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Abstract: Although many reports characterize the transcriptional response of Arabidopsis seedlings
to microgravity, few investigate the effect of partial or fractional gravity on gene expression. Un-
derstanding plant responses to fractional gravity is relevant for plant growth on lunar and Martian
surfaces. The plant signaling flight experiment utilized the European Modular Cultivation System
(EMCS) onboard the International Space Station (ISS). The EMCS consisted of two rotors within a
controlled chamber allowing for two experimental conditions, microgravity (stationary rotor) and
simulated gravity in space. Seedlings were grown for 5 days under continuous light in seed cassettes.
The arrangement of the seed cassettes within each experimental container results in a gradient of
fractional g (in the spinning rotor). To investigate whether gene expression patterns are sensitive to
fractional g, we carried out transcriptional profiling of root samples exposed to microgravity or partial
g (ranging from 0.53 to 0.88 g). Data were analyzed using DESeq2 with fractional g as a continuous
variable in the design model in order to query gene expression across the gravity continuum. We
identified a subset of genes whose expression correlates with changes in fractional g. Interestingly,
the most responsive genes include those encoding transcription factors, defense, and cell wall-related
proteins and heat shock proteins.

Keywords: spaceflight; fractional gravity; RNA-seq; Arabidopsis; gene expression; heat shock proteins

1. Introduction

Plant cultivation will be essential during long duration space missions to supplement
nutritional needs of the crew, purify air and water, and provide psychological benefits
to the crew [1]. One unfamiliar stress that spaceflight and extraterrestrial environments
pose to plant growth is the lack of or reduced gravity. Since both the Moon and Mars have
gravitational fields that are a fraction of Earth’s gravity, partial gravity research is especially
relevant to near term space exploration [2].

On Earth, slowly rotating platforms, called clinostats, can be used to simulate micro-
gravity. However, a certain amount of mechanical stimulation occurs during clinorotation
that can be difficult to disentangle from gravitational response [3]. Similarly, partial gravity
can be simulated on Earth through the use of clinostats affixed with centrifuges [4], with
the same limitations as simulating microgravity. True reduction of gravitational stimuli
only occurs during spaceflight where the orbital acceleration of the spacecraft counteracts
the pull of Earth’s gravity and renders organisms onboard the craft “weightless”. In addi-
tion to providing a ‘1 g’ control for flight experiments, programmable centrifuges, such
as the (recently decommissioned) European Modular Cultivation System (EMCS) on the
International Space Station (ISS), allowed for the generation of partial gravitational forces
during spaceflight.

Plant transcriptional responses to microgravity conditions onboard spacecraft have
been characterized in numerous studies [5–14]. Differing methodology and hardware

Life 2021, 11, 1010. https://doi.org/10.3390/life11101010 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-1126-5592
https://orcid.org/0000-0001-9421-1420
https://doi.org/10.3390/life11101010
https://doi.org/10.3390/life11101010
https://doi.org/10.3390/life11101010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11101010
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11101010?type=check_update&version=2


Life 2021, 11, 1010 2 of 17

choices confound direct comparisons between these studies, but Arabidopsis gene expression
alterations in response to spaceflight have been observed for a variety of protein functional
groups, including heat shock proteins (HSP)s [7,10,11], plant defense proteins [8], light
response proteins [12], and cell wall proteins [9,10]. However, only a few spaceflight
experiments to date have examined gene expression under fractional gravity in a systematic
fashion [15,16].

The studies that have examined the effects of partial gravity during spaceflight have
revealed a suite of transcriptional and physiological changes that occur with varying
intensity as gravity increases from microgravity towards 1 g. Some physiological responses
vary in a step-like fashion with increasing gravity. For example, blue light phototropism in
roots is highly apparent in microgravity but decreases rapidly as soon as plants receive
gravitational stimuli [17]. This physiological change is mirrored on a transcriptional level,
with genes related to photosynthesis and light response decreasing as gravity increases [15].
Other genes appear to exhibit curved or J-shaped dose-response to gravitational stimuli.
Herranz et al. [15] observed more differentially expressed genes (DEGs) at low (<0.1 g)
gravity than either microgravity or higher g levels. These DEGs include many genes
associated with plant stress response. Clinostat studies have also demonstrated this J-
shaped response to gravitational stimuli in regard to nucleolus size—a proxy for ribosome
biogenesis [4]. In this case, the nucleolar area decreased as gravity increased from simulated
microgravity to 0.18 g then slowly increased again with increasing gravitational force.

