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a b s t r a c t 

Objectives: This study aimed to assess kinetics and predictive variables of humoral immune response to 

mRNA SARS-CoV-2 vaccine administration. 

Methods: We collected blood samples before (T0) and 15, 90, and 180 days after vaccination (T1, T2, 

and T3, respectively). The Quant SARS-CoV-2 Immunoglobulin (IgG) II Chemiluminescent Microparticle 

Immunoassay was used to determine anti-spike IgG. 

Results: In almost 30 0 0 healthcare-collected blood samples at the three time points, we found the fol- 

lowing: at 15 days postvaccination, 97.6% of subjects presented a robust IgG anti-spike response ( > 4160 

AU/ml); then, at three and six months, it decreased in median 6.5-fold to 35.0% and 3.0-fold to 3.3%, 

respectively. A linear mixed-effects model supported that female gender, younger age groups, and being 

seropositive prevaccination maintained higher antibody titers. Curves became tighter with time progres- 

sion, although titers from seropositive subjects decrease at a slower rate than seronegative ones. 

Conclusion: These findings strengthen the case for a steep decrease of anti-SARS-CoV-2 antibodies up to 

six months, suggesting that serological evaluation might guide the need for periodic booster vaccinations 

in specific groups prone to lower antibody titers. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In late 2019, SARS-CoV-2 triggered a new pandemic. Vaccines 

tarted to be urgently developed, and the United States Food 

nd Drug Administration authorized their use in an emergency 

ontext on December 11, 2020, after demonstrating 95% efficacy 

 United States Food and Drug Administration, 2020 ). In Portu- 

al, healthcare workers (HCWs) received the first doses of the 

NT162b2 mRNA COVID-19 vaccine (Pfizer/BioNTech) by the end 
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f December 2021. Vaccine efficacy against COVID-19 was 91.3% 

hrough six months of follow-up in subjects without evidence of 

revious SARS-CoV-2, thus reflecting a gradual decline in vaccine 

fficacy ( Thomas et al., 2021 ). 

By this time, numerous studies of Immunoglobulin G (IgG) hu- 

oral immunity were being carried out to understand the kinet- 

cs of antibodies ( Lo Sasso et al., 2021 ; Oliveira-Silva et al., 2022 ;

alvagno et al., 2021 ; Tré-Hardy et al., 2021 ) better. Neverthe- 

ess, the long-term duration of humoral immunity from the SARS- 

oV-2 vaccine remains unclear because of the lack of data from 

arge, real-world studies. Bayart et al. (2021) observed a waning 

f IgG antibodies over time, although at 180 days after vaccina- 

ion, subjects still had detectable anti-Spike antibodies. As reported 

lsewhere, after the first contact with the virus, B cells produce 

ntibodies that decrease over months, particularly in older pa- 
ty for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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ients, men, and immunosuppressed subjects ( Chavarot et al., 2021 ; 

eisen et al., 2021 ; Levin et al., 2021 ). Concordantly, previously in- 

ected individuals maintained higher IgG titers over three-month 

tudies ( Lau et al., 2021 ; Tré-Hardy et al., 2021 ). 

Considering that antibody titers might be a good biomarker for 

he protective efficacy of antibodies and successful humoral im- 

une responses after SARS-CoV-2 exposure or vaccination, it is 

onsidered that SARS-CoV-2 IgG kinetics concedes relevant infor- 

ation concerning the immune status and a proxy for immuniza- 

ion status ( Bayart et al., 2021 ; Levin et al., 2021 ). In this study, we

eport humoral immunity data of the first six months of follow-up 

fter vaccination from a large cohort, which emphasizes the de- 

line of IgG antibodies. 

aterial and Methods 

HCWs from the Centro Hospitalar e Universitário de Coimbra 

ere vaccinated in late December 2020 with BNT162b2 mRNA and 

ncluded in a prospective cohort to evaluate SARS-CoV-2 IgG sero- 

ogical kinetics. Subjects were tested for anti-spike IgG antibody 

efore the first dose (T0) and then 15 days (T1), 3 months (T2), and

 months (T3) after completion of the second dose. HCWs with 

 previous diagnosis of SARS-CoV-2 were excluded from the first 

hase of vaccination. Only subjects with complete serological data 

t all time points were included in analyses (n = 2968). In this 

opulation, most HCWs were naïve (seronegati ve for SARS-CoV-2 

gG before vaccination), whereas 63 were seropositive (because of 

ventual asymptomatic past contact with the virus). This study was 

pproved by the hospital’s Ethics Committee (OBS.SF.106-2021), 

nd deferred consent was obtained under stringent application of 

thical and legal procedures for data collection, such as protection 

f confidentiality of the personal data and mitigation of risks to 

rivacy. 

