multiple taxa, for a total of 16 multi-taxa summary

statistics, following Chan et al. (2014). For both of these functions,

the user specifies the directory containing the simulation files, with

simple specification for multiple directories resulting from parallelized

runs, and the subsequent conversion is outputted within R, enabling

easy piping into an inferential package such as ABC and/or writing to

a simple text file. Importantly, these two functions can be applied to

convert empirical data as well. Additionally, neither function calls

upon any other MULTI-DICE functions and thus must be used in con-

junction with at least dice.sims().

Advantageously, data type is irrelevant in all functions until dice.-

sims(), for which the data type is easily specified in a single argument

and there is no disparity in output format. Hence, hierarchical co-

demographic models can be specified with the same level of com-

plexity and flexibility for single-locus data as genomic-scale data in

MULTI-DICE. Furthermore, dice.aSFS() and dice.sumstats() operate analo-

gously and have near identical arguments, resulting in equivalent

procedures for both data types with negligible difference. This fea-

ture lends itself nicely to conveniently analysing both data types for

the same system either consecutively or simultaneously.

4.3 | Data sampling and processing

Although not directly handled by the MULTI-DICE package, we dis-

cuss here our recommendations for the practice of obtaining and

preparing data. We emphasize that our methodology assumes

Specify a
hierarchical 

co-demographic
model

each of these functions has all its
preceding functions embedded

build hyperprior

build.dice()

draw hyperparameter
and pulse values

roll.dice()

draw taxon-specific
parameter values

play.dice()

simulate:
site frequency spectrum

(genomic-scale)

OR
# of haplotypes,

haplotype diversity,
nucelotide diversity,

Tajima’s D
(single locus)

dice.sims()

Simulate
single-population

summary
statistics

convert to:

aggregate site frequency spectrum
(genomic-scale)

dice.aSFS()

OR

mean, variance,
skewness, kurtosis

(single locus)

dice.sumstats()

Convert to
multi-taxa
summary
statistics

Preliminary analyses on
observed single-population datasets

to inform hierarchical co-demographic model

Multi-DICE

- Determine suitable prior distributions and sampling scheme
- Infer demographic scenarios across independent populations
- Assess aggregated multi-taxa dataset for potential
  major assumption violation

Perform inference via hRF and hABC
e.g. randomForest, abc packages in R

- Assess uncertainty
e.g. Bayes factors, credibility intervals

- Perform cross-validation POD analysis to assess statistical power
   e.g. cv4abc function in abc R package
- Determine model fit
  e.g. prior/posterior predictive check

convert to:

aggregate site frequency spectrum
(genomic-scale)

dice.aSFS()

OR

mean, variance,
skewness, kurtosis

(single locus)

dice.sumstats()

F IGURE 2 Flowchart of MULTI-DICE usage. MULTI-DICE accomplishes multi-taxa co-demographic inference under a hierarchical model through
three major steps: model specification, single-population simulation across multiple taxa and conversion of simulated data to multi-taxa
summary statistics. Hierarchical co-demographic model specification is conducted across multiple functions in sequence, with preceding
functions contained within successive functions. This sequential embedding of functions extends to dice.sims(), allowing the entire model
specification process to be performed concurrently with data simulation. Simulated data can then be converted to multi-taxa summary
statistics by either dice.aSFS() or dice.sumstats(), depending on the data type. Additionally, these functions can be applied to empirical data as
well. To clarify, only two MULTI-DICE functions/command lines, dice.sims() and dice.aSFS()/dice.sumstats(), are needed for simplest usage to
construct a reference table of multi-taxa summary statistics under a hierarchical co-demographic model. This reference table can then be
exploited in a downstream software program for hRF or hABC purposes, where appropriate statistical practices should be used to examine
robustness and fit. Importantly, exploratory analyses should be performed on the empirical data prior to deploying MULTI-DICE to better guide its
usage, for example, to determine sensible prior distributions and evaluate differences among taxa
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population-level sampling of multiple independent taxa, thus

necessitating a sufficient number of samples per panmictic popula-

tion (Robinson, Coffman, Hickerson, & Gutenkunst, 2014), which

would depend on the temporal scale under investigation (Keinan

& Clark, 2012). Importantly though, there is greater statistical res-

olution gained with increasing numbers of taxa (Chan et al., 2014;

