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Abstract: The growing problem of aging has led to a social concern on how to take care of the elderly
living alone. Many traditional methods based on visual cameras have been used in elder monitoring.
However, these methods are difficult to be applied in daily life, limited by high storage space with
the camera, low-speed information processing, sensitivity to lighting, the blind area in vision, and
the possibility of revealing privacy. Therefore, wise information technology of the Med System based
on the micro-Doppler effect and Ultra Wide Band (UWB) radar for human pose recognition in the
elderly living alone is proposed to effectively identify and classify the human poses in static and
moving conditions. In recognition processing, an improved PCA-LSTM approach is proposed by
combing with the Principal Component Analysis (PCA) and Long Short Term Memory (LSTM) to
integrate the micro-Doppler features and time sequence of the human body to classify and recognize
the human postures. Moreover, the classification accuracy with different kernel functions in the
Support Vector Machine (SVM) is also studied. In the real experiment, there are two healthy men and
one woman (22–26 years old) selected to imitate the movements of the elderly and slowly perform
five postures (from sitting to standing, from standing to sitting, walking in place, falling and boxing).
The experimental results show that the resolution of the entire system for the five actions reaches
99.1% in the case of using Gaussian kernel function, so the proposed method is effective and the
Gaussian kernel function is suitable for human pose recognition.

Keywords: elderly care; human pose recognition; feature extraction; PCA-LSTM recognition; gaus-
sian kernel function classification

1. Introduction

The economic consequences of an aging population published by the United Nations
in 1956 established the population classification standard. The number of people aged 65
and above in a country or region is more than 7% of the total population [1]. Japan is a
country with serious aging, and its population has been decreasing for nine consecutive
years. According to the statistics in 2019, the population over 65 years old in Japan is
35.885 million (28.4%) [2]. According to the data released by China’s National Bureau
of Statistics, by the end of 2019, the number of older adults aged 60 and above will
reach 254 million (18.1%), and the number of older people aged 65 and above will reach
176 million (12.6%) [3].

Therefore, in response to the increasingly serious aging trend, people have paid
more attention to monitoring older adults living alone. These elderly people usually take
dangerous actions (such as a sudden fall) that damage their health. The existing methods
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can be divided into wearable and non-contact. The common types of wearable sensors
are bracelet and ankle monitor [4], which needs to be worn close to the body, and there
are some problems, such as low universality, poor portability, high damage rate, single
function, and high false alarm rate. As a traditional non-contact sensor, the camera has
high storage space requirements and information processing ability and is sensitive to
light and other conditions. Both camera and radar observation methods are developed
based on non-wearable devices. Compared with cameras, UWB radar is not restricted
by blocking objects. It can still play a monitoring role outside the visible range of the
camera. In addition, the radar is not affected by light conditions and can still work in dark
environments. This feature can monitor the nocturnal activities of the elderly [5]. Therefore,
we propose a non-contact monitoring device based on UWB radar, which can effectively
solve dim light and blind area problems.

UWB radar uses the Doppler effect to recognize the human posture by the mutual
movement between the human self and the radar. Ref. [6] used continuous wave radar
to extract Doppler features and a trained SVM to recognize seven rhythmic human move-
ments. The accuracy of classification results is around 92.8%. Ref. [7] applied the Doppler
radar to evaluate the Doppler characteristics of human walking, which shows that this
method effectively recognizes the moving human body’s falling posture. In Ref. [8], the
Dynamic Range Doppler Trajectory (DRDT) of human motion was extracted using fre-
quency modulated continuous wave radar. Simultaneously, the DRDT was combined with
the machine learning classification method to separate continuous motion into a separate
motion, and it shows that the average classification accuracy is above 91.9%. In Ref. [9], a
depth convolution neural network (DCNN) was applied to human activity classification
based on micro-Doppler features, and it was transformed into an image classification prob-
lem. Ref. [10] used Doppler radar combined with the DCNN method and transfer learning
method to carry out five kinds of human posture classification and recognition. Ref. [11]
combined the micro-Doppler features with the DCNN method to recognize human hand
posture. Based on the above analysis, human posture recognition based on radar can realize
the classification and recognition of highly similar actions in a simple framework with high
feasibility. Because of its high resolution, intense penetration, and low power consumption,
UWB radar can effectively overcome the lighting and privacy problems of the camera,
ensure all-weather work, and effectively solve the problem that the optical system does not
work well due to occlusion. Thus, it acts as an essential role in the monitoring of the elderly.