Increasing g-gradients to above 1 g, known as hypergravity, can provide further insight
on plant response to gravitational stimuli. Hypergravity induces distinct changes in plant
cell wall composition, such as increasing the amount of cell wall polysaccharides and
overall cell wall rigidity [18]. Hypergravity also shifts the balance between meristematic
cell growth and cell proliferation, with greater cell growth but lower cell proliferation
under higher g levels [19]. Both cell wall remodeling and cell growth alterations occur in
an inverse manner to microgravity-grown plants, supporting the idea that gradients in
gravitational force can alter plant structure and function in predictable patterns [18,19].

In our experiments, we investigated plant transcriptional responses along a gradient
from 0.55 g to 1 g using the EMCS hardware. The independently controlled rotors on
the EMCS allowed us to simulate this gradient of gravity along one rotor and compare
with simultaneously grown microgravity samples on a second rotor within the same
environmental chamber. We identified 101 genes which show clear patterns of response
to fractional g levels. These include several transcription factors, genes involved in cell
wall modification, plant defense responses and heat shock proteins. To further investigate
the effects of altered gravity on key DEGs, we examined the response of select heat shock
protein genes to hypergravity.

2. Materials and Methods
2.1. Flight Preparation

The plant signaling experiment was carried out in the EMCS using the TROPI-like
seed cassettes previously described [20]. Whatman grade 17 CHR chromatography paper
and black gridded polyethersulfone (PES) membrane (PALL Life Sciences, 65561) were
cut to fit the seed cassettes. The blotter paper was pre-soaked in 0.5X Murashige and
Skoog (MS) media (without sucrose), and blotter paper and membranes were sterilized
by autoclaving. Seeds were surface sterilized and allowed to dry. Healthy seeds with
well-developed endosperm were selected under a dissecting microscope and mounted
to the gridded membrane using guar gum. Seeds were positioned with the micropyle
pointing down (away from lights) with 27 seeds/membrane. Gridded membrane/blotter
paper sandwiches were fixed to the base plate, the covers were attached and sealed with
aluminum foil tape (3M, 425). Seed cassettes were assembled for flight at the NASA Ames
research facility and loaded into experimental containers (ECs) 35 days prior to scheduled
flight. Samples were transported to the ISS aboard STS-135 (launched in July 2011) and
returned on SpaceX Dragon in March 2013.
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2.2. Spaceflight

Onboard the ISS, ECs were loaded into the EMCS by the attending astronaut. The
experiment was initiated by remotely controlled hydration. The plant signaling experiment
was grown for 5 days under continuous light illuminated by white LEDs at the shoot side
of the cassettes. Images were obtained every 6 h from cameras located within the EMCS
chambers. Temperature was maintained at 24 ◦C with ~20% O2 and ethylene scrubbing.
The EMCS chambers were purged before each run and CO2 levels gradually increased
to equilibrate with the cabin. At the end of the experiment, seed cassettes were removed
from the ECs and frozen immediately in the onboard −80 freezer (MELFI). The simulated
gravity rotor was removed and processed first. Seed cassettes remained frozen onboard the
ISS. Samples were maintained at freezing temperatures during return via Space-X Dragon,
after splashdown and until delivery to the laboratory. Samples were then stored at −80 ◦C
until processing for RNA.

2.3. RNA Isolation

Seed cassettes were processed one at a time. A single seed cassette was retrieved from
the freezer and the cover was removed. The cassette base was placed on a cold platform
and RNA-later (Ambion, Waltham, MA, USA) was added. The seedlings were separated
into root and shoot tissues and stored at 4 ◦C in RNA-later for 24 h followed by storage
at −20 ◦C until RNA preparation. RNA was isolated from each root sample using the
RNAqueous Micro kit (Ambion, Waltham, MA, USA). RNA recovery and integrity was
monitored by Bioanalyzer. Typical RNA integrity number (RIN) exceeded 9.5.

2.4. Illumina Sequencing

Library preparation and sequencing was carried out by the Genomic Sciences Lab-
oratory at North Carolina State University. Briefly, PolyA RNA was captured using the
NEBNext Poly (A) mRNA magnetic isolation module and libraries were prepared using
the ultra-directional library kit (New England Biolabs, Ipswich, MA, USA). Sequencing
was carried out on 3 lanes of Illumina HiSeq2500 (125 bp single end reads). For each
g level, we examined 4 replicate samples and 16 replicates for microgravity. For this study,
we compared the fractional g levels, 0.53 g, 0.65 g, and 0.88 g (Figure 1, seed cassette
positions 1, 2, and 4) and microgravity. Due to the fact that some of the seed cassettes in
position 5 (1 g) did not maintain moisture and dried out, these cassettes were not analyzed.
The 0.76 g level cassettes were used for a separate analysis.
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Figure 1. Overview image taken on day 5 during the plant signaling flight experiment showing an
experimental container and the arrangement of the five seed cassettes with respect to the center of
the centrifuge. Fractional g levels at each cassette position are indicated. The g levels investigated in
this study are boxed in red.