Blood was collected from each participant at every time point 

nd processed to serum within four hours. A chemiluminescent 

icroparticle immunoassay, SARS-CoV-2 IgG II Quant, was used to 

etermine the IgG anti-spike, receptor-binding domain (RBD) S1 

ubunit of SARS-CoV-2 on Alinity i (Abbott Laboratories). The cutoff

nd upper detection limits of the Abbott S-RBD IgG test were 50 

nd 80 0 0 0 AU/ml, respectively, whereas sensitivity and specificity 

ere 99.37% and 99.55%. As per manufacturer recommendations, 

ntibody titers above 50 AU/ml were considered reactive. We used 

gG antibody titers > 4160 AU/ml as an indicator of strong neu- 

ralizing activity, as previously reported ( Ebinger et al., 2021 ). All 

easurements were undertaken following appropriate quality con- 

rol procedures and performed daily for routine clinical assessment 

f SARS-CoV-2 IgG. 

tatistical analysis 

Departure from normality was tested using the Shapiro-Wilk 

est, and data were presented as median and interquartile range 

IQR). For longitudinal comparison of SARS-CoV-2 IgG titers be- 

ween time points (T0, T1, T2, and T3), the Friedman’s followed 

y Wilcoxon tests were used, with Bonferroni correction for mul- 

icomparison. To assess differences among independent variables 

gender, age groups, and reactive titers in T0) at each time point, 

he Mann-Whitney or Kruskal-Wallis tests were applied. 

We modeled the decrease after vaccination (over T1, T2, and 

3) using a linear regression model with mixed-effects. Our data 

ere grouped by subject. This model is appropriate for longitudinal 

ata and extends the linear model by adding random effects that 

an be seen in terms of additional error, accommodating correla- 

ion between observations from the same individual. Fixed effect 

ovariates included gender, age group (18–30, 30–40, 40–50, 50–

0, and > 60 years), humoral status before vaccination (T0 above 
2 
r below 50 AU/ml), and time (in months). Interactions with time 

ere also included. After log 10 transformation of IgG titers, mod- 

ls were fitted with population-level fixed effects and individual- 

evel random effects (Worker ID) for intercept and slope. Mod- 

ls with random effects only for intercept were also fitted. We 

tarted by fitting the null model, only including the outcome vari- 

ble and individual-level random effects. The model presented is 

he model that fits our data better. Model comparisons were con- 

ucted using the difference in Akaike information criterion (AIC) 

bove 4 ( Burnham et al., 2011 ) as significant and fitted using max- 

mum likelihood. We estimated the marginalized R 

2 , the propor- 

ion of variance explained by the fixed effects ( Nakagawa and 

chielzeth, 2013 ), and the conditional R 

2 of the model, that is, 

he proportion of variance explained by both the fixed and ran- 

om factors ( Nakagawa and Schielzeth, 2013 ). Statistical analyses 

ere conducted using R Software version 4.0.05 (The R Foundation 

or Statistical Computing, Vienna, Austria), and a linear model with 

ixed-effects was fitted using the lmer function (lme4 package). 

esults 

Data were collected between December 2020 and August 2021. 

lose to 30 0 0 subjects participated in this study, with median age 

f 45 years (IQR 36–55) (77.5% female). All had full data on IgG 

iters at the time points T0, T1, T2, and T3. Before vaccination, 

ost participants were naïve (median = 6.8, IQR = 6.8–6.8 AU/ml), 

lthough 2.1% (n = 63) of the subjects had IgG anti-SARS-CoV-2 

bove cutoff ( > 50 AU/ml) but below 4160 AU/ml. 

