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There is a lack of software engineer-
ing skills in bioinformatic contexts.

We discuss the consequences of this lack,
examine existing explanations and reme-
dies to the problem, point out their
shortcomings, and propose alternatives.
Previous analyses of the problem have
tended to treat the use of software in sci-
entific contexts as categorically different
from the general application of software
engineering in commercial settings. In
contrast, we describe bioinformatic soft-
ware engineering as a specialization of
general software engineering, and exam-
ine how it should be practiced. Specifi-
cally, we highlight the difference between
programming and software engineering,
list elements of the latter and present the
results of a survey of bioinformatic prac-
titioners which quantifies the extent to
which those elements are employed in
bioinformatics. We propose that the ideal
way to bring engineering values into
research projects is to bring engineers
themselves. We identify the role of Bioin-
formatic Engineer and describe how such
a role would work within bioinformatic
research teams. We conclude by recom-
mending an educational emphasis on
cross-training software engineers into life
sciences, and propose research on
Domain Specific Languages to facilitate
collaboration between engineers and
bioinformaticians.

Problem Description

This paper identifies a significant lack
of software engineering practices in bioin-
formatics when compared to commercial
software development, which prevents the
bioinformatic community from benefiting

from decades of engineering efficiencies,
rigour and quality. The problem is present
in computational science in general, but
for the purposes of this discussion, we will
concentrate on bioinformatics. Software
engineering skills are lacking, as is evident
in the way in which software is developed
in bioinformatic contexts. Although biolo-
gists and especially bioinformaticians pos-
sess programming skills, and use those
skills as part of their day to day work, they
do so in a way that is unstructured and
not in line with modern standards of soft-
ware engineering.1,2 The problem has seri-
ous consequences for the field of
bioinformatics and demands that we find
effective solutions.

We will examine these consequences
under a number of headings, but in all
cases they boil down to 2 overarching
problems: the bioinformatic community
arrives at findings more slowly than it oth-
erwise might, and those findings, when
arrived at, are less reliable than they might
otherwise be. By focusing on solutions to
the lack of software engineering skills in
bioinformatics, we can address both of
these effects. A first step is to better under-
stand their nature by identifying more
precisely how and where they arise.

Inability to reproduce findings

A lack of software engineering infra-
structure and techniques means that many
publications which process data informati-
cally cannot make that software or data
available in a reproducible way for peer
review. As a consequence, a significant
percentage of findings is likely to be
reversed or withdrawn from publication.
The use of infrastructure such as source
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code control systems and command-line
build tools would improve the situation,
by giving researchers the ability to easily
publish and share the software that was
used as part of their work. But these tools
are either unknown or simply considered
unnecessary for small teams of bioinfor-
matic researchers.

Unreliability of findings

All surveys on scientific software devel-
opment that we have reviewed cite a lack
of software testing as being a constant
theme of scientific development. Segal
points out that the “lack of any disciplined
testing procedure” is a characteristic of any
development practice where the end user
is also the developer.3 According to a
review by Morris “unit testsA often do not
exist."4 Because of the fundamentally
important role of such tests in separating
problems in the code from problems in
the hypotheses, findings based on insuffi-
ciently tested software must be considered
in turn insufficiently tested themselves.
Compare this to the use of defective or
uncalibrated lab equipment in order to
fully appreciate the nature of the problem.

Limitations in data sample size

Many scientists run their software on
multi-core desktops but do so in a single-
threaded way which creates performance
bottlenecks.5 This is most likely due to a
lack of familiarity with the kind of parallel
computing techniques available to software
engineers. The constraints that this practice
inevitably imposes on sample size or sophis-
tication of data analysis are clear: In order
to execute programs to completion on
desktops, even if in a time frame of hours
and days, researchers will naturally reduce
the number of sample points used, or elimi-
nate steps which might increase statistical
power but which have exponential or facto-
rial performance profiles.5 A parameter

study, for example, can benefit from pair-
wise comparisons of its features; but the

number of such pairs is
n

2

� �
, where n is

the number of features, so even modest
values of n require concurrent program-
ming and resource management to run to
completion on desktop computers. Where
multi-threaded implementations are used
in scientific programming, they typically
involve using OpenMPB (for multi-core)
or MPIC (for multi-server). These solu-
tions use low-level primitives and as such
are painstaking to develop and can result
in error-prone code which is difficult to
change, especially in large systems.6 Soft-
ware engineering research has more
recently concentrated on using higher
abstractions which result in more intuitive
ways to achieve concurrency, for example
through the use of the Actor architecture.7

