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1  |  INTRODUCTION

Recent advances in bioinformatics and sequencing technol-
ogies have made it possible to obtain individual microbiome 
information for humans, animals and plants. The fundamental 
role of gut microbiota in essential biological processes such 

as physiological ageing in humans (Muscogiuri et al., 2019), 
methane emission in dairy cows, and nutrient digestion, ab-
sorption and metabolism of pigs (Niu et al., 2019) makes it 
a key field of research to counteract major physiological de-
faults such as obesity in human, and to improve quantitative 
production traits in livestock. In this regard, measuring the 
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Abstract
This study aimed to evaluate the genetic relationship between faecal microbial 
composition and five feed efficiency (FE) and production traits, residual feed in-
take (RFI), feed conversion ratio (FCR), daily feed intake (DFI), average daily gain 
(ADG) and backfat thickness (BFT). A total of 588 samples from two experimen-
tal pig lines developed by divergent selection for RFI were sequenced for the 16 
rRNA hypervariable V3- V4 region. The 75 genera with less than 20% zero values 
(97% of the counts) and two α- diversity indexes were analysed. Line comparison 
of the microbiota traits and estimations of heritability (h2) and genetic correlations 
(rg) were analysed. A non- metric multidimensional scaling showed line differences 
between genera. The α- diversity indexes were higher in the LRFI line than in the 
HRFI line (p < .01), with h2 estimates of 0.19 ± 0.08 (Shannon) and 0.12 ± 0.06 
(Simpson). Forty- eight genera had a significant h2 (>0.125). The rg of the α- 
diversities indexes with production traits were negative. Some rg of genera belong-
ing to the Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Lactobacillaceae, 
Streptococcaceae, Rikenellaceae and Desulfovibrionaceae families significantly dif-
fered from zero (p < .05) with FE traits, RFI (3), DFI (7) and BFT (11). These results 
suggest that a sizable part of the variability of the gut microbial community is under 
genetic control and has genetic relationships with FE, including diversity indicators. 
It offers promising perspectives for selection for feed efficiency using gut microbi-
ome composition in pigs.
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magnitude of genetic control on gut microbiota composition 
is fundamental to enlighten its potential use in animal selec-
tion programs. From a quantitative genetics perspective, es-
timating heritability (h2) quantifies the magnitude of genetic 
control of a trait. Heritability is a population- specific param-
eter that estimates the proportion of additive genetic variance 
to the phenotypic variance of the trait. Besides the heritabil-
ity, another essential genetic parameter is the additive genetic 
correlation (rg). These two parameters are crucial to predict 
direct and correlated responses to selection, which are other 
parameters to evaluate if and how a trait would be affected by 
selection (Brenner et al., 2002).

In pig breeding, production and feed efficiency (FE) 
traits, because of their key economic and environmental im-
portance, have a high impact on the sustainability of this in-
dustry (Ottosen et  al.,  2020; Soleimani and Gilbert, 2021). 
Therefore, research around FE covers a wide range of studies, 
from traditional statistical methods to recent advances in ben-
efiting from biological data like metabolomics, including few 
with microbiome information (Maltecca et al., 2020). Several 
previous studies attempted to discover the link between host 
genetics, microbiota data, and feed efficiency (Bergamaschi, 
Maltecca, et  al.,  2020; Bergamaschi, Tiezzi, et  al.,  2020; 
Camarinha- Silva et  al.,  2017; McCormack et  al.,  2017). A 
study on low and high residual feed intake (RFI) pigs showed 
a slight difference between the intestinal microbiota of two 
groups of animals chosen for their phenotypic RFI, and sug-
gested a link between microbial community and FE at the 
phenotypic level (McCormack et  al.,  2017). However, di-
rection of correlated responses between RFI and microbiota 
composition are still unknown. In the present study, we aimed 
to seek the genetic relationships between five production and 
FE traits and faecal microbial composition, using data from 
two experimental pig lines developed by divergent selection 
for RFI. Statistical analyses were applied to microbiota gen-
era, microbial diversity and performance traits to compare 
faecal microbiota composition between lines, and h2 and rg 
were obtained to describe the transmissible relationships be-
tween these traits and microbial traits.

2 |  MATERIALS AND METHODS

2.1 | Data structure

The data were collected from two experimental French Large 
White pig lines developed during 10 generations of diver-
gent selection for RFI between 2000 and 2017 at INRAE 
(UE GenESI, https://doi.org/10.15454/ 1.55724 15481 18584 
7E12). The selection process and structure of the data from 
the two divergent lines have been described in Gilbert 
et al. (2017) and Aliakbari et al. (2020). Briefly, the G0 indi-
viduals were obtained from artificial insemination of 30 sows 

with 30 boars in generation F0. From the G0 litters, 116 boars 
were tested for RFI as candidates for selection. Among them 
6 extreme low RFI (LRFI) and 6 extreme high RFI (HRFI) 
boars were selected to be the founders of each line. The se-
lected founder boars were randomly mated with about 70 G0 
gilts to initiate the two divergent lines. From generations G1 
to G10, the same procedure was implemented within each 
line, with 96 tested boars per line to produce the next genera-
tion. There was no selection on the female side, and sows from 
both lines were distributed in two farms in equal proportions, 
which corresponds to two herds of birth for the tested pigs. 
After weaning, all pigs were gathered on the same farm for 
testing. In each generation, at least one additional parity was 
produced to evaluate the correlated responses to selection of 
growth, feed intake and efficiency and carcass composition 
traits on females and castrated males (response animals). 
Candidates to selection were tested from 35 to 95 kg of body 
weight (BW), whereas for response animals the test ran from 
10  weeks of age until slaughter (105  kg BW until G5 and 
115 kg BW afterwards). Testing was organized in four pens 
per contemporary group (CG), and there were at least four 
CG tested per generation, systematically including both lines. 
Pigs were penned in groups of 12, per line, and sex when 
multiple sexes were tested. Pens were equipped with single- 
place electronic feeders ACEMA64 (ACEMO, France) to re-
cord individual feed intake. A pelleted diet based on cereals 
and soya bean meal was available ad libitum, and contained 
10 MJ net energy (NE)/kg and 160 g CP/kg, with a minimum 
of 0.80 g digestible Lys/MJ NE. Complete pedigree informa-
tion was registered, starting at least one generation before F0 
ancestors, to G10.

Selection candidates had records for feed intake and feed 
efficiency traits, growth traits, and live body composition 
traits. Response animals had records for the same traits re-
corded from 10  weeks of age until slaughter weight, plus 
carcass composition traits. In all generations boars were 
selected based on a phenotypic index combining daily feed 
intake (DFI) and average daily gain (ADG) between 35 
and 95  kg BW, and backfat thickness (BFT) at 95  kg BW 
(Gilbert et al., 2007), as DFI (g/day)−(1.06 × ADG (g/day))−
(37 × BFT (mm)).