We propose the PCA-LSTM algorithm. Principal Component Analysis (PCA) is a
data analysis method. This algorithm transforms the original data into a set of linearly
independent representations of each dimension through linear transformation, which can
be used to extract the main feature components of the data. The PCA algorithm can reduce
the dimensionality of the original complex data. As a result, it can greatly reduce the
complexity of signal processing. Compared with other algorithms, PCA has the advantages
of simplicity and no parameter restrictions. It can be used to extract the characteristics
of the main information components of the signal, which can be used to filter out the
noise contained in the signal. At the same time, it can also be used to combine signal
characteristics. In the classification and recognition of human poses, similar poses will
have some feature vectors with greater correlation. In this case, the PCA algorithm can
merge the highly correlated features into one feature. When the information represented
by the two features is the same, the algorithm can be used to filter out one of the redundant
features. In addition, when there are many signal features and overfitting occurs, the PCA
algorithm can preserve the really useful part of the signal. In order to prevent the features
of similar actions from being too similar to make the feature vectors all integrated, the PCA
algorithm is combined with Long Short-Term Memory (LSTM). The purpose is to solve the
problem of gradient disappearance during long sequence training. The main function of
LSTM is to control the transmission state through the gating state. LSTM can remember
the information that needs to be remembered for a long time and forget the unimportant
information. Although the Recurrent Neural Network (RNN) algorithm can also handle
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sequence-changing data, it only has a single memory stacking method compared with the
LSTM algorithm, and it is not suitable for long-sequence memory tasks. When monitoring
the elderly indoors, the PCA-LSTM algorithm can memorize the slow movements of the
monitored person for a long time and accurately classify them. In addition, unimportant
normal actions are merged and forgotten. Compared with other algorithms, the PCA-LSTM
algorithm has few data processing and improved accuracy.

The main contributes of this paper are twofold. Firstly, an improved algorithm based
on PCA-LSTM is proposed to integrate micro-Doppler features and time-sequence to
recognize human posture. Secondly, the accuracy of different kernel functions in human
posture classification is studied.

The rest of the paper is organized as follows. Section 2 discusses some closely related
work. Section 3 presents the system model and formally states the considered prob-
lem. Section 4 presents the proposed algorithm with theoretical analysis, and Section 5
demonstrates the performance of this algorithm via simulations. Finally, Section 6 briefly
concludes the paper.

2. Related Work

The human posture recognition system based on a UWB radar should include four
essential parts: human echo data acquisition, echo data processing, feature extraction, and
recognition algorithm (see Figure 1). Among them, echo data processing and feature extrac-
tion methods can be divided into three categories. The first method is based on traditional
statistics, including statistical characteristics such as mean and variance of radar echo enve-
lope. The second one is based on time-frequency transform, including Fourier transform
and the short-time Fourier Transform (STFT), pseudo-Wigner distribution (PWD), and
wavelet transform. The third one is based on component analysis, and it mainly includes
the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA).

Figure 1. Human pose recognition model for the UWB radar.

Combined with the UWB radar’s characteristics, according to the different feature
extraction methods, the human posture recognition method is divided into traditional
machine learning and deep learning methods. Firstly, the traditional machine learning
methods are mainly used in human posture recognition, such as SVM, k-Nearest Neigh-
bour (kNN), and Random Forest (RF). These classification and recognition methods are
mainly based on the statistical theory and shallow features extracted from the original



Sensors 2021, 21, 7130 4 of 20

echo data, such as mean, variance, Euclidean distance, Fourier transform [12]. The feature
extraction methods, such as PCA, Discrete Cosine Transform (DCT), and the prominent
shallow features are selected for recognition. Secondly, the method based on deep learning
can effectively avoid the tedious manual feature extraction and selection in the traditional
machine learning methods for UWB radar human posture recognition and improve perfor-
mance. Compared with the traditional machine learning method, it can automatically learn
the effective feature extraction mechanism through the data without manually designing
the feature extraction process. In addition, it can also identify complex human activities
while reducing the processing process. Ref. [13] proposed a classification and recognition
algorithm based on a convolution neural network (CNN). The field of UWB radar human
body recognition has attracted many scholars’ attention, and many derivative network
models have been produced. Ref. [11] used UWB radar to collect micro-Doppler features
of human gesture and then combined with an improved DCNN to recognize ten kinds of
gesture. In the training phase, the 5-fold cross-validation method is used to improve the
model’s generalization ability, and the average recognition rate is more than 90%, but it is
still sensitive to the change of distance and azimuth. In order to solve this problem, [13,14]
extracted three robust features from the pre-processed gesture echo signal and defines a
fitting data algorithm, which detects the periodicity of gesture motion to eliminate the
unexpected motion of hand or body, and achieves 95% accuracy.