2.5. Sequencing Analysis and Identification of Differentially Expressed Genes

Fastq files were aligned to the Arabidopsis TAIR10 genome using the Araport11 anno-
tation with HiSat2 [21]. The coverage mapping rate across all samples was 97%. Counts
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per gene were generated using HTSeq-count [22] and the Araport11 annotation [23]. The
count table was imported into R version 3.6.3 [24]. Batch corrections were performed
using the svseq package, creating two surrogate variables [25]. Differentially expressed
genes were determined using DESeq2 [26]. To remove genes with low expression, those
with rowMeans < 1 were removed prior to differential expression analysis. We analyzed
genes for a response due to fractional gravity levels using DESeq. The model statement
for this analysis, Dataset (~Dataset + Gravity), treated Gravity as a continuous variable.
Genes were selected as responsive to fractional g if they had an adjusted p-value of <0.001
resulting in 382 genes. All other arguments for results were left as default. Manual curation
of these 382 genes yielded 101 genes that exhibited an increasing or decreasing sequential
fractional g response between µg and 0.88 g. These 101 genes were categorized based on
their patterns of expression (Figure 1): (1) increasing or decreasing in a dose-dependent
response, (2) increasing (decreasing) to a peak value, and (3) increasing or decreasing to a
plateau or threshold.

2.6. Hypergravity Stimulation

Surface sterilized Arabidopsis (Col-0) seeds were stratified at 4 ◦C in darkness for
2 days. Then, 0.5X MS media (M576, Phytotech Labs, Lenexa, KS, USA) and solidified by
1% (w/v) Agar (Agar-M, Sigma Aldrich, St. Louis, MI, USA) was prepared in 6 well plates.
Seeds were plated on media in two rows (8 seeds/row/plate) and incubated vertically in a
growth chamber under long day (16 h light/8 h dark) conditions. Four-day old seedlings
were subject to a hypergravity stimulus (6.5× g) for 4 h in the dark in a table-top centrifuge
(Hermle Z300) fitted with a swinging-bucket plate rotor. Control seedlings were kept
vertical in the dark for the same duration of time.

2.7. RNA Preparation, cDNA Synthesis, and Quantitative RT-PCR

RNA was isolated from control or hypergravity stimulated seedlings as described
above and treated with rDNase I (DNAfree, Invitrogen, Waltham, MA, USA). First-strand
cDNA was synthesized with random hexanucleotide primers and Multiscribe reverse tran-
scriptase according to manufacturer’s specifications (Applied Biosystems, San Francisco,
CA, USA). Quantitative reverse transcription PCR (qRT-PCR) reactions were prepared
with a master-mix (Power SYBR Green, Applied Biosystems, San Francisco, CA, USA) and
carried out in triplicate using cDNA equivalent to 20 ng of RNA input. Transcript abun-
dances of the genes of interest were quantified using gene specific primers and PP2A as an
endogenous control (Sequences of primers used in this study are shown in Table S3). All
qRT-PCR reactions were carried out in a StepOnePlus thermal cycler (Applied Biosystems,
San Francisco, CA, USA) and relative expression values were calculated according to the
∆∆CT method [27] by instrument software (StepOne v2.2.2).

3. Results and Discussion
3.1. A Subset of DEGs Show a Fractional g Response

The primary goal of the plant signaling spaceflight experiment was to identify dif-
ferentially expressed genes between microgravity and the on board ‘1 g’ control. For this
purpose, one rotor within the EMCS was kept stationary (microgravity) and the second
rotor was set to a rotational speed so as to simulate ‘1 g’. The positioning of the seed
cassettes within the EMCS rotors however, resulted in a stepwise gradient from 0.53 g to
1 g across the five seed cassettes within each experimental container in the ‘1 g’ control
rotor as illustrated in Figure 1.

