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Abstract

Oncogenesis and cancer can arise as a consequence of a wide range of genomic aberrations including mutations, copy
number alterations, expression changes and epigenetic modifications encompassing multiple omics layers. Integrating
genomic, transcriptomic, proteomic and epigenomic datasets via multi-omics analysis provides the opportunity to derive a
deeper and holistic understanding of the development and progression of cancer. There are two primary approaches to
integrating multi-omics data: multi-staged (focused on identifying genes driving cancer) and meta-dimensional (focused on
establishing clinically relevant tumour or sample classifications). A number of ready-to-use bioinformatics tools are
available to perform both multi-staged and meta-dimensional integration of multi-omics data. In this study, we compared
nine different integration tools using real and simulated cancer datasets. The performance of the multi-staged integration
tools were assessed at the gene, function and pathway levels, while meta-dimensional integration tools were assessed
based on the sample classification performance. Additionally, we discuss the influence of factors such as data
representation, sample size, signal and noise on multi-omics data integration. Our results provide current and much needed
guidance regarding selection and use of the most appropriate and best performing multi-omics integration tools.
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Introduction

Alterations in the genetic make-up of a cell, such as mutations,
copy number aberrations and epigenetic changes, can all drive
the development of cancer [1]. Copy number aberrations, which
involve the gain or loss of genomic DNA, contribute to oncoge-
nesis and tumour progression by activating oncogenes or inac-
tivating tumour suppressor genes [2]. Epigenetic mechanisms
including methylation of cytosine bases play crucial roles in
regulating gene expression during normal mammalian develop-
ment. However, disruption of such regulatory mechanisms can
cause hypermethylation or hypomethylation of gene promoter
regions and can lead to silencing of critical tumour suppressor
functions [3].

Despite these well-understood mechanisms, two major chal-
lenges remain for the studies of oncogenesis. The first chal-
lenge is the identification of genes and aberrations that serve
as drivers for disease development, which is complicated by
the evolutionary nature of the disease and the presence of
passenger aberrations that do not contribute to disease devel-
opment [4]. Identification of such genetic modulating factors
can shed vital light on the underlying molecular mechanisms
of disease. The second challenge is the stratification of samples
or patients to discover clinically relevant molecular subtypes or
treatment groups that can aid in improved patient prognosis and
treatments. Conventional approaches to identify driver genes
involve performing differential analyses using individual ‘omics’
datasets (such as identification of differentially expressed genes
or methylated regions) [5], while approaches to identify relevant
patient or disease subtypes involve concatenation of the individ-
ual omics datasets followed by classification using techniques
such as Random Forests [6] or clustering of clusters obtained
from individual omics datasets [7]. However, such analyses fail
to provide insight into the interactions between the different
regulatory systems encapsulated by different omics data types.

Multi-omics data integration allows the joint analysis of mul-
tiple omics data types to provide a global view of the biolog-
ical system and offers insights into the nature of the inter-
actions between the different dataset layers. As cancer is a
heterogeneous genetic disease, it is imperative that such multi-
omics data integrations be performed in order to fully appre-
ciate the complex inter-layer regulatory interactions governing
the development and progression of this disease. Decreasing
costs and technological advancement have enabled the multi-
platform sequencing of thousands of tumours by consortia such
as International Cancer Genome Consortium [8] and The Cancer
Genome Atlas (TCGA) [9], driving a shift towards integrative
multi-omics investigations of cancer.

Multi-omics integration strategies commonly employed to
address the aforesaid challenges can broadly be classified
into two types: multi-staged and meta-dimensional integrative
approaches [10]. Multi-staged integration (also known as linear
integration or sequential integration) is based on the linear
hypothesis that variations in DNA lead to changes in gene
expression levels, which in turn cause protein expression
changes leading to diseases or phenotypic changes [11]. This
approach models the relationship between two given omics
data types as linear and hierarchical. The objective of this
approach is to uncover cause–effect links (cis relationships),
such as the effects of copy number aberration on the expression
of the affected gene. Tools that employ multi-staged integration
approaches perform gene-centric integration in order to uncover
the potential driver genes and help understand the effects
of the interplay between different gene regulatory levels on

oncogenesis and cancer progression. There are numerous
ready-to-use tools available which employ this approach,
including CNAmet [12], iGC [13], PLRS [14], Oncodrive-CIS [15]
and MethylMix [16].

Meta-dimensional integration (or simultaneous integration)
is based on the hypothesis that interactions between the mul-
tiple biomolecular layers are non-hierarchical and complex [17].
This approach involves the simultaneous fusion of information
derived from two or more omics data types and is commonly
applied for problems such as tumour subtype discovery [18–20],
biomarker identification [21] and the exploration of perturbed
signalling pathways [22]. The integration is performed at sam-
ple level, and commonly used tools include SNF [23], BCC [24],
iClusterPlus [25] and mixOmics [26].

Given the increasing availability of multi-omics datasets and
the continuous development of analytical approaches and objec-
tives, novel multi-omics integration tools are continuously being
developed, and selection of the most appropriate and best per-
forming integration tool from the numerous tools available can
be a tedious and time-consuming task. Although previous com-
parative studies have investigated the performance of multi-
omics integration tools, they have focused only on either the
multi-staged or the meta-dimensional approaches and often
failed to investigate the effects of gene (or feature) selection
[27], influence of dataset size [28] and multi-class classification
[29]. To bridge these knowledge gaps, in this article we present
an overview of both the multi-staged and meta-dimensional
integration tools currently available and conduct a systematic
evaluation of these tools based on their performance. The multi-
staged integration tools were evaluated based on their ability to
identify cancer-associated genes, functional Gene Ontology (GO)
terms and relevant pathways, while the meta-dimensional inte-
gration tools were evaluated based on their sample classification
performance. Overall, our study is intended to aid users in the
selection of tools for multi-omics integrative analyses.