There are examples of the successful use of
such engineering to the bioinformatics
community.8

Slowing the discovery cycle

Bioinformatic research is an iterative
process in which the computational ele-
ment takes up a significant percentage. If
the researcher has to wait days to see
computational results which will decide
the next direction that the research is to
take, momentum is lost and the entire
process of research itself is slowed down.
Software engineers can bring skills like
performance optimisation and concurrent
programming to bear on this problem,
significantly reducing waiting times.

Reinventing the wheel

According to Prabhu et al. “a consider-
able portion of [scientists’] time is spent
in many tedious [software development]
activities” such as converting data formats

or retro-fitting inherited software to work
for new conditions.5 This is a direct conse-
quence of insufficient software engineer-
ing infrastructure and practices around
the research team. Researchers are obliged
to repeatedly cobble together solutions for
every new direction they take. Naturally
the nature of these improvised solutions
does not facilitate their reuse - they typi-
cally don’t exhibit high levels of maintain-
ability or build-reproducibility - and so
the problem perpetuates itself.

In all of the above cases, we can discern
a parallel to the argument made by Ioan-
nidis with respect to inexpert use of statis-
tics in studies.9 The danger to progress in
bioinformatics is that much research may
later be found to be invalid due to inex-
pert or non-transparent development of
software. As Verma et al. point out, “the
end goal of creating accurate and reliable
scientific software is no less critical [than
with commercial software] since incorrect
results would greatly compromise the
validity of the discovery."1 This is an
unsettling prospect indeed.

As in silico experiments become an
increasingly important form of research
and development, problems of reproduc-
ibility and reliability will become more
obvious and more urgent. Moreover, soft-
ware engineering techniques will be key
not just in addressing those problems, but
in the initial conception and design of
such experiments.

Solutions from the Literature

These are some of the things that can
go wrong in bioinformatic research when
we fail to address the problem of its soft-
ware engineering deficit. But why does
this deficit arise in the first place? And
what can be done to improve matters?

A number of the authors we have
reviewed offer explanations and remedies
for the problems described above. Hannay
et al. identify a general lack of formal edu-
cation and training and a reliance instead
on informal learning from peers.10 Segal
& Morris among others emphasize the
differences between scientific and com-
mercial software development.11 Simi-
larly, Verma et al. cite a lack of
requirements engineering in bioinformatic

AUnit testing is a software development practice in
which individual units of source code - for example
a class in object oriented programming, a proce-
dure in imperative programming or a function in
functional programming - are tested in isolation to
determine whether they behave correctly.

BOpenMP - Open Multi-Processing - is an API speci-
fication for shared memory parallel programming.
See http://openmp.org/wp/.
CMPI - Message Passing Interface - is a standardized
and portable message-passing system designed by
a group of researchers from academia and industry
to function on a wide variety of parallel computers.
See https://www.open-mpi.org/.
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projects, as well as other factors that create
the “unique situation for the field of soft-
ware engineering” represented by bioin-
formatics.1 Umarji et al. focus exclusively
on the gaps in the education of bioinfor-
matic software developers in software
engineering principles.12

It is important to correctly identify all of
the significant causes of the problem. If we
start with a false or incomplete diagnosis
the treatment is unlikely to be effective. We
will look in detail at the root causes pro-
posed by previous studies, but from the pre-
vious paragraph we can see that there are
some elements in common in the way pre-
vious authors have understood the prob-
lem, and so in the solutions that they have
proposed. Here we will categorize them as
education, methodology and special pleading,
and they can be described as follows:

Education

Some authors have found that bioin-
formaticians lack the necessary training in
Software Engineering skills. Umarji et al.
have surveyed bioinformatics curricula in
the United States and found that “out of a
total of 79 program offerings, there were
only 2 instances where a software engi-
neering related course was a required part
of the curriculum” and that “there was no
mention of the role and importance of
software engineering in the curricula."12

Methodology

The wrong processes - or no processes at
all - are being applied to the practice of bio-
informatic research. Verma et al. report
that “little emphasis is paid on the organi-
zation and requirement gathering process
in the early stages of the software."1

Special Pleading

According to some authors, the field of
scientific software development is so far
removed from the commercial settings in
which modern Software Engineering has
emerged, that the rules from the latter
simply do not apply. Authors have sug-
gested that the 2 contexts are
“fundamentally different” for reasons of

subject domain complexity, requirements
volatility and budgetary constraints. These
differences make it problematic to
“impose software engineering techniques
on scientists."11 So much space has been
given to the differences between scientific
and commercial development, that it is
useful to break it down further as follows.