When the fractional g gradient across the samples in the actively spinning rotor is
considered, 101 genes exhibited dose-associated expression levels that occurred in one of
three different patterns of expression: (1) a dose-dependent linear increase or decrease, (2) a
“peak up” or “peak down” response where expression levels peak or dip at an intermediate
g level, and (3) a threshold response where expression levels are induced (or repressed)
to a threshold g level. These fractional g responsive expression patterns derived from
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representative genes in each group are illustrated in Figure 2. The 101 genes along with the
normalized count data for all the replicate samples are listed in Table S1.
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Figure 2. Patterns of genes which show response to fractional g levels. Genes for each cate-
gory were scaled between 0 and 1 using the following formula: counts_normalized = (counts
− min(counts))/(max(counts) − min(counts)). The boxplots indicate the expression range of the top
genes in each of the samples; sixteen samples for microgravity and four samples each for the increas-
ing fractional g samples (0.53 g, 0.65 g, and 0.88 g). (a) The top ten genes showing a dose-dependent
increase in expression in response to increasing g levels; (b) top ten genes with a dose-dependent
decrease in expression levels; (c) top ten genes with an increased expression of similar levels at any
g level tested; (d) top ten genes with decreased expression to similar levels and any g level; (e) the
nine genes that have increased expression at low g levels that peaks which is then reduced at the
highest g levels tested; (f) the eight genes that have decreased expression at low g levels that increases
at the highest g levels.

3.2. Gene Ontology (GO) Classification of Fractional g DEGs

In order to identify biological functions or pathways that may be over-represented
in the 101 fractional g responsive DEGs, the gene list was queried using AgriGO2 and
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ExPath2. Table 1 shows the significantly enriched (FDR, 0.05) gene categories. These genes
include transcription factors, genes with chaperone function, cell wall associated genes,
and genes involved in defense responses. The individual genes in each of these categories
are shown in Table 2.

Table 1. Gene ontology (GO) analysis of fractional g responsive DEGs.

GO ID GO Term Hit No. Percentage p-Value FDR

GO:0006355 regulation of transcription, DNA-templated 20 17.7 7.8 × 10−5 0.0082
GO:0009408 response to heat 9 8.0 1.8 × 10−5 0.0082
GO:0009607 response to biotic stimulus 14 12.4 0.00046 0.017
GO:0022622 root system development 8 7.1 0.00074 0.021
GO:0071554 cell wall organization or biogenesis 17 15.0 0.002 0.044

3.3. Regulation of Transcription

These genes comprise the largest functional category identified in the dataset with
20 transcription factors and coactivators. The expression of 13 transcription factors increases
with increasing g while 7 transcriptional factors have higher expression in micro g and
decrease with higher g levels. Expression patterns of representative transcription factor
genes are shown in Figure 3.
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Figure 3. Transcription factors with fractional g responses. Each dot on the graph shows the nor-
malized gene expression level for the transcription factor in the sixteen microgravity replicates (µg),
and the four replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level
in that gravity level. Shown are three transcription factors with a gravity-level responsive increase
in transcription (a) NFYA1, (b) SPL6, and (c) TCP7. (d) HM2 shows a dose-dependent decrease in
transcript levels in response to increasing gravity levels. (e) GATA9 and (f) ANAC009 both show
a threshold response, where the transcription level is reduced in response to 0.53 g, and reaches a
plateau at 0.65 g and 0.88 g.
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The function of the majority of these transcription factors appears to be in growth and
differentiation; at least 8 of the transcription factors are implicated in root development,
not surprisingly, as the tissue assayed was 5-day old roots. Four of the transcription factors
with a linear, dose-dependent increase in expression with increasing gravity levels, WOX4,
MYB88, SPL6, and TCP7 [28–31], are involved in developmental progression, maintenance,
patterning, and growth. SPL6 may also play a role in plant responses to bacterial pathogens
and was shown to activate a subset of defense related genes [32]. Additionally, MYB88
has been associated with abiotic stress responses [33]. NAC and bHLH transcription
factors are generally associated with environmental stress responses. However, the specific
functions of these particular transcription factors, NAC97 and bHLH99, have not been
experimentally validated in Arabidopsis. CDF2 is implicated in blue light signaling and was
shown to regulate miRNA accumulation through direct transcriptional control as well as at
a post-transcriptional level [34].

The transcription factor LNK1 shows a peak induction at 0.65 g and then reduces
expression at 0.88 g. LNK1 is one of four night light inducible and clock-regulated (LNKs)
proteins in Arabidopsis involved in integrating light and circadian signaling [35].