For the candidates to selection and the response animals, an 
RFI was computed as the residual of a multiple linear regres-
sion applied to DFI, using realized phenotypic correlations 
with traits accounting for production requirements (growth 
rate and body composition) and maintenance requirements 
(average metabolic BW (AMBW)), and the fixed effects of 
sex, pen size, CG, and the covariate of BW at the beginning of 
the test for response animals (Gilbert et al., 2017). Different 
equations were used for the two groups of animals, to account 
for the test differences. The RFI equation for selection candi-
dates included ADG and BFT (measured by ultrasounds), and 
because the test was run between fixed BW, AMBW would 

https://doi.org/10.15454/1.5572415481185847E12
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be equal for all animals and therefore was skipped from the 
equation. For response animals, the RFI equation included 
AMBW, ADG, carcass BFT (carcBFT) and lean meat content 
(LMC; computed from cut weights). Feed conversion ratio 
(FCR) was computed based on the corresponding test period 
of the two groups of animals.

In this study, five phenotypic traits available in both 
types of animals were studied: RFI, FCR, DFI, ADG, and 
BFT. To increase the statistical power, given the high rg es-
timated in preliminary analyses between the traits measured 
in candidate and response animals, the phenotypic records 
were combined for both cohorts, after standardization of the 
records from candidates to selection to the variance of the 
corresponding trait of the response animals, as described in 
Aliakbari et  al.  (2020). Descriptive information of the five 
traits from G0 to G10 are given in Table 1.

2.2 | Faeces sampling, microbial DNA 
extraction, 16S rRNA gene sequencing and 
sequence preprocessing

The microbiota information is most often derived from par-
tial sequencing of the bacterial 16S ribosomal RNA (rRNA) 
gene, a housekeeping gene in all bacteria (Woese,  1987). 
Sequencing the 16S rRNA gene has become a standard ap-
proach in bacterial taxonomic classification, due to its ease to 
generate phylogenetic information at high throughput (Wang 
et  al.,  2015). For this purpose, nine hypervariable regions 
(V1- V9) of the 16S rRNA gene can be targeted for sequenc-
ing. Sequences can then be analysed as separate Amplicon 
Sequence Variant (ASV), or clustered into “Operational 
Taxonomic Units” (OTUs) based on their similarities. The 

ASV approach enables easier comparison between studies 
(Callahan et al., 2017). These units allow inferring the tax-
onomy of species present in the targeted biological samples 
using several reference databases. The counts of each OTU 
or ASV throughout the samples form a matrix called abun-
dance table that is the basis of downstream analyses. Faecal 
sampling is a convenient and non- invasive sampling method 
that provides a reasonably good representation of the gut 
microbial communities (Ingala et al., 2018). It is now more 
common than other sampling locations for profiling of mi-
crobial communities in large mammalian animal populations.

For our study, faecal samples of 604 animals from G9 and 
G10 of the LRFI and HRFI lines were collected at 15 weeks 
of age, homogenized and placed immediately in dry ice, be-
fore storage at −80°C. The animals collected in G9 were the 
boars candidate to selection, and the pigs in G10 were fe-
males and castrated males response to selection. Microbial 
profiling was done as described previously (Achard 
et al., 2020). Briefly, the microbial DNA was extracted using 
the Quick- DNA™ Faecal Microbe Miniprep Kit™ (Zymo 
Research) and a 15 min bead- beating step at 30 Hz was ap-
plied. The V3- V4 region was then amplified  from diluted 
genomic DNA with the primers F343 (CTTTCCCTACA 
CGACGCTCTTCCGATCTTACGGRAGGCAGCAG) and 
R784 (GGAGTTCAGACGTGTGCTCTTCCGATCTTA 
CCAGG GTATCTAATCCT) using 30 amplification cy-
cles with an annealing temperature of 65°C. This V3- V4 
region has proved useful to study the variability of the 
pig microbiota in previous studies (Le Floc'h et  al.,  2014; 
Verschuren et  al.,  2018). The ends of each read overlap 
and can be stitched. In a  single run, it generates extremely 
high quality, full- length reads of the full V3 and V4 region. 
The Flash software v1.2.6 (Magoc & Salzberg,  2011) was 

N Min Max Mean SD p- valuea 

RFI LRFI 1,901 −0.38 0.37 −0.04 0.12 ***

HRFI 1,748 −0.33 0.39 0.05 0.11

FCR LRFI 2,190 1.60 3.88 2.61 0.25 ***

HRFI 1,981 2.13 3.93 2.82 0.27

DFI LRFI 2,172 1.25 2.92 2.02 0.25 ***

HRFI 1,974 1.37 2.97 2.19 0.27

BFT LRFI 2,058 9.82 44.63 25.44 7.01 ***

HRFI 1,863 9.67 46.76 26.45 7.44

ADG LRFI 2,251 0.51 1.02 0.76 0.08 *

HRFI 2,060 0.50 1.01 0.76 0.08

Abbreviations: ADG, average daily gain (kg/day); BFT, backfat thickness (mm); DFI, daily feed intake (kg/
day); FCR, feed conversion ratio (kg/kg); RFI, residual feed intake (kg/day).
ap- value of the effect of the line in a linear model. 
*p- value < .05. 
***p- value < .001. 

T A B L E  1  Number (N), minimum 
(Min), maximum (Max), mean and standard 
deviation (SD) of the studied traits in the 
low residual feed intake (LRFI) and high 
RFI (HRFI) lines
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used to assemble each pair- end sequence, with at least a 10- 
bp overlap between the forward and reverse sequences, al-
lowing 10% mismatch. Single multiplexing was performed 
using an in- house 6  bp index, which was added to R784 
during a second PCR with 12 cycles using forward primer 
(AATGATACGGCGACCACCGAGATCTACACTCTTTC 
CCTACACGAC) and reverse primer (CAAGCAGAAGAC 
G G C A T A C G A G A T -  i n d e x -  G T G A C T 
GGAGTTCAGACGTGT). The resulting PCR products 
were purified and loaded to the Illumina MiSeq cartridge 
following the manufacturer's instructions. Run quality was 
internally checked using PhiX, and each pair- end sequence 
was assigned to its sample using the integrated index, with 
the bcl2fastq Illumina software. The sequences were sub-
mitted to the Short- Read Archive with accession number 
PRJNA701065. Filtering and trimming of sequences of high 
quality was applied to the reads with the DADA2 package in 
the R software (Callahan et al., 2016) with the following pa-
rameters: maxN = 0, maxEE = 2, truncQ = 2, trimleft = 17. 
Chimera were removed with the consensus method to obtain 
the final OTU abundance table. No further clustering was ap-
plied, so OTU were equivalent to ASV in this study. This step 
was followed by taxonomic annotation using the assignTax-
onomy function of dada2 with the Silva Dataset v132 (Quast 
et al., 2013).

The final abundance table was rarefied to 9,000 counts 
per sample, and contained 5,689 OTUs or 298 genera across 
604 samples. The 16 samples that contained fewer reads than 
9,000 were discarded, resulting in 588 samples in the final 
abundance table, 295 LRFI and 293 HRFI pigs. The micro-
biota analyses were then run at the genus level. The OTU 
relative abundances with the same taxonomic path until 
an identical genus were thus aggregated in a single count. 
Counts belonging to unclassified genera of a family were sys-
tematically gathered into a pseudo genus named NA_Family.

In addition, to limit the deviations of the genera distribu-
tion from the Gaussian distribution assumption used in linear 
mixed models (see next section), the genera table was filtered 
for a maximum proportion of 20% zero abundancy for each 
genus, and the resulting abundancies were log- transformed 
after adding a constant value of 1 to all counts. After this fil-
tration step, 75 genera remained for the downstream analyses. 
Finally, to better understand how the genera are distributed, 
two α- diversity metrics, the Shannon (Shannon,  1948) and 
Simpson (Simpson, 1949) metrics, were calculated from the 
filtered table with 75 genera, and analysed as additional indi-
vidual microbial traits.