Methods
Five multi-staged (CNAmet, iGC, PLRS, Oncodrive-CIS and
MethylMix) and four meta-dimensional (SNF, BCC, iClusterPlus
and mixOmics) tools were compared in this study and are
summarized in the following sections and in Tables 1 and 2,
respectively.

Multi-staged integration tools

This study assessed the performance of the CNAmet, iGC, PLRS,
Oncodrive-CIS and MethylMix tools designed to carry out the
multi-staged integration. A generalized workflow implemented
in these tools to achieve integration and identify driver genes
involves quantification of the strength of the cause and effect
association between aberration in the DNA (copy number and
methylation aberration) and mRNA expression at the gene level,
using a statistical approach followed by correction for multiple
hypothesis testing in order to identify the statistically significant
genes. The statistical approaches include variations of linear
regression techniques [30], Student’s t-tests [13] and correlation
tests [16].

While iGC, PLRS and Oncodrive-CIS tools attempt to discover
the genes that have dysregulated expression due to copy number
change by integrating copy number and gene expression data,
the MethylMix tool integrates methylation and gene expression
data to identify the genes for which expression is influenced by
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Table 1. Summary of multi-staged integration tools used in this study

Tool Omics data Input Output Method Reference

CNAmet CN, ME and GE Gene-level CN and/or ME as
binary matrices and GE
matrix

Weights, scores and
associated P-values, and FDR
for each gene

Independent association of
the omics using
signal-to-noise ratio
weights followed by
combining weights to
obtain a score

[12]

iGC CN and GE Gene-level segmented or
thresholded CN and GE
matrices

List of genes for which
expression is driven by
amplification and deletion
with associated P- and FDR
values

Student’s t-test with
unequal variance

[13]

PLRS CN and GE Gene-level GE, CN,
thresholded CN with CN call
probabilities (optional)
matrices

Spline coefficients of the
model fitted for the genes,
P-values and FDR values

Piecewise linear regression
splines

[14]

Oncodrive-CIS CN and GE Gene-level GE matrix and
thresholded CN

Scores for each gene that
represent the bias towards
expression dysregulation due
to copy number change

Estimation of impact of CN
change on GE followed by
estimation of standard
scores of the impact in
tumour and normal
samples and finally
combining the standard
scores

[15]

MethylMix ME and GE Probe-level or gene-level ME
and gene-level GE matrices

List of transcriptionally
predictive and differentially
methylated genes

Linear regression followed
by modelling using beta
mixture model

[16]

CN, copy number; GE, gene expression; ME, methylation.

Table 2. Summary of meta-dimensional integration tools used in this study

Tool Omics data Input Output Method Reference

SNF Any omics Matrices of the omics data Cluster assignments of
samples

Weighted similarity
network fusion

[23]

BCC GE, ME, miRNA,
proteomics

Matrices of the omics data Adherence values and cluster
assignments of samples for
multi-omics clustering and
individual omics clustering

Bayesian clustering
based on Dirichlet
mixture model

[24]

iClusterPlus Any omics Matrices of the omics data Cluster assignments of
samples and multi-omics gene
signature

Joint modelling
followed by feature
selection using lasso

[25]

mixOmics Any omics Matrices of the omics data
and the labels associated
with samples

Prediction of class labels for
test data and multi-omics gene
signature

Sparse generalized
canonical correlation
analysis. Feature
selection using lasso

[26]

GE, gene expression; ME, methylation.

methylation status. The CNAmet tool is capable of modelling
both the combined as well as independent effects of a given
gene’s copy number and methylation status on its expression. In
this study, we used the CNAmet tool to identify the independent
effects of the copy number and methylation aberrations on
the gene expression. Table 1 summarizes the details regarding
the reviewed multi-staged integration tools (see Supplementary
Data section for more details).

Meta-dimensional integration tools

The meta-dimensional integration tools assessed in this study
include the SNF, BCC, iClusterPlus and mixOmics. These tools

employ one or more mathematical techniques including matrix
factorization, correlation, Bayesian, network and transformation
[31, 32], for the simultaneous integration of multiple omics data
types.

The SNF tool integrates multi-omics data using transformation-
based network fusions. Briefly, each omics data type is
transformed into a network wherein the nodes represent
samples and weighted edges represent the similarity between
the samples. Next, these individual networks are fused into
a single network using message-passing theory method [33],
where high similarity edges between the samples in one or
more omics data types are retained, and inconsistent low
similarity edges are removed. Finally, the subtypes are estimated
using a spectral clustering method. However, the SNF tool does
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not provide the users with the information on the important
features responsible for the observed subtypes. The BCC tool
performs Bayesian consensus clustering based on an extended
Dirichlet mixture model for multiple omics data types. This
method assumes that there is a separate clustering observed in
each omics data type and that these clusters adhere loosely to an
overall clustering. Although this method provides information
regarding similarity between clusters of independent omics
data types and the consensus clustering through adherence
parameter (α), this method does not convey the important
genes associated with the clustering. The iClusterPlus tool
performs model-based matrix factorization integration. Here,
each omics data type is decomposed into a components factor
and a loading factor based on different modelling assumptions
for different omics data types. The components factor represents
the common latent cancer subtypes, and the loading factor rep-
resents the gene features. The important features are selected
using lasso regularization [34], and the clusters are identified
using a K-means clustering algorithm. The mixOmics tool also
employs a matrix factorization-based method, which extends
the sparse generalized canonical correlation analysis to a
supervised classification problem. Here, the correlation between
the components factors is maximized and projected to a smaller
dimensional space, and the important features are selected by
lasso regularization [34]. The SNF, BCC and iClusterPlus tools
perform an unsupervised classification of the integrated multi-
omics data that are effective for data exploration and discovery
of novel subtypes, while the mixOmics tool performs supervised
classification in which the sample subtype is also provided as
an input during integration. Table 2 summarizes the details on
these meta-dimensional tools (see Supplementary Data section
for more details).