After vaccination, test reactivity ( > 50 AU/ml) was maintained 

hroughout the study in 99.9%, 99.8%, and 99.7% of the population 

t T1, T2, and T3 time points, respectively. Fifteen days after vacci- 

ation (median IgG = 21.3 × 10 3 , IQR = 13.3 × 10 3 − 33.0 × 10 3 

U/ml), 97.6% subjects presented a robust humoral response 

 > 4160 AU/ml), whereas at three months (median = 3.2 × 10 3 , 

QR = 2.0 × 10 3 − 5.1 × 10 3 AU/ml) it decreased in median 6.5- 

old × to 35.0% and then by 3.0-fold to 3.3% at six months (me- 

ian = 1.0 × 10 3 , IQR = 0.64 × 10 3 − 1.6 × 10 3 AU/ml). The 

riedman’s test [c 2 (3) = 8652.4, P < 0.0 0 01] revealed a statistically 

ignificant difference in SARS-CoV-2 IgG throughout the follow-up, 

urther confirmed by Wilcoxon between time points ( P < 0.0 0 01) 

 Figure 1 ). The comparison between strata of the independent vari- 

bles, gender, age group, and IgG reactivity before vaccination is 

isted in Table 1 . 

Regarding the mixed-effects model, the final model included 

andom effects for the intercept and slope. The marginalized and 

he conditional R 

2 were 0.71 and 0.91, respectively. 

Figure 2 and 3 . 

Female gender, previous reactive titers, and younger age group 

ach contributed to higher antibody levels at the first time point 

fter vaccination ( Table 2 ). We verified that every month, the log- 

ransformed IgG levels decreased 0.230 times ( P < 0.001). Interac- 

ion of gender and age with time was strongly correlated with the 

ariate time and was excluded. ( Table 3 ). The variable interaction 

f time and IgG titers for seropositive participants was significant 

 P = 0.0 0 02). Therefore, antibody levels from participants seropos- 

tive at T0 showed higher values after vaccination and decreased at 

 slower rate ( −0.23 vs −0.168, P < 0.001), suggesting that at six 

onths after vaccination, the IgG levels remain divergent. 

iscussion 

This real-world study of COVID-19 humoral response after 

NT162b2 vaccination demonstrated a significant decline in anti- 

pike IgG titers six months after vaccination. Despite an early in- 

rease at 15 days after completing the second dose, the IgG lev- 

ls decreased significantly at both three-month and six-month 
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Figure 1. Serum SARS-CoV-2 IgG throughout the study follow-up, depicting the kinetics of antibodies. Data are presented as median and interquartile range. AU = arbitrary 

units. 
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ime points. Our findings agree with data reported by others 

 Gaebler et al., 2021 ; Naaber et al., 2021 ; Salvagno et al., 2022 ;

ilich et al., 2021 ). 

A recently published randomized placebo-controlled clinical 

rial, following up over 40,0 0 0 subjects vaccinated with BNT162b2 

or COVID-19, described that effectiveness peaked at 96.2% during 

he first two months after the second dose and declined to 83.7% 

n the four to six months after immunization, marking an average 

ecline of 6% every two months ( Tartof et al., 2021 ; Thomas et al.,

021 ). 

After vaccination with the BNT162b2 vaccine, anti-SARS-CoV-2 

gG kinetics peak around 4 to 30 days, followed by a substantial 

eduction over time, with significantly lower levels at six months 

 Levin et al., 2021 ; Naaber et al., 2021 ). Here, in a large cohort of

CWs, we observed that although postvaccination IgG titers were 

eactive ( > 50 AU/ml) for over 99.5% of the population at T1, T2, 

nd T3 time points, when we used the cutoff indicating a ro- 

ust humoral response ( > 4160 AU/ml), the frequency of partici- 

ants declined by 6.5-fold from 97.6% after 15 days to 35.0% at 3 
3

onths, and then by 3.0-fold to 3.3% at 6 months. Similar studies 

ith a reduced number of participants yielded common findings 

 Bayart et al., 2021 ; Levin et al., 2021 ). Seemingly, the decrease in

gG levels throughout postvaccination follow-up occurs in parallel 

ith neutralization titers ( Terpos et al., 2021 ). In our study, the 

ignificant decrease in titers was independent of gender, age, or 

gG reactivity before vaccination, which agrees with previous data 

 Dan et al., 2021 ). The lack of proportionality between the decline 

n mRNA vaccine effectiveness and the decrease in humoral im- 

une response kinetics over time suggests that, during postvacci- 

ation follow-up, the protection might have become dependent on 

mmunological mechanisms other than humoral. Notably, declines 

n effectiveness of the COVID-19 vaccine have also been attributed 

o the widespread dissemination of the Delta variant ( Bayart et al., 

021 ). 