Six transcription factors are upregulated in response to gravity in a threshold-type
manner. These genes are induced at 0.53 g, compared to the microgravity samples. How-
ever, their expression seems to plateau between the next two g levels (0.65 g and 0.88 g).
Four of these transcription factors, AGL12, MYB53, NFYA1, and OBP3, are associated with
growth and development and are expressed highly in root tissue. MYB53 is a member of a
small subgroup of R2R3 MYB transcription factors. MYB53 expression was induced within
6 h after gravistimulation in the region of the root where lateral roots initiate [36]. NFYA1
plays a role in modulating growth in response to salt stress [37]. OBP3s induced in roots
in response to auxin and salicylic acid (SA) and overexpression of OBP3 results in altered
root and root hair development [38]. A specific role for bHLH27 has not been functionally
verified. The heat stress transcription factor HSFA3 is induced in response to heat stress
and regulates a suite of targets that improve tolerance to heat and oxidative stress [39,40].

Table 2. Enriched categories of genes based on GO analysis.

Transcription Factors

Expression
Pattern

Accession
Number Gene Symbol

Defense
Related

Root
Development

a,b Touch
Responsive

c Hyper g
Responsive

d Parabolic
Flight

linear up

AT1G46480 WOX4 +
AT1G69170 SPL6 +
AT2G02820 MYB88 +
AT5G23280 TCP7 ↓
AT5G50820 NAC97 ↑
AT5G65320 BHLH99 ↓
AT5G39660 CDF2

peak up AT5G64170 LNK1

threshold up

AT1G71692 AGL12 +
AT3G55370 OBP3 + +
AT4G29930 BHLH27
AT5G03720 HSFA3
AT5G12840 NYFA1
AT5G65230 MYB53 +

linear down
AT3G60630 HM2 +
AT5G15210 ZFHD3 ↓
AT5G21120 EIL2

threshold
down

AT1G26870 ANAC009 +
AT2G36400 GRF3 + + ↓
AT4G32890 GATA9 ↓
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Table 2. Cont.

Heat Shock Proteins

Expression
Pattern

Accession
Number Gene Symbol

Defense
Related

Root
Development

a,b Touch
Responsive

c Hyper g
Responsive

d Parabolic
Flight

linear up AT1G76700 DNAJ (ATJ10) ↑ down
AT4G29920 SMXL4

peak up AT1G74310 HSP101 down

threshold up

AT2G20560 DNAJ
AT3G12580 HSP70 ↑ down
AT3G14200 Chaperone DNA J domain ↑ down
AT5G03720 HSFA3 ↑
AT5G52640 HSP90.1 ↑ down

peak down AT4G21870 HSP15.4 up

Defense Related

Expression
Pattern

Accession
Number Gene Symbol

Defense
Related

Root
Development

a,b Touch
Responsive

c Hyper g
Responsive

d Parabolic
Flight

linear up
AT1G11960 OSCA1.3 + ↑
AT3G26450 Polyketide cyclase +
AT4G23570 SGT1A +

peak up
AT1G18870 ICS2 +
AT3G17690 CNGC19 +
AT4G23190 CRK11 +

threshold up

AT1G29340 PUB17 + ↑
AT3G22600 LTPG5 +
AT4G37410 CYP P450 81F4 +
AT5G41180 LRR kinase +

peak down AT4G14640 CML8 +

threshold
down AT5G66590 CAP Antigen 5 + ↑

Cell Wall Related

Expression
Pattern

Accession
Number Gene Symbol

Defense
Related

Root
Development

a,b Touch
Responsive

c Hyper g
Responsive

d Parabolic
Flight

linear up AT3G21190 MSR1
AT5G10230 ANN7

peak up AT2G32990 GH9B8 ↑
AT4G36360 BGAL3 ↑

threshold up
AT1G70370 PGL3 ↑
AT5G22740 CSLA2
AT5G49340 TBL4

linear down
AT2G34070 TBL3
AT3G59850 Pectin lyase

peak down

AT1G23480 CSLA3
AT3G61490 Pectin lyase 3
AT4G19410 PAE7
AT5G67390 Glycosyl transferase like
AT1G65985 Transmembrane protein

threshold
down

AT3G05910 PAE12
AT3G53520 UXS1

For each of the categories, accession numbers and common names of genes are listed along with their representative patterns of expression
based on the grouping in Figure 1. Additional information is included on function and response as described in the text. Genes that have
been associated with a particular function are indicated by a + symbol. Up or down arrows indicate the direction of the response to the
stated stimulus relative to non-treated control. a,b [41] c [42] d [43].
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Six of the transcription factors showed expression patterns decreasing with increas-
ing g. Of the three genes with a linear, dose-dependent decrease in expression, HM2 is
involved in development and patterning and maintaining organization of the meristem [44].
Although homeodomain transcriptional factor family proteins are also frequently involved
with development and patterning, little information is known or experimentally validated
for the specific function of ZFHD3. EIL2 is associated with ethylene signaling [45].