Datasets used for multi-staged integration tool analyses

Level 3 TCGA data pertaining to four cancers, mesothelioma
[35], colon [36], pancreatic [37] and melanoma [38], processed
and hosted by the UCSC Xena [39] and the firebrowse (http://
firebrowse.org/) databases, were used in this study. These can-
cers were selected as they have varying sample size and are
widely studied. The following omics data were downloaded for
each cancer (refer to Supplementary Table S1 for more details):

• Copy number variation: Gene-level GISTIC 2.0 [40] seg-
mented and thresholded copy number variation down-
loaded from the UCSC Xena database. While the segmented
data contain the copy number estimates, the thresholded
copy number data contain the thresholded estimates, i.e.
−2, −1, 0, 1 and 2, representing homozygous deletion, single
copy deletion, diploid normal copy, low-level copy number
amplification and high-level copy number amplification,
respectively.

• Gene expression: Gene-level transcription estimates, as in
log2(x+1) transformed RSEM [41] normalized expression
counts downloaded from the UCSC Xena database.

• DNA methylation: Gene-level mean beta values were down-
loaded from the firebrowse database.

Data processing for each cancer multi-omics dataset involved
selection of tumour samples common across all omics, removal
of genes with NA, zero variance and near-zero variance (i.e.
genes with unique values in the samples is less than 10% and
the ratio of the frequency of the most common value to the
frequency of the second most common value is greater than

95:5) from gene expression omics data using caret R package [42]
followed by selection of common genes across all omics. When
integrating gene expression and copy number data, the presence
of genes with small inter-quartile range (IQR) of expression
caused a runtime error in the Oncodrive-CIS tool. Therefore,
the smallest permissible IQR threshold was identified for each
cancer dataset by deleting in a listwise manner until the tool ran
without error. The IQR thresholds for mesothelioma, pancreatic
cancer, colon cancer and melanoma datasets were 0.90, 0.50,
0.55 and 0.55, respectively. These final datasets were used for all
tools integrating copy number and gene expression to perform
an unbiased comparison. Further tool-specific processing is out-
lined in Figure 1.

Datasets used for meta-dimensional integration tool
analyses

Meta-dimensional tool analyses were performed using 2 real
multi-omics cancer datasets and 16 simulated datasets.

Real datasets

Hepatocellular carcinoma (HPC) dataset: This dataset [43]
comprises the sequencing data for primary tumour (Tumour),
adjacent normal tissue (Normal) and portal vein tumour throm-
bosis (PVTT) samples from 20 HPC patients, totalling 60 samples.
The mRNA gene expression (GSE77509; measured using Illumina
HiSeq 2500), miRNA gene expression (GSE76903; measured using
Illumina HiSeq 2500) and probe-level methylation (GSE77269;
measured using Illumina HumanMethylation450 BeadChip) data
were downloaded from Gene Expression Omnibus database
[44]. Quality control included log transformation of miRNA and
mRNA expression data and removal of genes or probes with
null values in more than 25% of samples. We used inter-sample
variance to select the most informative features [45]. The top
10% of the variable mRNA and miRNA gene expression and top
5% of methylation probes were chosen for integration analysis
as these features captured most of the variance in the dataset
(Supplementary Table S6 and Supplementary Figure S6).

Glioblastoma (GBM) dataset: Protein expression measured
using reverse phase protein array technology, gene expression
measured using AffyU133a array, DNA methylation data mea-
sured using Illumina Infinium HumanMethylation27 platform
and phenotype information for glioblastoma tumour samples
were downloaded from UCSC Xena database. Common samples
across all omics data and having information on the clinical
subtype were selected for analysis. Feature selection was based
on inter-sample variance, with the top 25% variable genes and
probes selected (Supplementary Table S6 and Supplementary
Figure S7). The final dataset contained 100 samples belonging
to 4 clinical subtypes: Classical (25 samples), Mesenchymal (27
samples), Neural (17 samples) and Proneural (31 samples).

Simulated datasets

The miRNA gene expression data, DNA methylation data and the
top 1000 inter-sample variable genes from mRNA gene expres-
sion data from the TCGA breast cancer dataset [46] (Supplemen-
tary Table S7) were used to create simulated datasets using a
previously detailed method [28].

Briefly, four simulated datasets A, B, C and D were created.
Each simulated dataset contained three matrices referred to
as Omics data 1, Omics data 2 and Omics data 3, simulated
with rows corresponding to 60 samples and columns corre-

http://firebrowse.org/
http://firebrowse.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
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Figure 1. Scheme outlining the data processing steps for multi-staged tools.

sponding to 500 features. In each simulated matrix, the sam-
ples were modelled using Gaussian distributions such that they
were equally distributed among three classes (i.e. subtypes).
Additionally, independent Gaussian noise (mean = 0, standard
deviation = 0.4) was added to the features profiles. The profiles of
the features in the samples belonging to each class with added
independent noise are given below:

1 − Normal (mi,sdi) + Normal(0,0.4)
2 − Normal (mi – mi/2, sdi) + Normal(0,0.4)
3 − Normal (mi + mi/2, sdi + sdi/10) + Normal(0,0.4)

where mi and sdi are the mean and standard deviation, respec-
tively, calculated from 500 randomly selected features from the
real omics data types.