� Subject Domain Complexity. Segal &
Morris assert that in the case of scien-
tific software development the subject
matter is simply too complex for the
“average developer." In a similar vein,
Hannay suggests that “developers are
much less likely to need to be domain
experts” in “regular” software develop-
ment compared to scientific.11

� Requirements Volatility. According to
Segal & Morris, “full up-front require-
ment specifications are impossible”
where scientists are concerned, and that
requirements rather “emerge” on an
ongoing basis. The suggestion is that
this is a distinctive feature of scientific
programming, which makes the appli-
cation of software engineering techni-
ques more difficult.

� Budget and Resources. Verma et al.
and Umarji et al. cite tighter budget
and timetable constraints as a differenti-
ating factor of bioinformatic software
development, and therefore as one pos-
sible cause of a lack of software engi-
neering best practices in that field.

End User (Scientist) as Developer

A number of authors point out cultural
differences between scientists and software
engineers as an important issue. Segal &
Morris suggest that due to the subject
domain complexity already mentioned,
developers are likely to be the end-user sci-
entists. But as Verma et al. point out,
biologist stakeholders - who are the pri-
mary stakeholders in these settings - “may
be more inclined to sacrifice program
structure to get something that works."

Naturally enough, the solutions pro-
posed by these studies flow from the diag-
noses of the problem. Those who conclude
that the problem lies in education propose
improvements to curricula. Those that
implicate incorrect methodologies suggest

alternatives that are more suitable to bioin-
formatics. Papers which emphasize the dis-
connect (real or perceived) between
scientific and software engineering worlds
don’t offer suggestions about how to bring
software engineering values into the scien-
tific community, which again is natural,
given their premise.

Software Engineering vs
Computer Programming

Before we examine the existing
explanations and remedies for the soft-
ware engineering deficit in bioinformat-
ics, we make a brief but important
digression: We outline the differences
between computer programming and
software engineering in order to prepare
for later arguments that lean on these
differences.

The skills required to program are
not the same as those required to engi-
neer a software solution. Programming
is a subset of the discipline of software
engineering in much the same way that
draftsmanship is a subset of the skills
required for architecture. This uncon-
troversial fact is under-appreciated in
scientific settings, for reasons about
which we might only speculate. It takes
a great deal longer to make a software
engineer than it does simply to make a
programmer. This should come as no
surprise, given the fact that Software
Engineering is a distinct academic
course of studies and a distinct profes-
sional discipline. Practicing software
engineers draw from a large body of
academic knowledge and a long and
vital component of workplace experi-
ence. There is a long-standing recogni-
tion, going back to thought-leaders like
EW Dijkstra, that software engineering
is as much a craft as a science.13 As
such, its skills are acquired as much
through a kind of apprenticeship as
through the academic studies that pre-
cede it. This has been sufficiently appre-
ciated by educators that some have
sought to incorporate elements of that
apprenticeship model into academic
coursework.14 The elements of software
engineering practice that are often
absent from bioinformatic teams
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correspond to those elements which are
typically learned by the software engi-
neering apprentice (source control,
build systems, unit testing etc). This is
hardly surprising: Scientists learn more
software development skills informally
from other scientists, and through self-
study, than through formal education.10

In one study 84% of scientists who
were surveyed indicated that they had
relied mostly on self-learning for their
software skills.1 In either case, neither
mode of learning can be compared to
the prolonged exposure to best practices
that software engineers typically enjoy.

Elements of Software
Engineering Practice

In this section, we give an overview of
some of the primary tools, techniques and
skills of software engineering, and present
the results of a survey which seeks to quan-
tify the prevalence of these software engi-
neering elements in bioinformatic
settings. Our choice of which tools and
techniques to emphasize are based on
experience as practitioners, and we find

ourselves in full agreement with other
authors such as Wilson et al. with respect
to those choices.15

Figure 1 shows the essential elements
of software engineering practice, and illus-
trates the dependencies between them.
We categorize Software Engineering ele-
ments into the separate layers of infrastruc-
ture, processes and practices, each layer
building on the one below.