Xue & Hickerson, 2015), such that more emphasis should be

placed on producing data sets with greater taxa representation

rather than population-level sampling. To achieve this, investigators

can benefit from splitting species/complexes into multiple indepen-

dent structured populations that are determined from a prelimi-

nary exploratory analysis (Frichot, Mathieu, Trouillon, Bouchard, &

Franc�ois, 2014; Patterson, Price, & Reich, 2006). This is especially

important as lumping samples from multiple subdivided populations

can result in strong bias when estimating population size changes

(Mazet et al., 2016). While splitting indeed neglects shared ances-

try, this problem may be negligible if isolation times are older

than the co-demographic events of interest. Relatedly, conducting

a cross-validation analysis across various sampling schemes, includ-

ing both number of samples per taxon and number of taxa, prior

to data collection and sequencing can be particularly informative

of the proper sampling required for a given study (Bertorelle et al.,

2010).

Greater statistical strength is gained with increasing taxa mem-

bership, but a strategy of indiscriminately adding taxa without con-

sideration of specific characteristics can restrict researchers to

testing generic hypotheses about assemblage-level demographic

responses to shared conditions (Papadopoulou & Knowles, 2016). In

consideration of this, we encourage researchers to, whenever possi-

ble, delineate data sets based on guilds that share a trait of interest.

This may include habitat preference (Papadopoulou & Knowles,

2015), biotic interaction such as parasitoid–host relationship (Stone

et al., 2012) and other co-evolutionary dynamics, or phylogenetic

relatedness and taxonomic assignment (Burbrink et al., 2016).

We highlight here that the aSFS is capturing information within

multiple independent structured populations, particularly size change

history, through an aggregation of independent single-population

SFS vectors. This operates somewhat differently than a joint-SFS or

multi-SFS across multiple related populations, which also contains

information about divergence and migration from shared and fixed

polymorphisms (Wakeley & Hey, 1997). By focusing on solely

within-population polymorphisms and being exploited to test

hypotheses about size change history across taxa that may have

experienced shared responses to climatic and habitat change while

ignoring inter-population relationships, the aSFS-based approach sim-

plifies the modelling, eliminates certain assumptions (e.g., topology,

nature and duration of migration) and allows the option to directly

test hypotheses across co-distributed taxa. On a related note, if

SNPs are pruned to one per locus to avoid linkage disequilibrium

violations prior to constructing the observed SFS, and if SNP calls

were conducted across populations, then fixed polymorphisms

should be removed before pruning to maximize the total number of

SNPs per population.

Although the focus here on the aSFS has been exclusively

regarding SNPs, MULTI-DICE is capable of incorporating monomorphic

sites and accordingly mutation rates. Importantly, considering how s

scales with NE in a coalescent model, if prior distributions exceed

one order of magnitude for both parameters, then nonidentifiable

SFS at different parameter combinations may be produced by ignor-

ing monomorphic sites, thus potentially inflating bias and inaccuracy.

Hence, models that cannot have priors informed at least to this level

may need to incorporate monomorphic sites. Assuming SNPs are

pruned to one per locus, the number of monomorphic sites may be

re-scaled given its ratio to the total number of SNPs. A prior for

mutation rates must then be applied as well, which may result in this

same identifiability issue if it likewise exceeds one order of magni-

tude. For this reason, users are advised to calculate population

genetic summary statistics beforehand to assess the risk of incorpo-

rating taxa that vary to such extreme degrees as to falsely signal

synchrony (Figure 2), which may be exacerbated with extremely phy-

logenetically distant taxa. For example, if the range in ratio of

monomorphic to polymorphic sites among a multi-taxa data set

greatly exceeds one order of magnitude, then extra considerations

may need to be taken.