To assess the ability of the tools to combine the patterns
identified in individual omics data types, certain classes in two
or all of the omics data types of the simulated datasets B, C and D
were simulated to be a hidden class (Table 3). Simulated dataset
A contained no hidden class. A hidden class contained samples
whose feature profiles were similar to that of the samples in
the remaining two classes. Presence of such classes in datasets
reduces the signal strength thereby making the dataset complex.

To understand the effect of sample size on the performance
of these tools, all the datasets were recreated with 150 samples,
with each class containing 50 samples. The 150-sample datasets
will be referred to as Large Group, while the previously created
60-sample datasets will be referred to as Small Group. To assess
the influence of noise, Gaussian noisy features with means
equal to that of the genes selected randomly from the real
dataset and with a standard deviation of 2 were added to the
datasets in both the Small and Large Groups and are referred

Table 3. Details of the classes that were simulated as hidden class in
different omics data in each simulated dataset

Simulated datasets Omics data 1 Omics data 2 Omics data 3

A No hidden classes
B Class 3 Class 1 No hidden class
C Class 3 Class 2 Class 2
D Class 3 Class 2 Class 1

to as Small Noisy Group and Large Noisy Group, respectively.
As these (noisy) features have a constant standard deviation
across all three classes, they do not have the information to dis-
criminate the classes and hence, are noisy. For all the datasets,
100 noisy features were added to Omics data 1, while 20 noisy
features were added to Omics data 2 and 3.

Running the multi-omics integration tools

The CNAmet, iGC, PLRS, MethylMix, SNF and BCC tools were run
in R on a 64-bit Ubuntu desktop computer. The iClusterPlus and
mixOmics tools were also run in R but on a high performance
computing Linux cluster hosted by Queensland University of
Technology, Brisbane, Australia. The Oncodrive-CIS tool, which
is available as a Python script, was executed via the terminal
(command line) in Python version 2.7 on a 64-bit Ubuntu
desktop. All the tools were run using their default parameter
settings obtained from the respective manuals whereas the
parameter values for the mixOmics tool were obtained from
their case study (http://mixomics.org/mixdiablo/case-study-
tcga/). The runtimes of these tools were recorded as the time

http://mixomics.org/mixdiablo/case-study-tcga/
http://mixomics.org/mixdiablo/case-study-tcga/


A comparative study of multi-omics integration tools 1925

taken to execute the integration function in each tool, and the
data pre-processing time prior to running these tools was not
included. We have provided the R code to reproduce the pre-
processing, variable selection, creation of simulated datasets,
running of tools and performance evaluation presented in this
study on GitHub (https://github.com/AtinaSat/Evaluation-of-
integration-tools).

Performance evaluation of multi-staged integration
tools

Due to differences in the omics data types integrated by the
multi-staged tools, separate evaluations were conducted for
the tools integrating copy number and gene expression data
(Oncodrive-CIS, iGC, PLRS and CNAmet tools) and the tools
integrating methylation intensity and gene expression data
(MethylMix and CNAmet tools).

The tools were evaluated based on the overlap estimates of
genes, function terms (GO terms) and pathways with that of gold
standard cancer gene list—cBioPortal cancer gene list (CCGL;
http://www.cbioportal.org/cancer_gene_list.jsp) [47] which con-
tains 981 known cancer genes. To evaluate the reliable predic-
tions from the tools as well as not miss the identified cancer
genes, a maximum of 1500 genes driven by amplification (or
hypomethylation) and a maximum of 1500 genes driven by dele-
tion (or hypermethylation) with FDR values <0.05 were retained
for each tool. The two lists were combined, and the unique
genes were identified for performance assessment. As the PLRS
tool does not provide the distinction between amplification and
deletion among the results, to ensure tool evaluations were
based on datasets consistent in size, a maximum of 3000 genes
with FDR values <0.05 were selected for evaluation. Similarly, the
MethylMix tool does not provide the distinction between hyper-
methylation and hypomethylation among the results; hence, a
maximum of 3000 genes with FDR values <0.05 were selected
for evaluation.

The selected gene result from each tool and the cancer gene
list were enriched with GO terms for Biological Process (BP),
Cellular Component (CC) and Molecular Function (MF) categories
using clusterProfiler R package [48] and the Reactome pathways
[49] using the ReactomePA R package [50]. While the gene-level
evaluation is based on estimating the number of overlapping
genes, the function and pathway level evaluations are based
on estimating the number of overlapping enriched GO function
terms and Reactome pathways, respectively, between the results
and the cancer gene list. Figure 2 outlines the steps for the
selection of genes and evaluation at the gene, function and
pathway levels.

Performance evaluation of meta-dimensional
integration tools

The meta-dimensional tools were evaluated based on the sam-
ple classification performance in various scenarios: (i) binary
and multi-class classification, (ii) presence of hidden classes,
(iii) small and large sample sizes and (iv) noise in small and
large sample sizes. The HPC dataset was used for the binary
classification analysis in which the sample classes were Normal
and PVTT/Tumour, with the latter class formed by merging the
PVTT and Tumour samples. For multi-class classification analy-
sis, the HPC and GBM datasets were used. The sample classes
for the HPC dataset were Normal, PVTT and Tumour, while

for the GBM dataset the classes were Classical, Mesenchymal,
Neural and Proneural. As the mixOmics tool performs super-
vised classification, the samples in both the real and simulated
datasets were divided into training (75%) and test (25%) datasets
prior to analysis. The tool performance was assessed using the
classification results obtained for the test datasets.