For radar signal processing, researchers have proposed using time-frequency analysis
to obtain the information in the signal. Fourier transform and its improvement methods
are the main methods of time-frequency analysis. Ref. [15] reported the efficiency of
the Fourier–Bessel transform and time-frequency-based method in conjunction with the
fractional Fourier transform. The short-time Fourier transform processes the signal by
selecting different window functions. This method can determine the frequency and phase
of the sine wave in the time-varying signal’s local area [16–18]. Wavelet transform (WT) is
also used in radar signal processing. Compared with the Fourier transform, this method’s
transformed base is a wavelet base with limited length and attenuation [19–21]. Ref. [22]
used WT to detect a person’s fall through a radar installed on the ceiling. The WT method
uses wavelet decomposition coefficients of a given scale to determine the time location
where falls may occur. The short-time Fourier transform (STFT) decomposes the entire
time domain process into countless small processes of equal length, and each small process
is approximately stable. After that, Fourier transform is performed on each small process.
Compared with STFT, the wavelet transform replaces the infinitely long trigonometric
function base with a finitely long attenuating wavelet base. This wavelet base can be
translated and stretched so that the signal can be analyzed at different times and different
frequency ranges. However, wavelet transform is not applicable in this situation. If wavelet
transform is used to process the collected data, the choice of wavelet base and the choice
of scale function are different in each action. In addition, after processing the echo data
by using different wavelet bases and scale functions, the comparability of the obtained
attitude features will be reduced. In contrast, since the posture of the elderly changes
slowly, the signal in each window can be regarded as a relatively stable signal when using
STFT. Furthermore, the feature vectors obtained by STFT are more comparable.

The classification method is used to classify different poses after obtaining the time-
frequency information and micro-Doppler features of different human body movements.
Researchers have developed a variety of classification methods for high-dimensional data.
The KNN method is one of them. Ref. [23] used the KNN algorithm to classify poses
based on the ratio and difference of the human contour bounding box. Hämäläinen M.
et al. combined the KNN algorithm with UWB radar to detect the posture of the human
body without camera surveillance. Furthermore, they also analyzed the reliability and
fault tolerance of the UWB radar network framework. The experimental results show that
the accuracy of the system can reach 99% for the static posture of the human body [24].
Besides, the SVM is also widely used in classification scenarios. Ref. [25] used SVM to
classify heel acceleration and plantar pressure data to determine whether the human body
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is in a sedentary posture. Mizumoto T. et al. [26] combined the RF algorithm and Kinect
sensor with a microbehavior sensing system. This system can identify microbehaviors by
extracting features from data. The accuracy rate can reach 78%.

Currently, the comprehensive systems that integrates data collection, hardware im-
provements, and classification methods to classify human posture has attracted the atten-
tion of many researchers. Sizhe An et al. [27] developed an intelligent medical assistance
system based on millimeter waves. The main purpose of the system is to allow those
with movement disorders to recover from sports. In rehabilitation treatment, patients are
required to perform standard actions to achieve the purpose of rehabilitation. The judg-
ment of whether the movement is standard or not requires very precise joint positioning to
be realized. However, the high-precision action judgment increases the complexity and
manufacturing cost of this system. Furthermore, the system used in this article needs to be
additionally equipped with Nvidia Jetson Xavier-NX to work. This is inconsistent with
the purpose of monitoring the elderly. Sengupta A et al. [28] tracked human bones. The
authors used the reflected signals of millimeter wave radar to detect 15 different bone
joints. The main actions proposed are focused on the changes in the bones of the upper
limbs of the human body, such as the swinging of the arms, and the CNN algorithm is
used to structure the image according to the information of the radar echo. However, this
article focuses on the change of the overall posture of the human body. When monitoring
the elderly, the overall posture of the human body is not judged by the changes of several
joints. Xue H et al. [29] used millimeter-wave radar and motion capture technology to
perform 3D real-time modeling of the human body’s active posture. The posture of the
human body obtained in this article is very delicate. In addition, it can be presented on
the computer in real time through a motion capture system. However, the VICON motion
capture system used in the article requires huge space and requires the assistance of a
camera, so it is not suitable for home use.

3. System Model and Problem Statement

Most human pose recognition and classification methods use cameras and optical
sensors to collect data to determine the real-time human poses. However, dark light and
long acquisition distance lead to inaccurate fusion data. Radar has the advantages of fewer
restrictions and high accuracy in acquiring human posture data. As a result, there is no
need to attach other equipment to the human body to collect real-time posture data. In
addition, cameras collect data in the form of images or videos. Compared with radar,
cameras are more likely to leak the privacy of the monitored person. Radar collects echo
data directly, so privacy and confidentiality are better. We propose a human posture
recognition method based on UWB radar, and the structure of the proposed system is
shown in Figure 2:

1. UWB radar is responsible for collecting human posture data, including: from
standing to sitting, from sitting to standing, walking in place, falling, periodic boxing. The
dynamic motion of the human body relative to radar produces the Doppler effect. The
echo data collected by radar is converted into time-frequency data by STFT, which reflects
the movement characteristics of the human body.