The efficacy of humoral immunity alone against SARS-CoV- 

 has been questioned, and the relevance of T cell memory 

valuated. Studies investigating antibody and T cell responses 

n matched samples of convalescent patients revealed decreasing 
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Table 1 

Serological levels SARS-CoV-2 Immunoglobulin G (IgG), overall, and by strata of gender, age group, and IgG reactivity, before and after COVID-19 

mRNA vaccination. 

Prevaccination 

15 days 

postvaccination 

90 days 

postvaccination 

180 days 

postvaccination 

N (%) T0 ( × 10 1 ) T1 ( × 10 3 ) T2 ( × 10 3 ) T3 ( × 10 3 ) 

IgG titers, AU/ml ∗ 2968 (100) 6.8 [6.8, 6.8] 21.3 [13.3, 33.0] 3.2 [2.0, 5.1] 1.0 [0.64, 1.6] 

Gender 

Male 

Female 

667 (22.5) 

2301 (77.5) 

6.8 [6.8, 6.8] 

6.8 [6.8, 6.8] 

18.7 [11.7, 29.3] 

22.1 [14.0, 34.0] 

2.9 [1.7, 4.8] 

3.3 [2.0, 5.2] 

0.97 [0.58, 1.6] 

1.1 [0.66, 1.7] 

P -value ∗∗∗ 0.655 < 0.0001 < 0.0001 0.004 

Age group, years 

20–30 

30–40 

40–50 

50–60 

> 60 

416 (14.0) 

694 (23.4) 

802 (27.0) 

787 (26.5) 

267 (9.0) 

6.8 [6.8, 6.8] 

6.8 [6.8, 6.8] 

6.8 [6.8, 6.8] 

6.8 [6.8, 6.8] 

6.8 [6.8, 6.8] 

26.9 [17.9, 38.9] 

22.6 [16.0, 34.0] 

20.2 [12.5, 31.9] 

19.9 [11.8, 31.6] 

16.8 [10.5, 28.8] 

4.3 [2.9, 6.3] 

3.4 [2.3, 5.3] 

2.8 [1.7, 4.5] 

3.0 [1.7, 5.0] 

2.8 [1.7, 4.2] 

1.5 [0.96, 2.1] 

1.1 [0.73, 1.7] 

0.91 [0.56, 1.5] 

0.95 [0.58, 1.6] 

0.89 [0.59, 1.6] 

P -value ∗∗ 0.529 < 0.0001 a < 0.0001 b < 0.0001 c 

IgG reactivity at 

T0, AU/ml 

< 50 

≥50 

2905 (97.9) 

63 (2.1) 

6.8 [6.8, 6.8] 

134.4 [90.4, 322.8] 

21.3 [13.3, 32.6] 

32.5 [1.7, 4.2] 

3.2 [1.9, 5.0] 

7.7 [3.4, 12.4] 

1.0 [0.64, 1.6] 

3.1 [1.4, 5.4] 

P -value ∗∗∗ < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Data are presented as median and interquartile range. 
∗P -value < 0.0 0 01 for all comparisons between time points (Wilcoxon test). 
∗∗Kruskal-Wallis test, followed by Mann-Whitney tests. a P < 0.0 0 01 for all comparisons except 40–50 vs 50–60 ( P = 0.288), 40–50 vs > 60 

( P = 0.002) and 50–60 vs > 60 ( P = 0.027) (Mann-Whitney tests). b P < 0.0 0 01 for all comparisons except 40–50 vs 50–60 ( P = 0.238), 40–50 

vs > 60 ( P = 0.745) and 50–60 vs > 60 ( P = 0.262) (Mann-Whitney tests). c P < 0.0 0 01 for all comparisons except 40–50 vs 50–60 ( P = 0.199), 

40–50 vs > 60 ( P = 0.804) and 50–60 vs > 60 ( P = 0.535) (Mann-Whitney tests). 
∗∗∗Mann-Whitney test. 