The sample classification powers of the meta-dimensional
integration tools were assessed using the following metrics:

Precision = True positives
True positives + False positives

Recall = True positives
True positives + False negatives

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

Avg.F1 =
∑n

k=1 F1k

n

(
n = number of classes

)

Accuracy = True positives
Total number of samples

In the following section, we have highlighted the perfor-
mance of meta-dimensional tools mainly based on their average
F1 scores and accuracies. Refer to Supplementary Tables S9–S12
for precision and recall scores achieved by these tools for the
simulated datasets.

Results
Multi-staged integration tools analyses

Copy number and gene expression integration

The performance of the copy number and gene expression inte-
gration tools in the mesothelioma, pancreatic cancer, colon can-
cer and melanoma datasets were tested at three evaluation
levels: gene, function and pathway. The 3000 most informative
and statistically significant unique genes identified by these
tools were utilized for the evaluations. For these gene lists and
the CCGL, significant GO function terms and pathways were
identified. For each evaluation, overlaps of the results from the
tools with the CCGL in each dataset were identified and are
shown in Table 4. A strong overlap demonstrates high sensitivity
of the tool to identify cancer-associated genes, GO function
terms and pathways. A total of 20 overlap tests were performed
(1 gene, 3 functions and 1 pathway for each of the 4 datasets) for
each tool.

The PLRS tool achieved the highest overlap with CCGL in
11/20 overlap tests, demonstrating the highest sensitivity com-
pared to other tools. The Oncodrive-CIS and iGC tools achieved
the highest overlap in 6/20 and 2/20 tests, respectively. All tools
displayed poor performance for the mesothelioma dataset. The
comparatively small sample size of the mesothelioma dataset
(87 samples) likely reduced the power to identify significant
genes and subsequently the significant GO function terms and
pathways associated with the disease. Overall, all tools showed
an increasing trend in the performance with increasing sample
size of the datasets.

We compared the approaches implemented by these tools
using Venn diagrams of the results at all evaluation levels for
all datasets. High congruence was observed between the iGC,
PLRS and Oncodrive-CIS tools at gene level in the pancreatic
cancer (35–49%), colon cancer (67–74%) and melanoma (60–66%)
datasets (Figure 3). The goal of all tools evaluated is to identify
a statistically significant effect of copy number change on gene

https://github.com/AtinaSat/Evaluation-of-integration-tools
https://github.com/AtinaSat/Evaluation-of-integration-tools
http://www.cbioportal.org/cancer_gene_list.jsp
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
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Figure 2. Scheme for selection of significant genes from the results and evaluation of multi-staged tools.

expression. The iGC tool uses Student’s t-test, PLRS uses piece-
wise linear regression splines and Oncodrive-CIS uses Z-test.
The high similarity between these statistical methods resulted
in the observed high overlap of implicated genes. However, in
general highest congruence was observed between PLRS and iGC
tools (Supplementary Figures S1–S4).

Methylation and gene expression integration

Similar to copy number and gene expression integration tools,
methylation and gene expression integration tools were also
assessed at three levels—gene, function and pathway. The top
3000 methylation-driven genes were selected from the results
provided by the MethylMix and CNAmet tools to perform 20
overlap tests with CCGL. The MethylMix tool, which integrates
the omics datasets using a continuous data and linear regression
approach, outperformed the CNAmet tool, which integrates
using a categorical data and signal-to-noise ratio approach,
in 18/20 overlap tests (Table 5). The sharp cut-offs used by
CNAmet tool to signify hypermethylated and hypomethylated
genes could have led to the misinterpretation of the underlying
relationship between methylation intensity and expression of a
gene. Venn diagrams of the gene-level results between the tools
showed CNAmet genes overlapped on an average of 54.73%
with MethylMix genes (Figure 4). Venn diagrams of BP, CC, MF
and pathway terms between the tools showed CNAmet results
overlapped on an average of 67.29%, 17.85%, 43.23% and 6.88%,
respectively, with MethylMix results (Supplementary Figure S5).

Meta-dimensional integration tools analyses

Binary and multi-class classification of HPC dataset

The goal of binary and multi-class classification using meta-
dimensional integration is to accurately identify the different
tumour subtypes or patient types using multi-omics datasets.
Binary classification involves segregating the samples into two

subtypes/classes, while multi-class classification involves iden-
tifying more than two classes. Tools achieving high accura-
cies and F1 scores in multi-class classification are preferable as
tissue-specific tumours often comprise more than two molecu-
lar subtypes that may differ in prognosis and treatment strate-
gies.