2. Six motion features of the human body are extracted according to the Doppler shift
and micro-Doppler features of the human body, and these six features are saved as vector
form. The system classifies the human pose and studies the classification and selection
of different kernel functions in SVM. As a result, this system can obtain the appropriate
kernel function for indoor human posture recognition.

3. The collected data and data sets are trained to evaluate the accuracy of recognition
and classification.
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Figure 2. The structure of human pose classification and evaluation.

When the signal is transmitted to the target, a part of the energy of the signal will be
reflected by the scatterer constituting the target and be observed by radar. Joseph Keller [30]
believes that when the operating frequency of the radar is high enough, the scattering be-
havior of complex targets can be succinctly modeled as the sum of the scattering responses
based on a simple scattering mechanism. Therefore, the physical correlation model of the
measured radar echo S(ω, k) can be constructed [31].

S(ω, k) =
NS

∑
m=1

SΓm(ω, k; θm(k))e−j 4πω
c rm(k) + v(ω, k) (1)

where NS is the order of the model; SΓm(.) is the scattering behavior model of type Γm,
which is a function of the sampling frequency ω and the number of pulses k and has a
parameter θm(k). During the pulse k, the distance of the m-th scatterer is rm(k), c is the
speed of light, and v(ω, k) is the additional white Gaussian noise. The observation result
is the accumulation of k = 1, 2, 3, . . . , Nk pulses and n = 1, 2, 3, . . . , NF radar echo signals
with frequencies ωn. When the object characteristics of the target are much smaller than the
resolution of the radar, it is sufficient to limit the above equation to the sum of point type
scatterers. Without considering the inaccuracy and unambiguously estimated free variables,
the scattering behavior model can be simplified as SΓm(ω, k; θm(k)) = Am(k). Thus,

S(ω, k) = Am(k)e−j 4πω
c rm(k) + v(ω, k) (2)

where Am(k) is the scattering coefficient of the m-th feature on pulse k. Therefore, the
human body can be regarded as many point scatterers propagating in space. Through the
STFT of the observed radar echo signal, the distance can be directly connected with the
Doppler effect.

When the human body moves, the UWB radar receives the echo signal, which contains
the motion information of the human body, in which the Doppler shift reflects the speed of
human movement. Based on the time-frequency analysis of the echo signal of human mo-
tion, the micro-Doppler characteristic data are obtained. The normalized energy, variance,
skewness, and kurtosis of the radar echo of human motion are used to distinguish human
motion behaviors: from sitting to standing and from standing to sitting. We mainly use the
PCA method to reduce dimensions according to the mean value, variance, and speed of
PCA coefficients and recognize human actions: walking, falling, sitting, and boxing. The
following six micro-Doppler features is used to express human motion posture, including:
Torso Doppler Frequency, Total Bandwidth (BW) of the Doppler Signal, Total Doppler
Signal Offset, Torso Doppler Frequency Offset, BW of the Doppler Signal Without Offset
and Standard Deviation (STD) of Normalized Doppler Signal Strength, in which Torso
Doppler Frequency is the average frequency corresponding to the maximum energy of each
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frame in the radar echo signal and Total BW of Doppler Signal represents the movement
of the human body. The highest and lowest frequencies of each time window constitute
the high-frequency and low-frequency envelopes. It is the average difference between
the low-frequency envelope’s minimum frequency and the high-frequency envelope’s
maximum frequency. Total Doppler Signal Offset is the mean of the minimum frequency of
the low-frequency envelope and the maximum frequency of the high-frequency envelope.
Torso Doppler Frequency Offset is the average of the maximum and minimum trunk fre-
quency. Bandwidth of Doppler Signal Without Offset is the average difference between the
maximum frequency of the low-frequency envelope and the minimum frequency of the
high-frequency envelope, which can describe the up and downswing of the human torso.
Standard Deviation (STD) normalized Doppler Signal Strength represents the interaction
between human motion and micro-Doppler radar.

Because of human motion signals’ non-stationary, non-linear and instantaneous charac-
teristics, it is not easy to obtain the parameters that can effectively describe and distinguish
the complex and changeable motion signals by simple time-frequency transformation.
Therefore, the second feature is mainly extracted from the time spectrum through the time-
frequency analysis of the radar echo signal of human motion. For example, the spectral
features of STFT are used for motion state recognition.

In general, there are many kinds of motion signal eigenvalues. Different extraction
methods and complexity will lead to different operation times. In addition, the classification
accuracy changes with the feature selection. Therefore, in classifying human motion state
recognition, it is of great significance to select the appropriate feature value according to
the motion signal’s characteristics to improve the accuracy of recognition and classification.

Problem Statement: Aiming at the problems of low recognition rate when using
time-frequency analysis in human pose recognition, the problems considered are as fol-
lows: (1) for the PCA method, the feature extraction needs to be improved; (2) for the
SVM classification model, the kernel function needs to be selected suitably for human
pose recognition.