2.3 | Statistical analyses

The beta- diversity is usually used to demonstrate the com-
munity differentiation between cohorts (Whittaker,  1960). 

To represent the beta- diversity between the faecal microbial 
genera communities of both lines, a non- metric multidimen-
sional scaling (NMDS) based on the Bray– Curtis dissimi-
larity distance matrix was applied to the abundance table. 
This analysis was done using the R software and package 
“vegan” (Oksanen et al., 2013). The individual loadings were 
retrieved for each sample for the two first dimensions of the 
NMDS. Then, the line effect was tested with a generalized 
linear model (GLM) on the loadings of the first two dimen-
sions of the NMDS, the α- diversity metrics, the genera abun-
dances, and the production traits. In addition, contributions 
of the genera to each axis, and to the plan defined by the two 
first axes, were computed as the squares of the loadings and 
sum of squares of the loadings, respectively. Before testing 
the line differences, variables with positive values (counts 
and diversity indexes) were log- transformed, whereas the 
loadings of the NMDS that contained negative values were 
submitted to a Johnson transformation (Johnson,  1949). 
These analyses were performed using package “car” in the 
R software (Fox et al., 2012) and the line effect was declared 
significant for p < .05 for the corresponding F- test.

Following the main objective of the study, searching for 
the genetic relationships between microbiota traits and FE 
traits required the estimations of (co)variance components. 
The best linear unbiased prediction (BLUP) method was 
applied to the filtered genera and the two α- diversity met-
rics to obtain the (co)variance components. To follow the 
assumption of the BLUP method, which should be applied 
to a non- selected base population, all analyses were done in 
bivariate models including the selection index as the first 
trait. The second trait was the microbiota observation vector 
(abundance of each genus or α- diversity metric). To compute 
genetic correlations between the performance traits and mi-
crobiota observations, each of the production traits was added 
in three- variate analyses.

The significance of fixed environmental factors (p < .05) 
on all response variables was tested in preliminary GLM anal-
yses. Significant fixed factors, including pen size (5 levels), 
herd of birth (two levels), sex (three levels), and contempo-
rary group (CG, 109 levels) for performance traits, microbi-
ota data and α- diversity metrics, were systematically fitted. 
The fitted covariates were slaughter body weight (BW) for 
BFT and BW at test for genera abundancies and α- diversity 
metrics. The significance of all fitted fixed factors on the 75 
genera are given in Table S1. The litter effect was fitted as a 
random environmental source of variation for performance 
traits, and for microbiota data whenever it was significant 
(p < .05 for a χ2 test applied to the likelihood ratio test com-
paring the models with and without this term).

The following bivariate and three- variate animal models 
were used to estimate the variance components:

y = Xb + Z
1
a + Z

2
l + e
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where y is the vector of observations for the index and the abun-
dance of each genus or an α- diversity metric, and one of five 
performance traits (in three- variate analyses), b is the vector of 
fixed effects (described above), a is the vector of additive ge-
netic effects, l is the vector of litter effects, and e is the vector of 
random residuals. X, Z1 and Z2 are the incidence matrices for b, 
a and l. The distributions assumed for the random terms were 
a ~ N (0, G0 ⊗ A), l ~ N (0, Rl ⊗ I), and e ~ N (0, Re ⊗ I), where 
G0 is a 2 × 2 or 3 × 3 symmetrical direct additive genetic effect 
(co)variance matrix, and Rl and Re are 2 × 2 or 3 × 3 symmet-
rical litter effect and residual effect (co)variance matrices, re-
spectively. I denoted the identity matrix of adequate dimension. 
The pedigree relationship matrix (A) included 10 generations 
of pedigree information plus ancestors, and contained 7,293 an-
imals. The analyses were performed using AIREMLF90 soft-
ware (Misztal et al., 2018) for the BLUP method.

To test the significance of h2 of the 75 genera, an em-
pirical significance threshold equal to 0.125 was considered. 
The threshold was obtained after running 10,000 univariate 
analyses using the above described genetic model applied 
to microbiota abundancies, based on a null hypothesis of no 
genetic control on the abundancies. The null hypothesis was 
obtained by shuffling the abundances across individuals for 
two arbitrary genera. The minimum value of the top 5% of 
the estimated h2 was considered as the threshold to decide 
that a genus was heritable. Thereafter, the three- variate anal-
yses were conducted for genera with h2 significantly different 
from zero. The deviation from zero of the additive rg of gen-
era and α- diversity metrics with the production traits were 
tested using a Z- test.

3 |  RESULTS

3.1 | Gut microbiome differences between 
lines

The 75 filtered genera represented on average 97% of the 
sample counts of the rarefied table. Among these genera, 42 
had significantly higher abundances in the LRFI line than 
in the HRFI line, and 10 were more abundant in the HRFI 
line (Figure 1 and Table S2). Of the differentially abundant 
genera between lines (p <  .05 for a Student test applied to 
the log- transformed abundances), the genera Lactobacillus 
(10.1% in the LRFI line and 20.9% in the HRFI line of the 
75 genera counts, p  <  .0001), Prevotella_9 (12.2% and 
14.8% in the LRFI and HRFI lines, respectively, p <  .03), 
and Streptococcus (5.6% in the LRFI line versus 8.5% in 
the HRFI line, p  <  .0001) were the more abundant gen-
era in both lines, and they were all more abundant in the 
HRFI line. The three genera Clostridium_sensu_stricto_1 
(p < .0001), Prevotella_7 (p < .004), and Terrisporobacter 
(p < .0001) were more abundant in the LRFI line (7.2%, 5.7% 

and 4.1%, respectively) than in the HRFI line (4.0%, 4.4% 
and 2.3%, respectively). The four genera Dialister (p < .05), 
NA_Prevotellaceae (p < .0001), NA_Lachnospiraceae (more 
abundant in the LRFI line, p  <  .0001), and Blautia (more 
abundant in the HRFI line, p < .0001) represented on aver-
age 2.2% of the counts. The other 42 differentially abundant 
genera had abundances lower than 2% in the two lines, and 
represented a total of 25.9% and 18.6% of the abundances 
in the LRFI and HRFI lines, respectively. The remaining 23 
genera that were not significantly different (p > .05) between 
the lines had total abundance of 16.2% in the LRFI and 14.6% 
in the HRFI lines.