4.4 | Informing hierarchical co-demographic model

When conducting a multi-taxa co-demographic analysis using MULTI-

DICE, the user is expected to assume a priori the composition of the

demographic scenarios within the data set with respect to number

of expanders and contractors, as well as accompanying prior distri-

butions (Figure 2). Furthermore, the aSFS requires that all single-

population SFS are at the same sampling level of individuals. This

can be easily accomplished with the program dadi (Gutenkunst

et al., 2009), but considering that multi-taxa data sets usually do

not consist of a uniform sampling level, an optimal sampling projec-

tion must be selected. This optimal sampling projection is typically

not readily apparent as the number of SNPs varies at different pro-

jection levels, with more SNPs discarded at higher sampling projec-

tions due to missing data and decreased singleton resolution at

lower sampling projections resulting in low-frequency SNPs being

assigned as monomorphic. Hence, to determine the optimal sam-

pling projection across all taxa given this interplay between sam-

pling of individuals and SNPs, as well as infer demographic

scenarios with reasonable priors, an initial model-based investiga-

tion can be performed for each single-population taxon separately.

While this may be performed with CL-based methods such as dadi

(Gutenkunst et al., 2009) or FASTSIMCOAL2 (Excoffier et al., 2013), an

exploratory analysis across many independent taxa can be more

efficiently conducted with an ABC approach, which allows quick

inference for multiple empirical data sets against a single reference

table and provides posterior distributions simultaneously with point

estimates. MULTI-DICE coupled with an ABC framework then is well

suited for efficiently performing a high throughput of such single-

population analyses to test models of demographic scenarios,

explore various prior distributions and employ several data sampling
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levels/projections. Notably, such a preliminary analysis may also be

informative for multi-population demographic models, as well as

elucidating results of synchrony from a co-demographic analysis by

identifying candidate taxa potentially involved with synchronous

pulses.

5 | CONCLUSION

The MULTI-DICE software package is designed for comparative popu-

lation genetics and phylogeography and offers flexibility in user

specification of hierarchical co-demographic models within a com-

mand-line interface R environment, a popular scripting language

for population genetics (Paradis et al., 2017). This includes operat-

ing at different hierarchical levels (i.e., Ψ/w and fT/f/fs), applying

various demographic trajectories (including co-expansion and co-

contraction) and implementing buffering on parameter values in

prior space (b), for either genomic-scale or single-locus sequence

data. Furthermore, there are several other features not discussed

here that are available in MULTI-DICE, such as partitioning taxa into

different modelling and data specifications within a combined anal-

ysis (Prates et al., 2016). Additionally, there exist options that

offer greater flexibility within the co-demographic modelling,

including incorporating two-event/three-epoch size change models,

employing exponential rather than instantaneous growth and

detecting congruence in other demographic parameters. This flexi-

bility extends to data content and format as well, as MULTI-DICE

also allows exploiting ancient samples, incorporating generation

time heterogeneity, using polarized data (i.e., unfolded SFS),

removing/adding allele frequency classes (e.g., avoiding classes

more prone to error such as singletons, or including monomorphic

sites and thus mutation rates and whole-locus information), and

operating simulations under FASTSIMCOAL2’s SNP model instead of

its FREQ setting. Moreover, prior distributions can be highly cus-

tomized, for example assigning different prior distributions

between taxa within a shared pulse and those that are idiosyn-

cratic, allocating alternative prior distributions per shared pulse

and conditional buffering through a customized user-written func-

tion that allows the b value to change depending on the prior

draw rather than remain a static value across the parameter range.

In consideration of this wide range of potential applications, we

emphasize that as in any modelling exercise, iterative exploration

is likely necessary with MULTI-DICE and should be embraced when

it is required. We anticipate that MULTI-DICE will be a valuable

and convenient tool for comparative population geneticists and

phylogeographers.
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