4. Proposed Recognition and Classification Method
4.1. Recognition Algorithm (PCA-LSTM)

In traditional recognition methods, the PCA method plays an important role in shal-
low feature recognition, but the success rate of recognition is low. In Ref. [32], the energy
distribution characteristics of UWB radar signals of eight human postures are extracted by
wavelet packet decomposition method, and the parameters C and σ of SVM are optimized
by using improved chaos adaptive genetic algorithm (ICAGA). The recognition rate can
reach 97.6%. In Ref. [33], the concept of feature energy based on PCA and DCT is proposed.
In the model training stage, the parameters C and σ are optimized by using the grid search
algorithm (GS). It can be shown in final verification that when (C, σ) ∈

(
2−5, 25

)
, the

recognition rate reaches around 96.09%; when (C, σ) ∈
(
2−8, 28

)
, the rate is about 98.04%,

and the average rate is above 96%. Human pose recognition based on the traditional ma-
chine learning method extracts many shallow features, but it is still a problem whether the
extracted features can ultimately benefit recognition. The diversity of shallow features will
potentially increase the redundancy between different features and reduce the recognition
accuracy. Therefore, the key points are the analysis of echo signals, feature extraction, and
feature selection.

In order to combine the advantages of LSTM and PCA methods, we propose a dual-
channel feature extraction model of LSTM-PCA, a human posture recognition method
based on a dual-channel feature extraction model of the LSTM model. The PCA features
combined with time cycle characteristics cast an essential role in improving human posture
recognition accuracy. The period parameters are added to the original six features, which
can extract the spatiotemporal features of human posture and complete the recognition
of human posture. As shown in Figure 3, the PCA-LSTM dual-channel human posture
recognition fusion model mainly includes three parts: the first part is composed of PCA,



Sensors 2021, 21, 7130 8 of 20

mainly used for extracting six features of human posture; the second part is composed of
LSTM, which is mainly used to extract the radar data sequence features; the third part is
feature fusion. SVM, PCA, and LSTM theory are combined to extract features and classify
human posture. Therefore, a new micro-Doppler feature Time Sequence is added into
the system.

Figure 3. PCA-LSTM dual-channel human pose feature extraction.

4.2. Classification Algorithm

Although Doppler features can identify human motion features with apparent differ-
ences, approximate differences cannot be distinguished. This paper proposes a method to
classify six human activities based on SVM to calculate Doppler features. Support vector
machine uses the kernel function to transform sampling data into high-dimensional space.
It optimizes the training data according to the support features. Next, SVM generates the
corresponding model according to the known class name. The structure of SVM is shown
in Figure 4.

Assume that there is a data set [(xi, yi)], xi ∈ R, i ∈ N, yi ∈ (−1, 1), where yi is the
output of the system, and xi can be linearized in ωTxi + b = 0, ω is the weight vector, b is the
optimal classification surface offset. Therefore, by constructing the optimal classification
surface of the original sample space, it can be expressed as a kind of constrains with
minω,b

1
2 ωTω in (3).

minω,b(θ(ω)) = minω,b

(
1
2 ωTω

)
s.t.yi

(
ωTxi + b = 0

)
− 1 ≥ 0

(3)

If the original input space is transformed into a new high-dimensional feature space
by introducing a kernel function k(x, xi) in linearly nonseparable, a linear classification
hyperplane is constructed in the new feature space. This characteristic space is determined
by φ(x), and its inner product operation is replaced by kernel function, that is, k(x, xi) =
〈φ(x), φ(xi)〉.
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Figure 4. The SVM classification structure.

Some sample data points will deviate from the normal position in the new feature
space and can not meet the constraint conditions. At this time, we can introduce a penalty
factor C and add a relaxation term ξi to relax the constraint conditions of linear separability
so that the linear non-separability becomes linear separability. Therefore, (3) can be rewrit-
ten as (4). Moreover, (4) is a convex quadratic optimization problem. In order to solve this
problem, the Lagrange function of this optimization problem is defined in (5).

minω,b(θ(ω)) = minω,b

(
1
2 ωTω + C

N
∑

i=1
ξi

)
s.t.yi

(
ωTxi + b = 0

)
+ ξi ≥ 1

(4)

L(ω, b, ξ, α, u) = 1
2 ωTω + C

N
∑

i=1
ξi

−
N
∑

i=1
αi[yi(ω

Txi + b)− 1 + ξi]

s.t.αi, ui ≥ 0

(5)

where ai denotes the Lagrange multipliers and it is positive definite. By solving the dual
problem equivalent to the original problem, the optimal solution of the original problem is
obtained in (6).