AU = arbitrary units. 

Figure 2. Predicted trajectories of immunoglobulin G (IgG) levels over six months by naïve status at T0 between gender. Predicted trajectories of IgG levels, after base 10 

exponentiation of predicted values and 95% confidence interval limits. Figures represent the predictions for naïve HCWs (A) and for HCWs with previous titers > 50 AU/ml 

(B). Median age was used on these estimates. The dotted horizontal lines represent 4160 AU/ml and 50 AU/ml levels. HCWs = healthcare workers; AU = arbitrary units. 
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pike-specific and stable nucleocapsid-specific antibody responses. 

n contrast, functional T cell responses remained robust, increas- 

ng in both frequency and intensity ( Bilich et al., 2021 ). Circulating 

ntibody titers were shown to be not predictive of T cell response 

o SARS-CoV-2 ( Dan et al., 2021 ). Notably, whereas IgG antibod- 

es decreased significantly over time, the number of RBD-specific 

emory B cells remained unchanged six months after infection 

 Gaebler et al., 2021 ). Despite a slight decrease in association with 

ge, memory B cells seem to be efficiently primed by mRNA vac- 

ination and detectable after the second vaccine dose, which con- 
4 
edes memory B cells a role in mounting recall responses to SARS- 

oV-2 ( Goel et al., 2021 ). 

Taken together, our and others’ findings suggest that serolog- 

cal tests for SARS-CoV-2 might not reflect the immune mem- 

ry response in terms of robustness and durability, highlighting 

he need to determine cellular responses in addition to serologies 

 Cromer et al., 2021 ; Tretyn et al., 2021 ). 

We found significant differences in antibody titers between 

aïve versus seropositive subjects before vaccination and in each of 

he subsequent time points. There was a trend to decrease in abso- 
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Figure 3. Predicted trajectories of immunoglobulin G (IgG) levels over six months by gender and naïve status at T0 between age groups. On the top (A and B) are represented 

the predictions for female gender and on the bottom (C and D) the ones for male HCWs. Also, on the left (A and C) are represented the predictions naïve HCWs and on the 

right (B and D) for HCWs with previous titers > 50 AU/ml. The dotted horizontal lines represent 4160 AU/ml and 50 AU/ml levels. HCWs = healthcare workers; AU = arbitrary 

units. 

Table 2 

Results from linear mixed effects model for log 10 -transformed Immunoglobulin gG (IgG) an- 

tibody titers. Reported are the estimated fixed effects along with their standard error and P - 

values. 

Dependent variable: IgG levels (AU/ml) log 10 -transformed 

Variables Value Std. Error P -value 

Intercept 4.51 0.0193 < 0.001 

Month −0.233 0.0009 < 0.001 

Age (years, > 60 as 

reference) 

18–30 0.219 0.0231 < 0.001 

30–40 0.136 0.0205 < 0.001 

40–50 0.056 0.0199 0.0053 

50–60 0.050 0.0199 0.0120 

Gender (female) 0.070 0.0135 < 0.001 

T0 (titers > 50 

AU/ml) 

0.155 0.0422 0.0002 

Interactions 

Months xT0 

(titers > 50 AU/ml) 

0.062 0.0062 < 0.001 

AIC = 1849.178; Marginalized R 2 = 0.71; Conditional R 2 = 0.91. 

AU = arbitrary units. 

Table 3 

Estimations of intercept and decrease rates based on the linear 

mixed effects model for log 10 -transformed Immunoglobulin gG 

(IgG) antibody titers, for each group of covariates included. 

Intercept 

Age group (years) 

Female 18–30 30–40 40–50 50–60 > 60 

Naïve 4.994 4.911 4.831 4.825 4.775 

Not naïve 5.180 5.097 5.017 5.011 4.961 

Male 

Naïve 4.194 4.211 4.131 4.125 4.075 

Not naïve 4.480 4.397 4.316 4.311 4.261 
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ute difference as a time to depart from the antibody peak. Those 

ith reactive titers before vaccination remained with higher lev- 

ls at six-month follow-up. Indeed, the mixed-effects linear model 

evealed that being seropositive at T0 contributes to higher anti- 

ody levels, at the peak and during the observed period. These re- 
5 
ults agree with previous studies showing that baseline seroposi- 

ives have a longer estimated half-life and less accentuated decline 

n SARS-CoV-2 IgG titers ( Bayart et al., 2021 ; Salvagno et al., 2021 ;

hong et al., 2021 ). 