The basis of good practice lies in the
correct choice of the Tools and Infra-
structure indicated in Figure 1. Of
course a software engineer chooses the
tools based on the practices that she
wishes to encourage, but their presence
in a development environment is like a
genetic marker that accompanies good
engineering standards. The layers repre-
senting automated Processes and experi-
ence-based Practices contain their own
‘markers’ which depend on those in the
layers below: Even the most skilled and
experienced engineer will be thwarted by
an inadequate development environ-
ment. With this in mind, we designed a
survey to measure the prevalence of
these layered ‘markers’ in bioinformatic
research teams.

A Survey of Bioinformatic
Software Engineering Practice

We conducted 2 parallel surveys, one
distributed to life scientists, and the other
to developers of business software. In both
cases we asked questions to identify atti-
tudes toward certain key ‘markers’ of soft-
ware engineering as described in the
previous section. We reached 81 life scien-
tists, 45 of whom developed their own
software, and 36 business software devel-
opers. We used the Likert system of ques-
tionnaire design in which respondents rate
their attitudes to statements from strongly
disagree to strongly agree with a total of 5
degrees to choose from. We present the
results below in a form that compares the
differences between the 2 groups. The
purpose of the business software data is to
act as a control for attitudes toward the
software engineering ‘markers’. From the
first set of results (Fig. 2) it’s clear that
business software developers and life scien-
tists have distinctly different attitudes
toward the standard elements of software
engineering infrastructure.

Commercial developers almost unani-
mously strongly agree with the statements
that build systems, source control, IDEs
and Continuous Integration engines are
used in their place of work. Life scientists
show no such consensus. The closest they
come to each other is in their attitude to
the statement on source control where on
average they agree with it, but where a sig-
nificant minority have no opinion or dis-
agree. Source control systems are of
central importance in software engineer-
ing practice, on a par with disinfectant in
an operating theater. Complete adherence
to their use should be considered the
norm, as is borne out by the business soft-
ware respondents. The other 3 elements
should be considered similarly vital to
good software engineering practice.

When it comes to processes (auto-
mated or automatable) applied using
the elements of infrastructure, the dis-
tinction between life scientists and the
control group of business software
developers is still clear even if less pro-
nounced (Fig. 3). This difference is
mostly a function of a reduced consen-
sus among software engineers rather
than a positive change in attitudes fromFigure 1. Key Components of Software Engineering.
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the life scientists. A particular point to
notice is that although there is a rela-
tively good showing for the use of

source control in the previous set of
results, life scientists generally neither
agree nor disagree with the use of

branching, despite the fact branching is
one of the main advantages of using
source control.

Figure 3. Responses to questions on processes.

Figure 2. Responses to questions on infrastructure.
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As we look at the results for practices
and skills (Fig. 4), a pattern begins to
emerge. The further up the pyramid we
go, the ‘softer’ the consensus among soft-
ware engineers, while the attitudes of the
life scientists remain more or less static.
The overall picture of a clean, albeit
smaller, separation remains.

The results dealing with goals and
ambitions (Fig. 5) present a break with
the previous pattern. Rather than the
software engineers falling back to the

neutral position of the life scientists,
the latter group shows a stronger and
clearer consensus in favor of the state-
ments presented to them. In fact there
is no discernible difference in attitudes
between the 2 camps. It is interesting
that in this section we have posed our
questions in a slightly different way.
Rather than asking about actual use, we
have asked about importance. The goals
and aspirations of the life scientists with
regard to software architecture are no

different to those of commercial soft-
ware engineers. What they lack how-
ever, as indicated by the previous
results, are the instruments and techni-
ques necessary to achieve those goals.