E(α) =
N
∑

i=1
αi − 1

2

N
∑

i=1,j=1
αiαjyiyj

(
xixj

)
s.t.

N
∑

i=1
αiyi = 0

s.t.0 ≤ αi ≤ C

(6)

where (6) can transform the linear non-separable problem into a linear separable problem,
which only needs the maximum value of solution E(α). On the premise of choosing the
appropriate value of the kernel parameter σ, increasing the penalty factor C can make
the separability of the data tend to be stable, otherwise the generalization ability will be
reduced. Therefore, the selection of kernel parameter σ and penalty factor C is significant.
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4.3. Kernel Function in SVM

The human pose recognition method focuses on the improvement of feature extraction
and optimization of the SVM model. The kernel function plays a significant role in SVM
classification, so it is necessary to study different kernel functions. The kernel function
is used to measure the similarity between samples. The expressions of several standard
kernel functions are given in Table 1.

Table 1. Kernel function in SVM.

Kernel Function Expression Limitation

Linearity k(x, xi) = (x, xi)

polymerization k(x, xi) = (x · xi + 1)σ σ > 0

Gaussian k(xi, x) = e−
γ‖xi−x‖2

2σ2 γ, σ > 0

Laplace k(xi, x) = e−
γ‖xi−x‖2

σ γ, σ > 0

Sigmoid k(xi, x) = than(βx · xi + γ) β, γ ∈ R

5. Experiment Results and Analysis
5.1. Radar and Scene Settings

The XeThru-X4 radar is used as a compact on-chip pulse radio UWB radar. The radar
sends out electromagnetic pulses through the Tx antenna, and the electromagnetic pulses
will be reflected from any object in front. As a result, reflective objects will propagate
backward. The ultra-wideband radar model used in this experiment is XeThru X4M03. It
is a baseband narrow pulse radar (IR-UWB). This type of ultra-wideband radar uses the
module communication protocol wrapper protocol. MCP Wrapper goes one step further
for embedded host implementation adding a wrapper with convenience methods around
the MCP. The pulse is set to 15.1875 MHz, and the radar elevation is 2 m. The range
of digital to analog converter (DAC) is set to 949–1100. Simultaneously, the number of
iterations of the radar repeat DAC scan is set to 64.

It can be seen from Figure 5 that the test scene is built and attached to the absorbing
materials to isolate the environmental noise. The training data set is a total of 225 sets of
data. There are three testers, each of whom did 15 sets of actions. Informed consent was
obtained from all subjects involved in the study. The test data set consists of three people
doing five sets of each action, a total of 75 sets of testing data. Each tester stood 1.5 m
directly in front of the radar. The specific situation is analyzed and compared at the end of
the experiment. The five movements selected in this article are from sitting to standing,
from standing to sitting, walking in place, falling, and boxing. In the first classification, they
are divided into three groups according to the complexity of the action. The three sets of
human postures are compared separately according to radar echo signals in the following
experiment. Standing and sitting are the most basic postures of the human body. The
elderly are more likely to fall when performing this set of postures. Boxing and walking in
place are manifestations of the elderly who are sick or in need of help. This set of postures
can help monitors to distinguish whether the elderly are in a dangerous. The schematic
diagram of data collection is shown in the figure below.

5.2. Human Pose Recognition Analysis

This subsection mainly compares and analyzes the recognition of human posture. The
comparative analysis between two types of data sets, including public data set based on
vision and test data set based on UWB radar. The data set based on vision is rich, including
simple actions to complex actions, and the sample size is large enough. Compared with
the visual data set, the open data set based on UWB radar is less. Therefore, in the actual
experiment, the UWB radar collected 225 groups of human movements. Figure 6 compares
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the human posture recognition rate performance in different data sets and compares the
sample size in different data sets. It can be intuitively concluded that the current research
on human posture recognition using UWB radar is based on self-test data sets, and the
recognition rate based on time-frequency analysis is relatively high, with an average of
more than 85%. In addition, the sample size based on vision is relatively large, but the
sample size of human pose recognition based on UWB radar is generally small.

Figure 5. Schematic diagram of radar setting in the experimental environment.

Figure 6. Schematic diagram in human pose recognition analysis [34–38].

5.3. Human Pose Classification Analysis

After setting up the radar and experimental environment, it can collect pose data from
the radar. There are three groups to analyze and make the comparison: the first group is
the action from sitting to standing and the action from standing to sitting; the second group
is walking in place and falling actions; finally, the third group is the boxing action. Each
action can be divided into six processing, including: (a) the original data, (b) frequency
spectrum diagram before noise reduction, (c) frequency spectrum diagram after noise
reduction, (d) action interval, (e) body frequency, (f) compensation.