The NMDS showed differences between the genera com-
munities of the LRFI and HRFI lines (Figure  2). The two 
lines were significantly differentially distributed only along 
the second (p  <  .01) dimension. Among the 75 genera in-
cluded in the NMDS, the genus Rikenellaceae_RC9_gut_
group had the highest (2.9%) contribution to the plan defined 
by dimensions 1 and 2, and the genus Succinivibrio had the 
lowest (0.03%) contribution (Table S2 and Figure 3). In de-
tails, on the first axis 25 genera had a contribution larger 
than the expected contribution if all genera contributed 
equally 1.33% (100/75), including 15 genera differentially 
abundant between the lines. It was mainly driven (contri-
butions larger than 3.2%) by the opposition of the genera 
Prevotella_7 (5.2%), Syntrophococcus (5.0%), NA_Family_
XIII (5.0%), Lachnospiraceae_NK3A20_group (4.7%), 
Olsenella (4.6%), Dialister (4.5%), Mitsuokella (4.5%), 
and Shuttleworthia (4.3%) in one direction, and the genera 

F I G U R E  1  Abundance percentage of the 75 genera in the LRFI 
and HRFI lines. Others = differentially abundant genera between lines 
with abundances lower than 2%, ND = genera with non- significant 
abundance difference between the two lines [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Lachnospiraceae_ND3007_group (4.0%), Ruminococcaceae_
UCG- 008 (3.9%), and Marvinbryantia (3.4%) in the other 
direction. On the second axis, 25 genera had contributions 
larger than 1.33%, including 22 genera differentially abun-
dant between the lines. The genera Prevotella_9 (4.3%) 
drove the direction towards more HRFI samples, whereas 
the genera Ruminococcaceae_NK4A214_group (5.7%), 
Rikenellaceae_RC9_gut_group (5.6%), Ruminococcaceae_
UCG- 002 (5.1%), Family_XIII_AD3011_group (4.5%), NA_
Ruminococcaceae (4.4%), Christensenellaceae_R- 7_group 
(4.2%), NA_Muribaculaceae (4.0%), Ruminococcaceae_
UCG- 005 (3.6%), Prevotellaceae_UCG- 001 (3.3%) and 
Ruminococcaceae_UCG- 010 (3.2%) were the main contribu-
tors to the opposite direction, towards the LRFI line (contri-
butions higher than 3.2%).

The Shannon and Simpson α- diversities indexes showed 
significantly higher microbial diversity in the LRFI line than 
in the HRFI line (p < .01, Figure 4).

3.2 | Heritability estimates of 
microbiota traits

The gut microbiota composition can be highly heritable in 
pigs, but not for all genera. The h2 estimates for the Shannon 
and Simpson α- diversity indexes were 0.19  ±  0.08 and 
0.12 ± 0.06, respectively (Table 2). The estimated h2 of the 
genera ranged from null to 0.50  ±  0.12 for Clostridium_
sensu_stricto_1. Forty- eight genera had a h2 higher than 
0.125, and therefore were considered as heritable, including 
34 genera with h2 larger than 0.20. The majority of the genera 
that were differentially abundant between lines were herit-
able (33/52). Out of the 23 genera that did not differ between 
lines, 15 had significant h2. For the 48 heritable genera, the 
abundances per line are shown in Table S2 and Figure 5.

Heritable genera were also more abundant genera, while 
non- heritable genera tended to be at lower abundance (p < .05 
for a Student test applied to the average of log- transformed 
abundances). A Spearman correlation of 0.26 (p < .05) was 
estimated between the h2 estimates and the average of log- 
transformed abundances, while a correlation of 0.10 (p > .05) 
was obtained with the raw averages.

Comparison of the contributions of the heritable and non- 
heritable genera to the axes of NMDS showed a significant 
difference (p < .05) of contribution to the first axis between 
the two groups of genera: the average contribution of the her-
itable genera to axis 1 was 1.8%, whereas the non- heritable 
genera had an average contribution of 0.5%. The two groups 
of genera similarly contributed to the second axis (p = .08): 
the average contribution of the heritable and non- heritable 
genera to the second axis were 1.1% and 1.8%, respectively.

3.3 | Genetic correlations of microbiota 
traits with production traits

The two α- diversities indexes and 48 genera with significant 
h2 were included in three- variate analyses to estimate genetic 
correlations with production traits. The rg of the α- diversities 
indexes with production traits were negative and similar for 
the two metrics (Table  3). With ADG, DFI, and RFI, rg esti-
mates were lower than 0.27, and did not differ from zero. The 
highest rg were obtained with BFT (rg < −0.89 ± 0.04) and 
FCR (rg < −0.61 ± 0.52).

With the genera, rg ranged from −0.36  ±  0.24 
(Romboutsia) to 0.32  ±  0.12 (Streptococcus) with RFI, 
from −0.38  ±  0.55 (Ruminococcaceae_UCG- 005) to 
0.51 ± 0.31 (Fusicatenibacter) with FCR, from −0.63 ± 0.45 
(Desulfovibrio) to 0.60  ±  0.12 (Faecalibacterium) with 
DFI, −0.98  ±  NE (NA_Ruminococcaceae) to 0.86  ±  0.05 

F I G U R E  2  Non- metric 
multidimensional scaling (NMDS) based on 
the Bray– Curtis dissimilarity matrix of the 
genera community (a) and box plots of the 
individual coordinates per line on the two 
first axes of the NMDS (LRFI, low residual 
feed intake; HRFI, high residual feed 
intake), with p- value of the ANOVA test of 
the line differences (b) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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(Lactobacillus) with BFT, and from −0.48  ±  0.56 (NA_
Ruminococcaceae) to 0.73 ± 0.76 (Lachnospiraceae_UCG- 
001) with ADG. In Table 5, the rg of the 22 genera that had 
at least one significant genetic correlation with the perfor-
mance traits are presented. The production trait with the 
highest number of significant rg with genera was BFT (11 
significant correlations with genera). In addition, three gen-
era had rg estimates close to −1 with this trait (Desulfovibrio, 
NA_Ruminococcacaea, Lachnospira), but Z- tests could not 
be applied for these cases, as standard errors were not estima-
ble at the borders of the parameter space. The DFI and RFI 
showed significant rg with 7 and 3 genera, respectively, and 
there were no genera with significant rg with ADG and FCR. 

The genus Shuttleworthia had significant genetic correlations 
with two traits (DFI and BFT), and the genus Desulfovibrio 
had a significant rg with RFI and close to −1 with BFT.

From the 10 genera more abundant in the HRFI line, 6 
had significant rg with at least one production trait, and out 
of the 42 genera more abundant in the LRFI line, only 7 had 
significant correlations with the production traits. The other 9 
genera with significant genetic correlations with at least one 
trait were from the 23 genera that had similar abundances 
between the lines. Distribution between the LRFI and HRFI 
lines of the abundance of the 22 genera with significant rg 
are presented in Figure 5. The three genera with significant 
rg with RFI (Streptococcus, Desulfovibrio, and Prevotella_2) 

F I G U R E  3  Projection of the genera on the first and second dimensions in a non- metric multidimensional scaling (NMDS) applied to the 
Bray– Curtis matrix of the genera abundances. The arrows are coloured based on the contribution of each genus to the plan [Colour figure can be 
viewed at wileyonlinelibrary.com]
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had significant line abundance differences that were consis-
tent with the sign of the rg. The genera Streptococcus and 
Prevotella_2 were more abundant in the HRFI line and had 
a positive rg with RFI, whereas the genus Desulfovibrio was 
more abundant in the LRFI line, and had a negative rg with 
RFI. Out of the 14 genera with significant or very negative 
genetic correlations with BFT, genera Blautia, Lactobacillus, 
and Dorea were significantly more abundant in the HRFI 
line, and had positive rg with BFT, and the 5 genera 
Prevotella_7, Rikenellaceae_RC9_gut_group, Desulfovibrio, 
NA_Ruminococcaceae, and Lachnospira were more abun-
dant in the LRFI line, and had negative rg with BFT. Of the 
7 genera that had significant rg with DFI, only the genus 
Roseburia (more abundant in the LRFI line) had significant 
abundance difference between the two lines, and the sign of 
the rg was not consistent with the line differences.