The performances of the tools during binary and multi-class
classification tested using the HPC and GBM datasets is shown
in Table 6. In binary class classification, all tools performed with
accuracy >0.9 except for iClusterPlus tool (0.78). The mixOmics
tool outperformed the others in multi-class classification anal-
yses by providing the highest average F1 scores and accuracies
among all the tools. The performance of all the tools was sig-
nificantly better in the binary classification compared to the
multi-class classification analyses. In the former analysis, all
the tools were capable of retrieving the two classes with high
precision and recall. However, during the multi-class classifi-
cation using the HPC dataset, only the mixOmics tool could
delineate between the samples from Tumour and PVTT classes.
The poor precision and recall in classifying between these two
classes could have been due to the high heterogeneity in these
classes, as reported by Yang et al. [37]. In the GBM dataset, all
tools achieved the lowest performance for the Neural subtype
compared to the other subtypes. The poor classification of this
subtype could be due to the fact that it lacks characteristic gene
abnormalities [51] caused likely by normal tissue contamination
[52]. Hence, this subtype could be non-tumour-specific pheno-
type [53]. Multi-class classification of HPC and GBM datasets
using the mixOmics tool produced better classification. The
prior learning using training data enabled the tool to distinguish
better the signals from the different classes, thereby resulting
in superior precision and recall scores for all classes. The SNF
tool achieved the second best classification in the multi-class
classification scenario.

iClusterPlus is a popular integration tool that has been used
for multi-omics analysis of numerous cancers [20, 54, 55]. Given
the poor performance of iClusterPlus in the binary classification

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
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Figure 3. Congruence between the significant genes identified by CNAmet, iGC, PLRS, Oncodrive-CIS tools (copy number and gene expression integrating tools) and

the CCGL genes in the (A) mesothelioma, (B) pancreatic cancer, (C) colon cancer and (D) mesothelioma datasets.

of the HPC dataset, we speculated that the performance might
improve if we restricted the methylation dataset to the top 1000
variable probes (variance range: 0.09–0.21) of the methylation
dataset. As speculated, iClusterPlus showed improved classifi-
cation accuracy in both the HPC and GBM datasets for similarly
reduced datasets (Supplementary Table S8).

Performance in the presence of hidden classes

Independent analyses of multiple omics data types may identify
subtypes that do not conform to one another as a subtype
identified in one omics data may be undetectable in another
omics data type. Such subtypes are referred to as the hidden
classes, and the meta-dimensional tools aim to identify these
classes through joint analysis of multi-omics data. The ability of
the tools to retrieve a hidden class was tested using datasets A,
B, C and D from the Small Group, where all datasets contain 60
samples and no noisy features. The dataset A that contained no

hidden classes is simple compared to the other datasets, which
are complex due to the presence of hidden classes in two or more
omics data types.

The accuracies obtained by the tools for these datasets are
shown in Figure 5A. Across all datasets, the performance of the
tools was most accurate for dataset A. For the datasets A and
C, the iClusterPlus tool obtained the highest accuracies (1 and
0.6, respectively), while for datasets B and D the mixOmics tool
achieved the highest accuracies (0.87 and 0.67, respectively), as
compared to the other tools.

The F1 scores achieved by these tools for individual classes
in each dataset provide insights into the identification of the
classes. A high F1 score, particularly for a hidden class, implies
effective combining of shared and complementary subtype
information from multiple omics data types to retrieve the
underlying class. Our results showed that the recoverability of a
hidden class by the tools was lower in comparison to a class that
was not hidden. For example, the F1 scores achieved by the tools

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data


A comparative study of multi-omics integration tools 1931

Figure 4. Congruence between the significant genes identified by CNAmet, MethylMix tools (methylation and gene expression integrating tools), and the CCGL genes

in the (A) mesothelioma, (B) pancreatic cancer, (C) colon cancer and (D) melanoma datasets.

for Class 1 in datasets B and D were lower than that in datasets
A and C (Figure 5B). The tools were more susceptible to missing
the identification of a class when the class was simulated as
a hidden class in more than one omics data type. In datasets
C and D, Class 2 was simulated as a hidden class in two and
one omics data types, respectively. All tools failed to identify
Class 2 (F1 score < 0.5) in dataset C. However, in dataset D, the
SNF and mixOmics tools were capable of identifying this class
(F1 score > 0.5). For dataset D, which contained non-overlapping
hidden classes in all three omics data types, only the mixOmics
tool retrieved all three classes (F1 > 0.5), while the SNF and
iClusterPlus tools retrieved two out of the three classes. The
BCC tool performed the worst for complex datasets, such as
datasets C and D, producing only a single cluster solution where
all samples belonged to one class.

Accuracy of tools in small and large sample sizes

The influence of sample size on the performance of the tools
was assessed by comparing their performances using datasets
from Small and Large Groups. Both groups contain the A, B, C and
D datasets but differ only by sample size. The Small Group
contains datasets with 60 samples whereas the Large Group con-
tains datasets with 150 samples. The iClusterPlus and mixOmics
tools accomplished more accurate classifications in the majority

of datasets compared to SNF and BCC tools in the Large Group
(Figure 6). When comparing the accuracies achieved by these
tools for each dataset in Small and Large Groups, BCC, iCluster-
Plus and mixOmics tools showed improved classification accu-
racies for datasets in Large Group (Figures 5A and 6). Contrary to
the other tools, the SNF tool displayed decreased classification
performances for the majority of Large Group datasets. Lack of
optimization of parameter settings for large sample sizes such as
the number of neighbours while constructing the affinity graphs
and number of iterations for fusing multiple networks may have
contributed to the decreased performance of this tool.

Performance in the presence of noise

As noise is inherent in biological data, it is crucial to identify
the robustness of the selected classifiers while processing noisy
data. To test the robustness of these tools, we recreated the A, B,
C and D datasets in Small and Large Groups with noisy features
and referred to as Small Noisy Group and Large Noisy Group,
respectively. Gaussian noisy features (mean = 0 and standard
deviation = 2) were added to each of the omics data types in
the datasets. As noisy features do not have profiles similar to
that of the informative features, their presence confounds the
classification process. A good classifier identifies the underlying
classification despite the noisy features.
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Figure 5. Performance results of meta-dimensional integration tools for datasets A–D in Small Group. (A) Accuracy measures and (B) F1 scores for individual classes.

iCP – iClusterPlus.