Now, we analyze the first scenario: sitting and standing in Figures 7 and 8. It mainly
lies in the time interval of action and the direction of trunk movement. Observe whether it
is close to radar or far away from the radar. Furthermore, the movement of the tester in the
test should be adequately described.
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Figure 7. Schematic diagram from sitting to standing. (a) The original data.; (b) Frequency spectrum
diagram before noise reduction; (c) Frequency spectrum diagram after noise reduction; (d) Action
interval; (e) Body frequency; (f) Compensation.

When classifying the two actions from sitting to standing and from standing to sitting,
some differences can be seen from the time-frequency analysis graph. Firstly, the time
difference between the rise and fall of the waveform is shown from the original radar
echo data (Figures 7a and 8a). Figure 7a shows that the waveform’s peak-to-peak value
starts to increase after the start of detection, then begins to decrease after reaching the
maximum value, and finally stabilizes and fluctuates within a specific range. Compared
with standing, in Figure 8a, the waveform remains stable initially, and then the peak-to-
peak value of the waveform gradually increases until it reaches the maximum and stays
near the maximum. Secondly, in the spectrogram (Figures 7c and 8c) after noise reduction,
the difference between the two actions is also apparent. In Figure 7c, the frequency is
mainly concentrated in the time window 550 ms position, while in Figure 8c, the frequency
is mainly concentrated in the 100 ms position. Besides, in the torso frequency diagrams
of the two actions (Figures 7e and 8e), the rate of change of the torso from bending to the
upright in the second half of the action is the largest when the sitting action occurs. The
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torso frequency peak occurs in the second half of the time window. In contrast, when the
standing action occurs, the torso frequency peak is in the first half of the waveform.
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Figure 8. Schematic Diagram. (a) The original data; (b) Frequency Spectrum Diagram Before Noise
Reduction; (c) Frequency spectrum diagram after noise reduction; (d) Action interval; (e) Body
frequency; (f) Compensation.

Then, walking in place and falling become the second scenarios in Figures 9 and 10.
The original radar echo data (Figure 9a) shows that walking in place is a periodic

action, and the waveform of the radar echo shows prominent periodic characteristics.
However, the instantaneous falling action makes a significant fluctuation in the radar
echo’s original waveform (Figure 10a). Signal rapidly decreases to reach a steady state
after a peak quickly. Besides, the movement occurrence interval (Figure 9d) also shows
the periodic characteristic of walking in place. In contrast, in the falling motion occurrence
interval (Figure 10d), the motion only occurs in 140 ms to 240 ms. Furthermore, the
spectrogram of walking in place (Figure 9c) shows that the action period is about 150 ms,
and the frequency distribution is uniform. However, the frequency is concentrated between
140 ms and 240 ms, and the action is instantaneous in the spectrogram of falling, shown
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in Figure 10c. In addition, due to the periodic movement of the torso that is walking in
place, the torso’s frequency also changes periodically with the body swinging back and
forth (Figure 9e). The fall action’s torso frequency shows a drastic change in the process
from leaning the body to lie on the ground and then gradually returns to a stable state
(Figure 10e).
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Figure 9. Schematic Diagram in walking in place. (a) The original data; (b) Frequency spectrum
diagram before noise reduction; (c) Frequency spectrum diagram after noise reduction; (d) Action
interval; (e) Body frequency; (f) Compensation.

Now, the third scenario is the boxing action in Figure 11. The boxing action is periodic.
The action occurrence interval is shown in Figure 11d, and the raw radar echo data can be
shown in Figure 11a. However, the spectrogram after noise reduction reflects in Figure 11c,
in which each action cycle shows the characteristics of a large frequency concentration
interval. This is because the arm will rotate by itself during the having action, and multiple
frequencies will be superimposed. The movement situation is simple. This makes the
frequency concentration interval in the spectrogram of the boxing action less. Furthermore,
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in Figure 11e, the torso frequency of boxing changes faster. This is because boxing is
complicated and involves many movements of the torso.
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Figure 10. Schematic Diagram in falling. (a) The original data; (b) Frequency spectrum diagram
before noise reduction; (c) Frequency spectrum diagram after noise reduction; (d) Action interval;
(e) Body frequency; (f) Compensation.

5.4. Kernel Function Comparison Analysis

There are 225 sets of test data substituted into the model for classification. Let define 0
to 4 be standing, sitting, walking in place, falling, and boxing, respectively.