Box plots showing genera abundances between the LRFI 
and HRFI lines for the other 53 genera are given in Figure S1.

4 |  DISCUSSION

The objective of the present study was to clarify if some com-
ponents of pig faecal microbiota have genetic relationships 
with production and FE traits, taking advantage of data col-
lected in two experimental pig lines divergent for RFI. The 
approach combined a comparison of the microbiota com-
position between the genetic lines, and quantitative genetic 
models to quantify the genetic control on the microbiota 
components and estimate genetic correlations with traits of 

interest. These approaches were applied to the subset of gen-
era counts that presented reasonably good properties (number 
of zeros and Gaussian distribution) to be submitted to linear 
mixed models. A substantial genetic control for these genera 
abundances was evidenced with the two approaches, and in-
teresting genetic relationships with the traits of interest were 
pointed out.

4.1 | Some genera are under genetic control

Most studies that compared microbiome data of pigs be-
tween low and high RFI groups are based on a phenotypic 
selection of extreme pigs in a population, so most of the 
reported differences would be driven by phenotypic rela-
tionships. In our study differences between animals were 
established by at least 9 generations of selection, therefore 
a large proportion of the line differences would result from 
genetic differences between pigs. Because of the limited 
size of the lines, the differences can result from an asso-
ciation with the selected trait, or from genetic differences 
arising by chance (i.e. drift; Hill (1972)). The quantitative 
models that combine microbiota and production traits for 
variance components estimations thus provide a comple-
mentary approach to evidence genetic relationships be-
tween FE and gut microbiota, but its power is more limited 
than line comparisons.

Some genera differentially abundant between lines 
pointed out to genera previously reported as associated with 
feed intake or feed efficiency. Among the most abundant 

F I G U R E  4  Box plots of Shannon and Simpson α- diversity indexes per line (LRFI, low residual feed intake (n = 295); HRFI, high residual 
feed intake (n = 293)) and p- value of ANOVA test of the line differences [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E  2  Estimated heritability (h2) and standard errors (SE) and descriptive statistics (minimum (Min), maximum (Max), mean and standard 
deviation (SD)) of α- diversity indexes and genera abundances

h2 ± SEa % Zeros Min Max Mean SD

α- diversity index

Shannon 0.19 ± 0.08 0 2.1 3.6 3.1 0.3

Simpson 0.12 ± 0.06 0 0.6 1.0 0.9 0.05

Genus

Clostridium_sensu_stricto_1 0.50 ± 0.12 0 2 2,574 488.6 442.9

Prevotella_1 0.44 ± 0.11 14 0 306 35.3 45.5

Blautia 0.39 ± 0.11 0 14 571 241.5 99.9

Prevotellaceae_NK3B31_group 0.36 ± 0.10 2 0 1,216 84.6 131.1

Lachnospiraceae_NK3A20_group 0.36 ± 0.10 2 0 1,663 77.7 186.8

Ruminococcaceae_UCG- 008 0.35 ± 0.11 2 0 307 89.1 58.7

Lachnospiraceae_ND3007_group 0.35 ± 0.11 3 0 109 24.4 17.0

Coprococcus_3 0.35 ± 0.10 1 0 432 48.4 37.1

Butyricicoccus 0.34 ± 0.11 4 0 68 18.2 12.4

Terrisporobacter 0.34 ± 0.11 0 13 1,070 279.0 193.7

Syntrophococcus 0.34 ± 0.10 6 0 1,480 74.4 119.9

Faecalibacterium 0.33 ± 0.11 0 1 527 169.1 98.3

Coprococcus_1 0.32 ± 0.10 13 0 257 14.7 24.4

Marvinbryantia 0.30 ± 0.10 5 0 141 20.7 17.9

Mitsuokella 0.30 ± 0.09 1 0 1,083 93.6 110.7

NA_Family_XIII 0.29 ± 0.09 5 0 285 24.1 36.2

Prevotella_7 0.28 ± 0.10 0 12 2,583 441.7 335.5

Prevotellaceae_UCG- 003 0.28 ± 0.10 3 0 240 18.9 24.4

Romboutsia 0.28 ± 0.10 4 0 235 36.0 39.9

Fusicatenibacter 0.27 ± 0.10 3 0 117 24.8 16.8

Campylobacter 0.27 ± 0.10 4 0 266 23.6 26.9

Olsenella 0.27 ± 0.09 8 0 735 42.6 87.5

Oscillospira 0.25 ± 0.09 14 0 85 9.7 10.6

Lactobacillus 0.24 ± 0.09 0 17 5,034 1,353.5 1,148.3

Roseburia 0.23 ± 0.10 2 0 346 79.5 64.2

Succinivibrionaceae_UCG- 001 0.23 ± 0.09 13 0 1,153 94.5 161.2

NA_Muribaculaceae 0.23 ± 0.08 0 0 727 68.0 73.1

Dorea 0.22 ± 0.09 1 0 648 67.8 47.8

Subdoligranulum 0.22 ± 0.09 0 11 583 175.2 93.2

Alloprevotella 0.22 ± 0.09 0 3 389 86.1 54.8

Ruminococcaceae_UCG- 014 0.22 ± 0.09 0 3 505 108.9 71.9

Dialister 0.20 ± 0.08 0 3 844 213.0 135.5

Shuttleworthia 0.20 ± 0.09 0 1 1,543 280.7 250.3

Streptococcus 0.20 ± 0.10 0 20 2,526 613.1 446.4

NA_Prevotellaceae 0.20 ± 0.09 0 2 817 233.6 102.9

Rikenellaceae_RC9_gut_group 0.20 ± 0.09 0 0 862 118.3 116.0

Lachnospiraceae_NK4A136_group 0.19 ± 0.08 5 0 253 21.6 23.0

Desulfovibrio 0.18 ± 0.09 1 0 192 21.5 20.8

Lachnospiraceae_UCG- 001 0.18 ± 0.08 14 0 83 12.0 12.7

(Continues)
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genera that differed between lines, the genus Lactobacillus 
was one of the more abundant ones, with higher abundance 
associated with high RFI. This genus is well described for 
its commonness and its important functions in gut health 
in animals (Dowarah et  al.,  2017; Valeriano et  al.,  2017). 
Lactobacillus is the most abundant member of the lactic 
acid producer bacteria, and is routinely used as a probiotic 

supplement in the swine nutrition because of its enzymatic 
activities in the digestion and absorption process of the 
nutrients in the gut (Kim et  al.,  2007). Several species of 
this genus have been reported to have effects on the studied 
traits (Giang et al., 2011; Shon et al., 2005; Yu et al., 2008). 
Lactobacillus has been reported to be enriched in the fae-
ces of more healthy pigs and positively correlated with feed 