Alternative Solutions

The results of our survey confirm
the deficit in bioinformatic software engi-
neering skills, while at the same time

Figure 4. Responses to questions on practices.
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indicating an ambition among bioinfor-
maticians to bridge the gap. We now look
at what the causes and remedies of this
deficit might be and revisit the reviewed
literature. We believe that in order to
address this deficit effectively, we must
take into account the difference between
computer programming and software
engineering as discussed above. We assert
that it is impractical, if not impossible, to
introduce the missing software engineer-
ing expertise into bioinformatics by treat-
ing that expertise as a sub-component of
bioinformatics. Software Engineering
encompasses too large a body of knowl-
edge, which is acquired by too different a
form of education to simply be bolted on
to existing bioinformatic curricula. Put
another way, we believe that the most
effective way of introducing software engi-
neering values into bioinformatic research
is to introduce software engineers them-
selves, by recognizing the separate role of
the Bioinformatic Engineer in bioinfor-
matic research projects, and identifying
the interface between the engineer and the
scientist. Before we discuss how this might

be done, we look again at the solutions
from the existing literature, in the light of
our assertions and findings above.

Education

While improvements in bioinformatic
curricula, as suggested by Umarji et al.
would be a positive step that could lead to
improved communication between bioin-
formaticians and software engineers, such
improvements would not be sufficient to
bridge the current gap.12 We believe that
in addition, educators should target soft-
ware engineering curricula and create spe-
cialized Masters and PhD programs in
Bioinformatic Engineering, creating spe-
cialized software engineers who can dialog
with biologists and bioinformaticians as
customers based on a shared understanding
of the research environment and the biol-
ogy domain. Early introduction of soft-
ware engineering graduates into
bioinformatic research programmes would
have a positive influence on the software
developed as part of such research.

Methodology

Selecting appropriate methodologies is
another necessary but insufficient step.
Investigations into software engineering
methodologies that suit bioinformatics
projects are worthy, but who would steer
the use of such techniques in the absence
of a skilled and experienced software engi-
neer? As Kane et al. have found, “[the]
agile development approach . . . provides a
model for collaboration between software
engineers and researchers."16 In other
words, a good methodology works best in
the context of existing software engineer-
ing skills, rather than as a replacement for
them. Given such a context, it is worth
pointing out the advantages of applying
agile methodologies to scientific software
development in general, and bioinformat-
ics in particular. One benefit of agile pro-
cesses is a rigour in defining requirements
while at the same time embracing change
in a way that permits discovery through
prototyping. Agility can be seen as an
example of modern software engineering
serving the needs of bioinformatics.

Figure 5. Responses to questions on goals.
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Special Pleading

What about those arguments touched
on above which suggest that scientific soft-
ware development is too complex, too
fluid in its requirements, and too badly
funded to use software engineering techni-
ques? Such arguments are based on special
pleading and are problematic in a number
of ways. Firstly, they don’t point toward
solutions. And secondly, such claims of
being a special case can be arrived at too
easily by specialist groups such as biolo-
gists, and fit too well with assumptions
and professional biases - asserted and
accepted without ever being truly exam-
ined. We examine those assumptions now
in the order outlined above: complexity of
domain, volatility of requirements and lim-
ited resources.

Complexity of Domain

There is something inherently contra-
dictory in the claim that systems biology is
too complex for software engineering or
software engineers, thus making the biolo-
gist-as-developer a necessary feature of the
bioinformatic landscape. If biological sys-
tems are complex then it follows that the
software systems which model them will be
complex. The complexity of the software
however is twofold: Firstly there is the
Problem Domain complexity inherited
directly from the biology. Secondly there is
the Solution Domain complexity that is
inherent in any software abstraction. This
latter, software-specific complexity is equal
to the complexity of the modeled biology,
but may add extra complexity of its own,
depending on how sensibly the software is
designed and realized. It takes a skilled
software engineer, using modern software
engineering techniques, to minimize this
software complexity factor. It is clear that
the “average developer” will not acquire
biological expertise to same extent as the
biologist, and will understand the biology
only to that extent required to capture the
necessary abstractions for the problem in
hand, in collaboration with the biologist.
It should be equally clear that complex sys-
tems modeled in software exclusively by
biologists with limited software engineer-
ing experience will suffer from the

limitations outlined at the beginning of
this article. In the increasingly parallel, dis-
tributed and data-saturated context of
modern bioinformatics, the exclusive role
of scientist-as-developer advanced by Segal
& Morris should be considered a bug
rather than a feature.