In the results of different classification methods, the substituted data are the feature
vector of each group of actions. The abscissas and ordinates have no specific physical
meaning, and the numbers only represent the scale of the feature vector in the classification
process. Four different classification methods are used for data training and classification
after obtaining five human body posture feature data. Figure 12a–d are the results of
various classification methods. The shape of the points in each figure represents whether
the classification is accurate. The dot indicates that the data classification result is consistent
with the original data category it represents, and the fork point indicates that it does not
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match. Figure 12a–d show that both the decision tree and KNN classification methods
have more fork points. The accuracy of data classification is not high. In contrast, Gaussian
SVM and Gaussian Naive Bayes’ classification methods only have two sets of data errors.
However, in Figure 12a, there are two fork points of yellow and blue. It shows that when
the train data uses the Gaussian Naive Bayes classification approach, the same real class
data are mistakenly divided into two prediction classes. Compared with Figure 12b, there
are two yellow fork points in Figure 12c. It shows that fundamental data are erroneously
divided into prediction data when using the Gaussian SVM method. Moreover, Table 2
shows the different classification accuracy in Decision Tree, Gaussian Bayes, Gaussian SVM
and KNN. Therefore, the Gaussian SVM is stable, and it does not classify the same human
posture into two different human postures.
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Figure 11. Schematic Diagram in boxing. (a) The original data; (b) Frequency Spectrum Diagram
Before Noise Reduction; (c) Frequency spectrum diagram after noise reduction; (d) Action interval;
(e) Body frequency; (f) Compensation.
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Table 2. Classification Comparison in Decision Tree, Gaussian Bayes, Gaussian SVM and KNN.

Classification Decision Tree Gaussian Naive Bayes Gaussian SVM KNN

Accuracy (%) 98.2 98.7 99.1 80.4
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Figure 12. Classification models in Decision Tree, Gaussian Bayes, Gaussian SVM and KNN. (a) Deci-
sion Tree; (b) Gaussian Naive Bayes; (c) Gaussian SVM; (d) KNN.

When studying Gaussian SVM’s use to classify human pose information, we intro-
duced linear SVM classification methods for comparison. It can be seen from Figure 13a
that the linear SVM classifies the same kind of real data into two different prediction data,
and the linear SVM is not as good as Gaussian SVM for the classification of human body
pose data. However, the Gaussian SVM has different classification results due to different
kernel scale choices in the kernel function. In Figure 13b, when the kernel scale is selected
to be small, over-fitting is prone to occur. The support vector sample’s effect increases, but
the unknown sample classification effect is inferior because there are multiple fork points
in Figure 13c. However, when the kernel scale is large, under-fitting is prone to occur.
SVM can classify sample data into the same type of data, which results in a set of data in
Figure 11 that was initially purple (walking in place) was incorrectly classified as yellow
(boxing). Compared with the above two nuclear scales’ values, an appropriate kernel scale
selected in Figure 13d can more accurately classify all data using Gaussian SVM. Moreover,
Table 3 shows the Classification Comparison in SVM with Different Kernel Scale. The
wrong data are classified incorrectly due to the tester’s action error, which is acceptable.
The accuracy rate reached 99.1%.
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Table 3. Classification comparison in SVM with Different Kernel Scale.

SVM Kernel Function Accuracy (%) Training Time (s)

Linear SVM 98.7 6.4463
σ = 0.61 93.8 6.0121
σ = 2.40 99.1 7.4784
σ = 9.80 97.1 7.3990
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Figure 13. Classification models in SVM with a different kernel scale. (a) Linear SVM; (b) Gaussian
σ = 0.61 (SVM); (c) Gaussian σ = 2.40 (SVM); (d) Gaussian σ = 9.80 (SVM).

6. Conclusions

In this experiment, the PCA-LSTM algorithm combined with the SVM classification
method is used to classify and recognize the human posture. In order to prevent the
elderly from physical damage during data collection, two healthy males and one female
(22–26 years old) were selected in this experiment to perform five postures while imitating
the slowness of the elderly. In the experiment, it was found that the movement speed of
the measured object and the degree of similarity of the movement are the limitations of
this experiment. In the data collection for similar postures from standing to sitting and
from sitting to standing, the person under test will slow down the movement and increase
the movement range of the body. The main bone joints on the leg are all driven and move
at a very slow speed. However, this group of similar postures can still be distinguished
according to the direction of movement of the torso and this result also proves that this
system still has a certain degree of robustness under the disturbance of similar postures.

The most influential factor in this experiment is except for the action of the tested
object. The position of the radar also has a greater impact on the data of this experiment.
The radar is placed directly in front of the measured object and the height is at the position
of the chest and abdomen of the human body. This height allows the UWB radar used
this time to collect the information of the measured object’s movement to the greatest
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extent within its radiation angle range. Although the data collected when the angle of view
deviates from the front of the radar are very similar to the results obtained from the data
directly in front, the change of the angle causes the feature vector to change and needs to
be retrained.

In future research, we will focus our research on the detection and classification of
posture when the action changes slowly. As the elderly move slowly indoors, they will
slowly fall to the ground and sit down when they have symptoms. At present, the detection
of this situation can only be observed by the camera and cannot be determined by the radar.
Research in this area will be the focus of our future research.
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