h2 ± SEa % Zeros Min Max Mean SD

Ruminococcus_2 0.17 ± 0.09 6 0 168 31.1 26.8

NA_Ruminococcaceae 0.16 ± 0.08 0 19 749 135.5 89.3

Treponema_2 0.16 ± 0.08 7 0 761 58.4 98.2

Fournierella 0.14 ± 0.08 13 0 66 9.0 9.1

Prevotella_2 0.14 ± 0.08 0 0 340 75.0 56.0

Agathobacter 0.14 ± 0.07 0 5 823 253.7 148.1

Lachnospira 0.13 ± 0.07 1 0 263 44.0 33.0

Ruminococcaceae_UCG- 005 0.13 ± 0.07 0 0 665 72.6 73.2

Lachnospiraceae_UCG- 004 0.13 ± 0.07 16 0 25 5.3 4.6

Ruminococcaceae_UCG- 013 0.12 ± 0.07 14 0 73 7.8 8.6

Intestinimonas 0.10 ± 0.06 5 0 38 7.5 5.5

Turicibacter 0.10 ± 0.03 6 0 246 31.7 37.2

Intestinibacter 0.09 ± 0.08 0 1 258 39.5 24.3

Oribacterium 0.09 ± 0.06 1 0 151 42.9 24.5

Ruminiclostridium_5 0.08 ± 0.07 6 0 47 8.1 6.4

Family_XIII_AD3011_group 0.08 ± 0.06 1 0 303 37.0 33.7

Christensenellaceae_R- 7_group 0.07 ± 0.06 1 0 933 52.3 99.8

Lachnospiraceae_FCS020_group 0.07 ± 0.06 2 0 43 11.1 6.8

NA_NA_Bradymonadales 0.06 ± 0.06 19 0 356 23.1 37.6

Family_XIII_UCG- 001 0.06 ± 0.06 2 0 45 15.2 8.9

Mogibacterium 0.06 ± NE 5 0 130 12.9 12.6

Succinivibrio 0.05 ± 0.05 5 0 501 29.6 46.1

NA_Eggerthellaceae 0.05 ± 0.06 10 0 30 6.2 5.0

Ruminiclostridium_9 0.04 ± 0.05 7 0 36 7.3 5.8

Lachnoclostridium 0.04 ± 0.05 7 0 140 11.8 11.7

Ruminococcaceae_NK4A214_group 0.03 ± 0.01 1 0 244 36.4 35.2

Ruminococcaceae_UCG- 002 0.02 ± 0.01 0 1 584 69.4 67.5

NA_Lachnospiraceae 0.02 ± 0.01 0 62 661 226.0 76.3

Ruminococcaceae_UCG- 010 0.02 ± 0.01 2 0 970 40.9 76.1

Prevotellaceae_UCG- 001 0.01 ± NE 19 0 128 8.0 14.5

Prevotella_9 0.01 ± NE 0 34 2,935 1,180.6 561.1

NA_NA_Bacteroidales 0.01 ± NE 5 0 204 15.9 24.1

Coprococcus_2 0.00 ± NE 7 0 81 15.4 12.9

Peptococcus 0.00 ± NE 2 0 62 14.0 8.0

Ruminococcus_1 0.00 ± NE 0 27 408 143.1 51.9

Parabacteroides 0.00 ± NE 12 0 247 12.8 21.6

Abbreviation: NE, not estimable.
ah2 were obtained after log transformation. 

T A B L E  2  (Continued)
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efficient animals (Bergamaschi, Tiezzi, et  al.,  2020; Yang 
et al., 2017). Considering the better health of the LRFI pigs 
(Chatelet et al., 2018), the lower abundance of Lactobacillus 
in this line was surprising. Conversely, in a study on the fae-
cal microbiota at 80  days of age in Duroc pigs, the genus 
Lactobacillus was reported as one of the four dominant gen-
era in pigs with high RFI from 90 to 160 days of age and 
not in their low RFI counterparts (Si et  al.,  2020), which 
is consistent with the lower abundance of this genus in the 
LRFI line in our study. Similarly, Verschuren et  al.  (2018) 
reported a lower abundance of some OTUs belonging to 
the Lactobacillus genus in low FE than high FE gilts, but 
the reverse for boars. Overall, the favourable functions 
of the Lactobacillus genus could be partially covered by 
other genera in the LRFI pigs that showed more diversity 
than the HRFI animals. Prevotella, including Prevotella_9 
and Prevotella_7, was the second genus differentially 
abundant between lines. Si et al.  (2020) reported a slightly 

higher abundance for this genus in animals with low RFI 
(16.25%) in comparison to animals with high RFI (12.48%), 
which is in contrast with the higher abundance of the genus 
Prevotella_9 in HRFI pigs in our study, but is consistent 
with the more abundant Prevotella_7 found in the LRFI line. 
However, He et al. (2019) also reported a lower abundance 
of Prevotella_9 in more feed efficient (15.07%) compared to 
less feed efficient (17.85%) pigs. The prevalence of members 
of the Prevotella genera is related to their enhancer role in 
the digestion ability and nutrients extraction from high- fibre 
plants (Plummer et al., 2020). This complex and relatively 
diverse genus seems to contain multiple functions related to 
the sub- genera reported in the more recent studies that are 
not yet clearly identified. The genus Streptococcus, more 
prevalent in the HRFI line, is another member of the lac-
tic acid producer bacteria (du Toit et al., 2014). McCormack 
et al. (2017) reported a 2- fold lower abundance of the genus 
Clostridium_sensu_stricto_1 in low RFI pigs than high RFI 

T A B L E  3  Genetic correlationsa (SE) of α- diversity indexes and genera with production traits

RFI FCR DFI BFT ADG

α- diversity index

Shannon −0.26 ± 0.29 −0.61 ± 0.52 −0.30 ± 0.29 −0.89 ± 0.04a −0.21 ± 0.32

Simpson −0.27 ± 0.34 −0.93 ± NE −0.42 ± 0.34 −0.94 ± NE −0.31 ± 0.48

Genus

Blautia 0.20 ± 0.12 0.32 ± 0.23 0.33 ± 0.25 0.50 ± 0.22a 0.02 ± 0.26

Ruminococcaceae_UCG- 008 0.05 ± 0.23 0.26 ± 0.23 0.32 ± 0.23 0.54 ± 0.22a −0.01 ± 0.28

Coprococcus_3 −0.03 ± 0.24 0.27 ± 0.22 0.25 ± 0.21 0.56 ± 0.21a −0.12 ± 0.27

Syntrophococcus −0.04 ± 0.25 −0.18 ± 0.26 −0.29 ± 0.23 −0.60 ± 0.23a −0.03 ± 0.28

Faecalibacterium 0.20 ± 0.12 0.26 ± 0.30 0.60 ± 0.12a 0.41 ± 0.33 0.18 ± 0.32

Coprococcus_1 −0.09 ± 0.25 0.18 ± 0.25 0.30 ± 0.23 0.54 ± 0.24a 0.12 ± 0.29

Marvinbryantia 0.10 ± 0.24 0.19 ± 0.25 0.29 ± 0.28 0.47 ± 0.24a −0.04 ± 0.29

Prevotella_7 −0.19 ± 0.13 −0.11 ± 0.27 −0.28 ± 0.32 −0.71 ± 0.28a −0.08 ± 0.31

Lactobacillus 0.29 ± 0.24 −0.05 ± 0.19 0.51 ± 0.34 0.86 ± 0.05 a 0.30 ± 0.35

Roseburia 0.01 ± 0.14 −0.05 ± 0.32 0.35 ± 0.12a 0.16 ± 0.50 0.31 ± 0.65

Dorea 0.14 ± 0.16 0.05 ± 0.47 0.33 ± 0.43 0.66 ± 0.29a 0.10 ± 0.40

Shuttleworthia −0.13 ± 0.14 −0.05 ± 0.34 −0.51 ± 0.10a −0.76 ± 0.36a −0.28 ± 0.40