Volatility of Requirements

The observation that scientific require-
ments are simply too fluid will bring a
rum smile to the face of any experienced
software engineer. The day-to-day reality
of commercial projects is very different to
the clean lines described in methodology
literature. Perceived business needs always
come first, often to the detriment of best
practice. Part of the engineer’s job is to
incorporate unexpected and even capri-
cious requirements into the project while
minimizing the damage done.

In one sense, the life sciences enjoy an
important advantage over business: The
problem domain is much more stable over
time and across projects. Certainly it
grows to incorporate discoveries and occa-
sional upheavals. But amino acids and cell
division don’t go in and out of fashion
like financial instruments or business pro-
cesses. Biologists uncover and even invent,
but the underlying biology itself limits
novelty. This allows engineers to build up
and usefully retain expertise in the problem
domain. (This cannot be said about com-
mercial domains, where the only underly-
ing biology that limits change is the neo-
cortex of the customer.) One feature of
modern software development which can
take advantage of this relatively stable
domain and facilitate communication
between engineer and scientist is the
Domain Specific Language (DSL).17 As
an alternative to a general purpose pro-
gramming language, a DSL can provide a
fluent interface between the problem
domain of the biologist and the solution
domain of the engineer. As such a DSL
“offers substantial gains in productivity
and even enables end-user program-
ming."18 As pointed out by Swertz et al,
“[t]he working systems biologist wants to
apply software tools to increase the under-
standing of biological function without
having to ‘tinker under the hood’."19

DSLs bring some potential disadvantages
as well, for example the risk of creating
‘islands’ of code so specialized as to
become impenetrable to the non-expert
user. Notwithstanding such risks, and
indeed by way of addressing them, we
consider the application of DSLs to bioin-
formatic software development as a wor-
thy subject of further research.

Limited Resources

Budgets on commercial software proj-
ects are tight, as are the deadlines, and any
experienced developer knows that there is a
continuous cost/benefit calculation
involved when making any significant
technical decision. In this sense, commer-
cial projects are no different to scientific
research programs. What does differ is the
budgeting process. Bioinformatic research-
ers should allocate adequate resources for
software development at the outset.

Bioinformatics Engineering

We are arguing here for the recognition
of the separate role of Bioinformatic Engi-
neer in research teams, but this raises many
questions of a practical nature and perhaps
some philosophical ones too. How should
bioinformatic engineers and bioinformati-
cians best communicate? Where would
their competencies overlap? What should
small teams with limited funding do? And
in any case, does this separation of roles fly
in the face of the cross-disciplinary nature
of bioinformatics itself?

The intersection of the 2 sets in
Figure 6 shows the role that education can
play in preparing bioinformaticians and
bioinformatic engineers to work together.
Engineers need to know enough about the
biology domain to communicate effec-
tively with bioinformaticians. Complexity
of the problem domain does not prevent
this from happening in similarly complex
commercial settings, and despite much
special pleading in the literature there is
insufficient reason to think that bioinfor-
matics would be different. Commercial
software engineers typically specialize in
‘verticals’ and market themselves as much
on the basis of their domain experience as
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on their technical skills. Bioinformatics
can be seen as a particularly stable and
well defined problem domain, itself subdi-
vided into various verticals. Bioinformati-
cians already understand programming
enough to communicate their ideas and
requirements through code (even if, as we
have indicated earlier, there is enormous
potential for DSLs to close the communi-
cation gap even further).

The non-intersecting parts of the 2 sets
demonstrate the need for the bioinfor-
matic engineer in the first place. The
entire field of software engineering is too
large to incorporate into the skillset of bio-
informatics, and much of it is of no inter-
est to the bioinformatician in the first
place. Nobody expects him to build, or
even understand the inner workings of the
centrifuges and mass spectrometers that
are so essential to research. Why then
should we expect him to master the art of
building large-scale, performant and pro-
duction-ready software systems?

The point we are making in distin-
guishing the role of Bioinformatics Engi-
neer can be summarized as follows:
Software Engineering is vital to the disci-
pline of bioinformatics without being a
core skill of that discipline. This question of
specialization is a logistic or even eco-
nomic one which finds echoes in Ricardo’s
Law of Comparative Advantage: Even if it
were possible for bioinformaticians to sub-
sume the entire discipline of software
engineering into their body of knowledge,
it would not be desirable.20 It would sim-
ply represent bad value. A bioinformati-
cian investing the necessary time in

engineering skills would pay a heavy price
in terms of Opportunity Cost - the time
not spent on study and research in core
biological questions. Much better to lean
on an engineering specialist in those key
moments of research and development
when engineering skills come to the fore.