Figure 6. Accuracies achieved by the meta-dimensional integration tools for

datasets A–D in Large Group. iCP – iClusterPlus.

First, we compared the accuracies achieved by the tools for
the datasets in Small Group and Small Noisy Group (Figure 7A).
The SNF, BCC and mixOmics tools showed reduced average F1

scores for datasets in the Small Noisy Group compared to that in

the Small Group, demonstrating the lack of robustness to noise
in these tools. The mixOmics tool was the most affected by the
presence of noise compared to the other tools by showing the
highest decrease of 43.75% for dataset C.

Next, we tested the influence of noise on these tools when
noise was present in larger datasets by using the datasets in
Large Group and Large Noisy Group. Contrary to the perfor-
mance of the tools in small sample size datasets, they exhibited
increased robustness as the sample size was increased. The
decreases in the average F1 scores of all the tools for datasets
in Large Noisy Group compared to that in Large Group were
minimal or non-existent (Figure 7B). The presence of increased
signal in these datasets may have contributed to the better per-
formances. Overall, the iClusterPlus tool was the most resistant
to noise, exhibiting no decrease in the performance in almost all
the datasets with small and large sample sizes.

Runtime of multi-staged and meta-dimensional
integration tools

Given the large-scale sample availability and genome-wide
sequencing of tens of thousands of genes, a trade-off between
runtime and performance is highly desirable in a multi-omics
integration tool. The runtime was recorded as the time taken
to run the integration functions in each tool (Supplementary
Tables S13 and S14). Among the multi-staged tools, Oncodrive-

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
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Figure 7. Performance results of meta-dimensional tools in datasets without noisy features versus datasets with noisy features. (A) Average F1 scores achieved for

datasets in Small Group (no noise) and Small Noisy Group (with noise). (B) Average F1 scores achieved for datasets in Large Group (no noise) and Large Noisy Group

(with noise). iCP – iClusterPlus.

CIS took the longest time, followed by CNAmet. The iGC and
MethylMix tools required less than a minute to complete the
analysis. The PLRS, iGC and MethylMix tools were the more
user-friendly of the multi-staged tools requiring minimal pre-
processing and allowing for easy execution of functions. Among
the meta-dimensional tools, iClusterPlus took the longest time,
an average of 35 hours for the real datasets and 35 minutes
for the simulated datasets. The SNF tool performed the meta-
dimensional integration in less than 1 minute. The BCC and
SNF tools were easy to execute as these tools had straight-
forward functions requiring minimal steps. In contrast, running
the iClusterPlus and mixOmics tools involved numerous steps,
and user intervention was required to assess the results from
each of the steps.

Discussion
Our comparative study assessed the performance of five multi-
staged and four meta-dimensional integration tools. These tools
were designed to facilitate two common objectives for inte-
grative analyses of cancer datasets: (i) identification of cancer
driver genes and (ii) tumour subtype discovery or patient/sample
classification.

In general, a multi-omics integration study encompasses the
following steps: feature selection (optional), selection of an inte-
gration tool, processing of input data to fit the tool specifications,
running the tool with optimized parameter settings, filtering the
output (optional) and finally, interpretation of results. Identifica-
tion of an optimal integration tool will minimize the challenges
encountered at different steps and hence enable researchers
to meet the integration objectives. Assessing the performance
of the tools in identifying the cancer-associated genes, func-
tions and pathways, and classification of tumour samples, are
critical factors to be considered while choosing an efficient
tool.

For multi-staged integration studies which seek to identify
the cancer driving genes, our comparisons revealed that
regression-based integration methods are most effective,
identifying most cancer-associated genes, GO terms and
pathways. For such analyses, we therefore recommend the
PLRS and MethylMix tools as they implement regression-based
integration and outperformed the other tools compared in
this study. The regression-based integration approaches, which
utilize continuous values for copy number or methylation
status, prevent the loss of information due to the use of non-
integer or sharp cut-off values. Using ordinal values can lead to
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reduced variability between the samples and hence miss the true
relationship between the omics datasets analysed [56]. Cancer
is a highly heterogeneous disease, and the use of ordinal values
cannot accurately account for the differences in the degree of
aberration among the samples and thus may not be optimal for
integrative analyses [57].

As multi-staged integration tools focus on cis interactions
between gene expression and copy number/methylation of
genes and many cancer genes are implicated in the disease
through multiple mechanisms, it is possible to miss the cancer
genes in the tool results if small cut-offs, such as top 200
[58], are used. In order to not miss the identification of these
cancer genes, we used a liberal cut-off that is larger than the
number of the gold standard genes. While our assessment
was restricted to the top 3000 most significant and informative
genes, the performance of the tools was consistent when gene-
level analysis was performed for top 1000 and top 2000 most
significant genes (Supplementary Table S2). Users may also
select genes based on the scores specific to each tool [15].
Our analyses also revealed potential for low precision of multi-
staged integration tools [27]. Prior to the selection of the top 3000
significant genes from the output, in majority of the datasets,
the PLRS predicted more than 8000 genes to have an association
between copy number and gene expression (Supplementary
Table S3). As multi-staged integration involves multiple testing,
in order to reduce the false positives and prevent the loss of
statistical power, we recommend either feature selection prior
to integration or filtering down the output after integration.