Streptococcus 0.32 ± 0.13a −0.24 ± 0.31 −0.17 ± 0.13 −0.49 ± 0.39 −0.38 ± 0.57

Rikenellaceae_RC9_gut_group −0.14 ± 0.29 −0.12 ± 0.37 −0.43 ± 0.38 −0.86 ± 0.06a −0.45 ± 0.44

Desulfovibrio −0.30 ± 0.13a −0.35 ± 0.65 −0.63 ± 0.45 −0.97 ± 0.01NE −0.30 ± 0.52

Lachnospiraceae_UCG- 001 −0.01 ± 0.33 −0.03 ± 0.36 0.55 ± 0.12a 0.39 ± 0.42 0.73 ± 0.76

Ruminococcus_2 0.08 ± 0.14 −0.14 ± 0.48 0.44 ± 0.12a 0.14 ± 0.49 0.18 ± 0.58

NA_Ruminococcaceae −0.16 ± 0.66 −0.18 ± 0.40 −0.54 ± 0.49 −0.98 ± 0.01NE −0.48 ± 0.56

Prevotella_2 0.30 ± 0.13 a 0.49 ± 0.52 0.33 ± 0.64 0.59 ± 0.57 −0.09 ± 0.49

Agathobacter 0.24 ± 0.13 0.19 ± 0.37 0.59 ± 0.12a 0.16 ± 0.66 0.53 ± 0.65

Lachnospira −0.03 ± 0.36 −0.15 ± 0.49 0.04 ± 0.34 −0.95 ± 0.02NE 0.38 ± 0.45

Lachnospiraceae_UCG- 004 0.09 ± 0.15 0.42 ± 0.44 0.47 ± 0.12a 0.14 ± 0.49 0.22 ± 0.66

Abbreviations: ADG, average daily gain; BFT, backfat thickness; DFI, daily feed intake; FCR, feed conversion ratio; RFI, residual feed intake; NE: not estimable.
aIndicate genetic correlations different from zero with a Z test (p < .05). 
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pigs, which is in contrast with our observed higher abun-
dance in the LRFI line.

The results of NMDS confirmed the hypothesis of changes 
in the intestinal microbial community as a result of selection 
for feed efficiency. Even though the genera contributions were 

consistent with their prevalence in the lines (for instance, the 
genera Lactobacillus and Prevotella_9 had negative loadings 
on the second axis, which corresponded to the direction of 
the HRFI line), the extent of the contributions was not related 
to the abundance in the two lines. For instance, genera from 

F I G U R E  5  Box plots of genera abundances per line (LRFI, low residual feed intake; HRFI, high residual feed intake) and p- value of ANOVA 
test of the line differences [Colour figure can be viewed at wileyonlinelibrary.com]
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the Ruminococcaceae family had an abundance lower than 
2% in the LRFI line, but they were among the highest positive 
contributors to the second axis.

Our results showed significant additive genetic variance 
for 61% of the analysed genera. Overall, observing signifi-
cant heritabilities for more than half of the analysed genera, 
which represented about 97% of the gut microbial commu-
nities, suggests that a considerable part of variability of the 
gut microbial community is under genetic control. However, 
some heritable genera were shown to differ between lines, 
but some differentially abundant genera were not heritable, 
and some heritable genera did not differ between the lines. 
This last situation could correspond to genera with limited 
genetic relationship with the selection criterion that would 
thus not respond to selection and be differentially abundant. 
The situation of genera that were differentially abundant be-
tween lines and not heritable in our study can be related to 
a limited power of our experimental design to estimate ac-
curately the variance components: only h2 estimates higher 
than 0.125 could be declared significant, so all genera with 
low heritability would be ignored in our results. Besides, the 
slight correlation between h2 estimates and the average gen-
era abundances found in our study is usually not expected in 
genetic studies, and is assumed to be due to the dataset trun-
cation (genera with more than 20% of zero were not analysed, 
which are genera that tend to be the lowest abundant) and 
consequently missing heritable genera with low abundances. 
Limited sequencing depth of the microbiota data would cause 
less precise quantification and high proportion of zeros, that 
result in imperfect analyses of genera with low abundancies.

Except in few cases, our h2 estimates were in the range 
of previously published values for these genera (Camarinha- 
Silva et  al.,  2017; Chen et  al.,  2018). For instance, Chen 
et al.  (2018) reported an h2 of 0.26 for genus Turicibacter, 
that is higher than our estimate (0.10  ±  0.03). Among the 
genera that now have sub- types (Prevotella, Coprococcus 
and Ruminococcus), we obtained different h2 values for the 
different types. For Prevotella, h2 ranged from 0.44 ± 0.11 for 
Prevotella_1 to 0.01 ± NE (Prevotella_9). Chen et al. (2018) 
have been reported an h2 of 0.23 for the genus Prevotella 
and 0.22 for the genus Coprococcus that are in agreement 
with our estimations for the Prevotella_7 (0.28 ± 0.10) and 
Coprococcus_1 (0.32  ±  0.10). The estimated h2 for genus 
Lactobacillus (0.24 ± 0.09) was higher than the reported value 
(0.08) by Chen et al. (2018) and lower than the value (0.34) 
reported by Camarinha- Silva et al. (2017). We obtained same 
h2 for the genus Blautia (0.39  ±  0.11) as Camarinha- Silva 
et al. (2017) (0.33 ± 0.14), and slightly lower h2 for the genus 
Alloprevotella (0.22 ± 0.09) than their report (0.34 ± 0.16). 
Some discrepancies with previously reported estimates 
could indicate that the genetic determinism of some genera 
is affected by the study conditions, either animal dependent 
(breed, age at sampling, etc.) or related to external conditions 

(feeding, antibiotic distributions, other management choices, 
etc.), and would need validation in larger and more diverse 
conditions.

4.2 | Some genera are genetically correlated 
with production and FE traits

Obtaining rg between genera and performance traits high-
lights the genetic- based interaction between feed efficiency 
components and gut microbiota composition. About 30% of 
the studied genera had a significant genetic correlation with a 
studied trait. However, the number of significant rg and their 
magnitudes differed between the five traits. For instance, we 
could not observe any significant rg with FCR and ADG, 
which might be due to the limited power of the analyses. This 
indicates that in our study, the strength of the genetic links 
between genera and ADG or FCR were lower than with the 
three other traits.