Age was inversely related to the immune response at all time 

oints of the postvaccination follow-up. We observed that median 

gG antibody levels decreased over six months in all age groups, 

lthough the difference among age groups decreased over time. 

onetheless, in the mixed-effects model, age remained a signifi- 

ant independent factor to predict antibody levels. These results 

lign with other reports that observed a negative correlation be- 

ween age and antibody levels ( Naaber et al., 2021 ; Salvagno et al., 

021 ) and with neutralizing antibodies ( Salvagno et al., 2021 ). 

iven that our study is from a working population, subjects aged 

ver 68 years were not included. Nonetheless, evidence suggests 

here is a lower humoral response at six months after the vaccine 

or patients above 60 ( Tretyn et al., 2021 ) and over 65 years old

 Levin et al., 2021 ). 
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Gender remained a significant factor throughout all time points 

nalyzed, with female HCWs presenting higher titers than their 

ale counterparts after vaccination. The linear model with mixed- 

ffects showed that the female gender contributed independently 

oward higher antibody levels, albeit this effect seems to de- 

rease through time. These observations agree with previous re- 

orts ( Levin et al., 2021 ; Salvagno et al., 2021 ). 

This study included a cohort of HCWs, a professional group ex- 

osed to the occupational risk of COVID-19. Eligible participants 

ere active workers, younger than 67 years of age, without sub- 

tantial co-morbidities, with only limited generalizability to the 

lder population and adults with serious co-morbidities. Although 

nitially designed to include only naïve subjects, a small number 

f participants were found to be seropositive. Therefore, findings 

omparing titers from naïve versus seropositive participants should 

e interpreted cautiously, despite their being in line with other 

arger studies ( Bayart et al., 2021 ; Ebinger et al., 2021 ). Here, we

ocused on the serological evaluation of immunological response 

o the COVID-19 mRNA vaccine, even though the immune response 

o the vaccine is multifaceted and involves neutralizing antibodies 

nd T memory cells beyond IgG antibodies in postvaccination pro- 

ection ( Krause et al., 2021 ). 

Notwithstanding those limitations, we present serological data 

rom a cohort with large sample size and a longer follow-up pe- 

iod compared with others in the literature. Moreover, we used a 

ixed-effects model suitable for longitudinal datasets where mul- 

iple correlated measurements were taken from each subject, al- 

owing more accurate and precise estimates of population hetero- 

eneity ( Bottino et al., 2021 ). 

Data presented here provide further evidence for the eventual 

equirement of SARS-CoV-2 IgG serology-guided booster vaccina- 

ions. Despite being controversial, this strategy has been adopted 

y some countries for older subjects and immunocompromised pa- 

ients with over six months of postvaccination follow-up time ( Bar- 

n et al., 2021 ; Krause et al., 2021 ). 

Although we present data of IgG antibodies decline over time, 

hich could be expected, provided that not all vaccine-induced 

lasmablasts commit or are maintained as long-lived memory 

lasma cells ( Naaber et al., 2021 ), it is also well established 

hat vaccine efficacy remains high after six months ( Thomas 

t al., 2021 ). Thus, even if humoral immunity appears to wane, it 

oes not necessarily mean a reduction in efficacy ( Krause et al., 

021 ). 

onclusion 

The decline of specific anti-SARS-CoV-2 IgG antibodies over 

ime through six months postvaccination suggests waning of hu- 

oral immunity and impaired capacity to fight the virus and 

upports the need to re-activate IgG production. This is a co- 

ort study planned for a one-year follow-up, which will permit 

he sharpening of the antibodies’ kinetics model. Accurately eval- 

ated antibody response, together with cellular immunity status 

nd other covariates, including age and gender, may add to clin- 

cal reasoning to support the individualization of the immuniza- 

ion plan. This work further contributes to delineating the pat- 

ern of the immune response to the COVID-19 mRNA vaccine, 

ostering additional research to determine the titers needed for 

rotection. 
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