What, then, are those key moments?
Figure 7 categorizes the kinds of software
development that would typically take
place in a research team into 4 quadrants,
based on 2 variables: Whether the work is
core or peripheral to the team’s output
(focus), and whether the resulting software
should be considered temporary or perma-
nent (durability). We can use these varia-
bles to pinpoint the phases of research
where bioinformaticians could increase
their productivity by handing over to bio-
informatic engineers, or at the very least,
“change hat” and temporarily adopt an
engineering approach.

To explain what we mean by these cate-
gories and variables, we refer to Morris’
observation4 that “[o]ne concern is that sci-
entific prototype code, if successful, segues
into applications that are distributed for
wider research use. Later it may be adopted
for production purposes, sometimes even
for safety critical use.” In other words, it is
important to allow bioinformaticians to
create code that is exploratory in nature
but fragile from an engineering point of
view. But it is equally important to ensure
that such code does not form the basis of
published findings or shared products and
tools. The consequence of such fragility on
published finding includes, but is not lim-
ited to, a difficulty in reproducing results,

or a difficulty in analyzing the correctness
of the code (due for example to poor read-
ability, unreproducible builds, or even
access to the correct version of the code).
The consequence of fragile engineering on
shared products and tools should be self-
evident. A necessary balance between the
need to explore and the need to consolidate
must be struck, and we model this balance
with the durability variable that distin-
guishes between temporary and permanent
software.

Once we know which category a partic-
ular piece of software belongs to, we can
create procedures for moving it to a differ-
ent category should the need arise. For
example, according to Sanders and Kelly
some teams took a “do it twice” approach
- that is, a rewrite of software according to
more exacting engineering require-
ments.21 This corresponds to moving soft-
ware from the upper half to the lower half
of Figure 7. So this is already practiced in
some research teams. The point is to
explicitly recognize these categories and
put processes in place to avoid the kind of
error that Morris describes.

The other variable, focus, distinguishes
between software that is used as part of
the scientific discovery process in a specific
line of research, and code that could be
considered ‘utility code’ to be reused in
many different settings. The former
should in principle be published along
with the findings it helped to produce.
The latter might find its way into a com-
mercial or opensource product to be
shared with the wider bioinformatic com-
munity. In both cases, the need for a
transformation from temporary to perma-
nent is the same, but the engineering skills
and processes used to achieve it would dif-
fer - hence the distinction between core
and peripheral software.

If a research team cannot fund a dedi-
cated software engineer, it can still make
use of the ideas presented here. The cross-
over points in competencies that we have
identified above can serve as process
boundaries, indicating where bioinforma-
ticians should “change hat” and begin to
approach their work with different goals
in mind. But in order for this to happen,
they must know that these boundaries
exist; at a minimum they should be edu-
cated in an appreciation of software

Figure 6. Suggested project Roles of bioinformaticians and bioinformatic engineers.

www.tandfonline.com 201Bioengineered



engineering even if their own engineering
training will be of necessity - a peripheral
part of their curriculum. As teams ramp-
up in size and funding, they will permit
themselves to take on specialists, and we
contend that bioinformatic engineers
should be one category of such specialists.

Projects that weave software engineer-
ing best practices into bioinformatics
research and in silico experimentation reap
concrete rewards. By employing software
engineering techniques such as a layered
architecture, explicit development models
and a rigorous requirements-gathering
approach, Walsh et al.22 produced an
accelerated research workflow tool, which
is amenable to extension and is highly
scalable. A blended team of biologists,
computational scientists and engineers
which has modeled integrated physiologi-
cal processes of Caenorhabditis elegans
(C. elegans) in silico has asserted that “[i]n
order to be able to effectively manage the
complexity that comes with integrating

and maintaining coarse-grained architec-
tures, tools, digital information artifacts
and codebases, it is important for compu-
tational biology to fully embrace software
engineering methodologies and best prac-
tices and follow the lead of the simulation
based research in the physical
sciences.”23,24

Conclusion

Bioinformatics is still in the cradle,
compared to many of its sibling sciences.
In common with many other fields that
combine computation, mathematics and
statistics with the sciences, a lot of thought
and energy is going into the creation of
truly cross-disciplinary practitioners. The
goal is to combine in one brain a rich
knowledge of both biology and computa-
tion, because answering the questions that
arise in one has become heavily dependent

on mastering the skills developed in the
other.