To potentially improve the accuracy in identification of the
true associations, we recommend the tools that utilize addi-
tional biological information during integration. The PLRS tool
(the best performing method) uses both segmented copy number
and thresholded copy number, as well as call probabilities when
available. These data provide information on the heterogeneity
among the samples as well as the precision of the copy number
call, leading to the identification of statistically reliable asso-
ciations that drive cancer [57]. Use of normal samples, when
possible, may also add more reliability to the identified genes.
For example, the use of normal samples allows the MethylMix
tool to detect genes for which expression is not only regulated by
methylation but also differentially methylated in comparison to
normal samples [59]. A drawback common to all the multi-staged
integration tools used in this study is that they model only the
cis relationship between copy number or methylation and gene
expression of genes and do not address the trans relationship,
which is the regulation of distant genes, as has been reported in
many studies [60, 61].

To classify the cancer subtypes using meta-dimensional inte-
gration, we recommend the mixOmics tool as it provided the
most accurate classifications for the majority of the real and
simulated datasets. Alternatively, when the sample labels are
not known prior to integration, we recommend iClusterPlus
as it provided most accurate classification for the majority of
the simulated datasets. However, it should be noted that the
performance of iClusterPlus tool can reduce in the presence of a
large number of uninformative features (as seen for the real HPC
and GBM datasets). Hence, feature selection prior to integration
is critical. The iClusterPlus tool is also computationally intensive,
and the runtime increases with an increase in the number of
input features. A recent version of the iClusterPlus tool, iClus-
terBayes [62], endeavours to overcome these challenges using
a Bayesian integrative clustering approach. The SNF tool may
also be considered due to its enhanced performance in the real

datasets, and its performance could potentially improve further
by optimizing parameter settings [28]. However, the low accuracy
of all the meta-dimensional tools in multi-class classification
scenario (≤0.8) shows that improved integration approaches are
needed.

An important characteristic of a good meta-dimensional
integrative tool is to identify the subtypes that are common
or unique to different omics datasets and effectively link this
information to provide the best classification. Our study showed
that the meta-dimensional tools have difficulties in identifying
a class that is unidentifiable in the majority of the omics data
types used for integration and classification. For the Tumour and
PVTT classes in the HPC dataset and Neural class in GBM dataset,
which are not clearly distinguished in the omics data types
[43], all tools except mixOmics failed to retrieve these classes.
Similarly, all tools showed low precision and recall scores for
Class 2 in simulated dataset C in the Small Group, as this class
was identifiable in only one of the three omics data types. When
integrating such complex datasets, use of a tool that employs
a supervised approach such as the mixOmics tool may provide
better classification results as seen in the analysis with the real
datasets and simulated dataset D. To estimate the complexity
of the datasets and their influence on integration results, Tini
et al. [28] recommends analysis and visualization of independent
omics data types using techniques such as PCA to quantify the
signal and subtypes present in them.

Our analyses showed that noise can have a substantial nega-
tive impact on the classification. Hence, use of advanced feature
selection techniques is critical [63] prior to integration. Given,
small sample sizes (∼20 samples per class) and the presence
of noise negatively impact the performance of these tools, use
of larger sample sizes generally improves their performance
due to the presence of higher amounts of signal relative to
noise. However, due to the high dimensionality of these datasets,
combined with heterogeneity in the samples, it is important to
perform an initial power calculation to ensure sufficient sample
sizes are analysed [64]. In datasets with a small number of noisy
features, the iClusterPlus tool is preferable as the integrative
results were least affected by noisy features.

Limitations
All tools were run using default parameters to avoid bias. How-
ever, optimization of the parameters might have improved the
performance of the tools, such as the SNF tool [28]. Only con-
tinuous data were used to assess the performance of meta-
dimensional integrative tools. The iClusterPlus, mixOmics and
SNF tools are also capable of integrating heterogeneous data,
such as binary and categorical data types, and additional anal-
yses are required to assess their performance when integrating
such data. Our assessment does not fully reflect all the func-
tional aspects of the tools. For instance, the CNAmet tool also
includes quantification of the combined effect of copy number
and methylation on gene expression, and the iClusterPlus and
mixOmics tools can identify the features responsible for the clas-
sification; such functionalities were not assessed in the study.
Cancer driver genes can be classified as protein-coding or non-
coding. In our multi-staged analyses, due to the low number
of non-coding genes in the input datasets (≤3%) and the gold
standard cancer gene list (≤1%) (Supplementary Table S5), we
could not accurately investigate the specific performance of the
tools for non-coding genes.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz121#supplementary-data
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Conclusions
Our results provide much needed advice regarding selection and
use of multi-omics integration tools. Tools implementing the
regression-based approach for multi-staged integration effec-
tively capture the association between the omics data types.
The potential for false positive findings from multi-staged inte-
gration can be minimized using control datasets, feature selec-
tion prior to integration and/or filtering down the output after
integration. For the meta-dimensional integration tools, the use
of larger sample sizes enables more accurate identification of
tumour and patient groups as well as diminishing the adverse
effect of noise. Additional factors such as feature selection and
parameter optimization are also critical and can improve the
integration for both multi-staged and meta-dimensional integra-
tion tools. Although the multi-omics tools investigated improved
the classification and feature identification that were unde-
tectable in some individual omics data types, they still have
much room for improvement with respect to their performance
and ease of use.

Key Points
• Multi-staged and meta-dimensional integration of

multi-omics data achieve cancer driver gene identifica-
tion and tumour subtyping, respectively.

• Regression-based approaches, such as the PLRS and
MethylMix tools, provide more effective multi-staged
integration due to their use of continuous values for
copy number and methylation status.

• The mixOmics and iClusterPlus tools, which employ
matrix factorization for meta-dimensional integration,
showed superior classification compared to the other
tools in real and simulated datasets.

• Prior feature selection and sufficient sample size are
critical for effective multi-omics integration.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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