The negative rg of the Streptococcus genus with RFI 
and its higher abundance in the HRFI pigs in our study is in 
agreement with the report of Quan et al.  (2018). Similarly, 
our rg estimate with RFI for the genus Prevotella_7, and 
its lower abundance in LRFI pigs, was consistent with the 
prevalence of the Prevotellaceae family in low versus high 
FCR pigs reported by Quan et al. (2018). Finally, the genus 
Desulfovibrio, that had a negative rg with RFI and higher 
abundance in the LRFI pigs, is known as a sulphate- reducing 
bacteria that metabolizes sulphites and sulphates of the diet 
(Gibson, 1990; Kerr et al., 2011). The genus Desulfovibrio 
was also reported with a negative correlation with feed ef-
ficiency traits at the phenotypic level in Large White pigs 
by Bergamaschi, Tiezzi, et al. (2020). Identifying only three 
significant rg with RFI, and none with FCR, seemed very low 
numbers given the biological assumptions of the key role of 
gut microbiota on nutrient availability of the host. However, 
previous studies also showed limited associations between 
feed efficiency and single microbiota components (Yang 
et al., 2017). Besides biological mechanisms, this could be 
related to maternal genetic and litter effects involved in the 
variability of the microbial community that could not be fully 
accounted for in this analysis. When considering DFI, only 
the genus Roseburia showed significant rg. The positive rg 
with DFI was not in accordance with its higher abundance 
in the LRFI line, but He et al. (2019) also reported a higher 
abundance of this Roseburia in low FI pigs. Conflict in the 
line abundances and rg also suggests that other factors might 
be driving this genus abundance at the line level (maternal 
effects, litter effects), that would deserve further analyses.

The higher number of significant rg between genera and 
BFT could be partly due to the higher h2 of BFT, in compari-
son to the other traits, that could give more power to these es-
timations. The general composition of backfat in pigs includes 
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water, collagen, and lipids (mainly triacylglycerols) (Wood 
et al., 1989). Therefore, BFT can be directly affected by the 
metabolic functions of the microbial composition of the gut. 
He et al.  (2016) have found an association between fatness 
and OTUs annotated to the genera Blautia, Coprococcus, 
and Ruminococcus in the caecum samples of pigs. The 
considerable rg of the genera Blautia, Coprococcus_3, 
Coprococcus_1, and Ruminococcaceae_UCG_008 with BFT 
in our result is confirming this results of He et  al.  (2016). 
Of the 14 genera with significant rg with BFT, 8 genera 
(Blautia, Coprococcus_3, Syntrophococcus, Coprococcus_1, 
Marvinbryantia, Dorea, Shuttleworthia, and Lachnospira) 
belonged to the Lachnospiraceae family. Biddle et al. (2013) 
argued that Lachnospiraceae and Ruminococcaceae families 
have a role of decomposing substrates from indigestible plant 
materials of the diet (e.g. cellulose and hemicellulose) in the 
gut. Compounds resulting from such decomposition would be 
fermented and converted into the acetate, butyrate, and pro-
pionate (short- chain fatty acids— SCFAs) that are absorbable 
and useable as energy sources by the host (Biddle et al., 2013). 
The SCFAs also have essential roles in the composition of the 
gut environment, maintaining electrolyte balance, and pro-
viding energy for host cells as well as gut microbiota (Rios- 
Covian et al., 2016). Therefore, more availability of SCFAs 
in the gut environment by the activity of bacteria belonging 
to the Lachnospiraceae and Ruminococcaceae families, 
which have systematic impacts on lipid metabolism and fat 
storage could justify the chained relationship of these gen-
era with BFT. Given the importance of the BFT as an in-
dicator for carcass payment and reproductive traits of pigs 
(Roongsitthichai & Tummaruk, 2014), the genetic control of 
the Lachnospiraceae and Ruminococcaceae families and the 
genera belonging to them can have major economic impor-
tance in the pig breeding.

4.3 | α- diversity indexes are under genetic 
control and are related to FE traits

Higher microbial diversity is often considered as an attrib-
ute of gut health, as animals with the more diverse microbial 
community are potentially more capable to better deal with 
pathogenic microbes (Fouhse et al., 2016). It has been more 
generally linked to increased functional redundancies among 
the microbial community, which can contribute to a more sta-
ble metabolic state and better resilience to face larger varia-
bility of feeding resources (Moya & Ferrer, 2016). Therefore, 
microbial diversity is beneficial for the growth performance 
and productivity of animals (Fouhse et al., 2016; Hildebrand 
et al., 2013). This relationship with feed efficiency was con-
firmed by the negative rg between the α- diversity metrics 
and the five traits. Negative correlations imply that select-
ing animals for improved feed efficiency (lower RFI or FCR) 

will result in increased intestinal microbial community di-
versity. In the literature, genetic parameters for α- diversity 
metrics are rarely reported. Lu et  al.  (2018), in a study on 
longitudinal diversity of faecal microbiota in swine, found 
an h2 estimate of 0.04 ± 0.04 for the Shannon index at wean-
ing and 0.18 ± 0.08 at week 15 of age. In another study on 
rumen microbial features in cattle, an h2 of 0.23 ± 0.09 for 
the Shannon index and 0.19 ± 0.08 for the Simpson index 
have been reported (Li et al., 2019). Our estimates of h2 for 
both metrics fell into the range of those values. The obtained 
genetic correlation between the Shannon index and ADG 
in the present study was lower than −0.53 ± 0.29 reported 
by Lu et al. (2018). Nevertheless, we have found a stronger 
rg between the Shannon index and BFT than their reports 
(−0.53  ±  0.23 and −0.45  ±  0.25), but given the standard 
errors in both studies, our estimates are not statistically dif-
ferent from theirs. Given the genetic properties found in our 
study and the links reported with gut health and immunity, 
those synthetic descriptors of gut microbiota composition 
could be promising traits for selection.

4.4 | Potential for selection and management 
in pig production

Our results clearly indicate a genetic basis for part of the gut 
microbiota composition involved in the variation of feed ef-
ficiency (Streptococcus, Prevotella_7, Desulfovibrio) and 
body composition traits (Lachnospiraceae family). However, 
selection to change single microbiota components in order 
to improve performance traits seems contradictory with the 
beneficial relationships found between performance traits 
and microbiota diversity. In that respect, selecting for indi-
cators of microbiota diversity, such as the Shannon index, 
could be a more generic option. This could also be less de-
pendent on the microbiota specificities due to breeding con-
ditions and sampling characteristics. Indeed, in addition to 
the genetic, multiple factors can affect the relative abundance 
of microbiota components and their relationships with traits, 
including breed and age at sampling (Bergamaschi, Tiezzi, 
et al., 2020), breeding environment (Le Sciellour et al., 2019), 
and of course diets (Verschuren et al., 2018). Therefore, more 
generic indicators of microbiota composition, such as diver-
sity indexes, or mixed models including a microbiability 
component (Weishaar et al., 2020), might be more relevant 
for selection. Finally, for some genera (e.g. Roseburia) the 
genetic relationships seemed to be also depend on other fac-
tors that could not be accounted for in the present analysis. 
Deciphering the role of these different factors (genetics, lit-
ter and maternal for instance) would clarify the potential for 
use of these microbiota components to orientate pig perfor-
mances via different levers of management, including the use 
of pro-  and prebiotics, as proposed by Maltecca et al. (2020).
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5 |  CONCLUSION

Our results showed substantial effects of genetics on the vari-
ability of gut genera community and their relationship with 
the feed efficiency in pigs. Both analyses of line effect and 
genetic correlations with production traits revealed a substan-
tial genetic basis for the links between feed efficiency traits 
and genera and individual diversity of the gut microbial com-
munity. The higher diversity in more feed efficient pigs might 
be related to better gut health and resilience to feed changes. 
Genera annotated to the Lachnospiraceae family had more sig-
nificant correlations with the studied traits than genera from 
other families. Functional analyses will be needed to validate 
the underlying mechanisms. The robustness of these findings 
requires further validations in different breeding conditions. 
However, they offer promising perspectives for selection for 
feed efficiency using gut microbiome composition in pigs.
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