While there is no doubt about the
soundness of this ambition, we feel that
a distinction must be made between
computational skills and software engi-
neering skills. More to the point, we
feel that these skill sets are so diverse
and mastered by such different meth-
ods, that it is unrealistic to expect a sin-
gle practitioner to combine biology,
computational methods and software
engineering. Moreover, it is unnecessary
and uneconomical to try.

The alternative is already available to
us. Software engineering is a discipline in
which we apply computational skills to
problems of other disciplines in such a
way as to result in robust, reliable and
maintainable solutions. While some fields
of application are more exacting than
others there is no qualitative difference
between commercial software engineering
and scientific software engineering. The
extra degree of scientific complexity has
parallels in commercial software develop-
ment. The existing tools, techniques and
practices of software engineers can bend
to the particular needs of research. The
only question that remains is how to reli-
ably place those skills of modern software
engineering at the disposal of bioinfor-
matic researchers.

We argue for the explicit recognition of
the role of the bioinformatic engineer, a
software engineer who has been educated in
the standard way for that discipline, and has
specialized in the ‘vertical’ of systems biol-
ogy (or a sub-field such as genomics, or
metabolomics). Such an individual would
embody all the skills that one would expect
from an expert software engineer but would
also have a deep understanding of the kinds
of problems that biologists need to solve,
and an appreciation for the manner in
which they go about their research. In other
words, we believe that the most effective
way of introducing software engineering
values into bioinformatic research is to
introduce software engineers themselves. As
a reasonable compromise, where this ideal
is not immediately achievable, bioinforma-
ticians could perform the role of bioinfor-
matics engineer during the delineated
phases of project work that we have
identified.

Figure 7. Handover points between bioinformaticans and bioinformatic engineers.
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One difficulty to be addressed as part
of the proposed approach is hinted at by
Prabhu et al. when they quote one scien-
tist as saying that even “funding agencies
think software development is free,” and
regard development of robust scientific
code as “second class” compared to other
scientific achievements.5 The way in
which research projects are funded does
not currently take into account the costs
associated with developing software.
While not every project will be able to
budget for a full-time bioinformatic engi-
neer, research groups should be able to
share such resources, or make use of spe-
cialized external software companies
which would grow in number to meet
demand.

The bioinformatic engineer does not in
any sense remove the need for the cross-
disciplinary figure of the bioinformatician.
On the contrary - it is essential to an effec-
tive collaboration between bioinformati-
cian and engineer that one have the skills
and vocabulary to communicate needs to
the other. The bioinformatician will very
often communicate with the engineer
using source code. As suggested by Wilson
et al. it would be best if the bioinformati-
cian also had a working knowledge of the
basic tools of software engineering such as
source control and unit tests. But the
responsibility of identifying problems in
design and code, fixing them, and shaping
exploratory code into well-engineered sol-
utions would lie with the bioinformatic
engineer. We predict that this would sub-
stitute hours of drudgery for the scientist
with hours of true productivity, and at the
same time ensure performant, testable,
maintainable and shareable code and
reproducible results for the bioinformatic
field at large.

Recommendations

� Explicit recognition of the role of Bio-
informatic Engineer, along with a
shared understanding of the competen-
cies, functions and interfaces of that
role.

� The creation of specialist post-graduate
curricula to allow software engineering
graduates to specialize in bioinformatic
engineering. This should be seen as a

parallel and complementary effort to
the enlistment of computer science and
biology graduates into bioinformatics
post-graduate courses.

� Research into bioinformatic Domain
Specific Languages to facilitate collabo-
ration between bioinformaticians and
bioinformatic engineers.

� Adequate funding for software engi-
neering as part of bioinformatic
research projects.

� Measures to encourage the creation of
bioinformatic engineering companies
to service the needs of smaller research
teams which cannot afford dedicated
internal bioinformatic engineering staff.
Such companies could recruit and
cross-train experienced commercial
software engineers as well as taking up
masters and PhD graduates from the
specialist bioinformatic engineering
curricula we have suggested above.
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