Three transcription factors decrease and reach a steady level with increasing g. ANAC009,
(also known as FEZ), is a regulator of cell division and development in the root cap [46].
GRF3 is a regulator of developmental responses, tissue development, and differentia-
tion [47]. GRF3 also serves as an integrator connecting biotic and abiotic stress responses
with developmental progression [48]. GATA9 is a class IV Zn-finger transcription factor.
Although the 28 member GATA transcription factor family in Arabidopsis is broadly associ-
ated with light and nutrient responses, functional validation of a specific role for GATA9
has not been described [49].

3.4. Transcription Factor Binding Sites and Putative Targets

We investigated whether target binding sites had been identified for any of the tran-
scription factors reported here. Surprisingly, we found only five of the TFs have directly
assayed motifs [50–52]. We next checked for overlap between putative targets and genes
in the 101 list. The target binding sequence of OBP3 has low information content and is
present in the promoter region of over 15,000 genes [52]. Of these 24 putative targets are
present in the 101 gene list (Tables S2 and S3). These genes include other transcription
factors (MYB88, GRF3, GATA9, CDF2, HM2 and TCP7) and several cell wall related genes.
Six genes are TCP7 targets, including two transcription factors HSFA3 and NFYA1. GATA9
also targets NFY1A and PGL3 is a target of MYB88 (Tables S2 and S3).

It is noteworthy, that several of the transcription factors with a response to fractional g
have not been functionally studied in Arabidopsis despite the fact that they are members of
well-characterized transcription factor families (e.g., GATA, MYB, bHLH, NAC). Perhaps
their response to fractional g can provide insights into their functions and regulatory targets.

3.5. Defense Responses

Ten out of the twelve genes implicated in biotic interactions and defense responses
show increased expression across the fractional g gradient while two of them decrease with
increasing g. Examples of the defense related genes are shown in Figure 4.
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Figure 4. Defense related genes with fractional g responses. Each dot on the graph shows the normal-
ized gene expression level for the transcription factor in the sixteen microgravity replicates (µg), and
the four replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level in
that gravity level. Shown are three representative genes involved in defense: (a) ICS2 and (b) CRK11
expression increases with peak expression at 0.65 g while (c) CML8 expression levels decrease with a
dip at 0.65 g.
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Among the defense related genes whose expression increases with g levels are two
Ca2+ channels, CNGC19 and OSCA1.3. Both of these are implicated in PAMP-triggered
immunity. CNGC19 was rapidly induced in Arabidopsis roots in response to fungal elicitors
and immune responses were compromised in cngc19 mutants [53]. OSCA1.3 was shown
to be rapidly phosphorylated in response to PAMP treatment and is implicated in early
immune signaling [54]. Also in this group are two receptor like kinases, the cysteine rich
receptor like kinase, CRK11, and a leucine rich receptor kinase (LRR kinase). Expression of
CRK11 was shown to increase rapidly in response to Ozone (O3) as well as various bacterial
and fungal elicitors [55]. SGT1A is a co-chaperone protein that is induced upon pathogen
infection [56] and is involved in stabilizing JA receptor complexes [57]. Additionally,
isochorismate synthase (ICS1) catalyzes the first step in SA biosynthesis [58].

Interestingly, expression of CML8 (which encodes for an atypical calmodulin like
protein) decreases with increasing g. CML8 was reported to be a positive regulator of
SA-mediated plant immunity to bacterial pathogens. CML8 gene expression was rapidly
induced upon infection, and over-expression of CML8 resulted in increased resistance [59].

3.6. Cell Wall

At least sixteen of the genes encode for enzymes involved in cell wall synthesis or
modifications. Nine of the sixteen cell wall associated genes exhibit a decrease in expression
with increasing g levels (Figure 5).

Life 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

CRK11 expression increases with peak expression at 0.65 g while (c) CML8 expression levels de-
crease with a dip at 0.65 g. 

Among the defense related genes whose expression increases with g levels are two 
Ca2+ channels, CNGC19 and OSCA1.3. Both of these are implicated in PAMP-triggered 
immunity. CNGC19 was rapidly induced in Arabidopsis roots in response to fungal elici-
tors and immune responses were compromised in cngc19 mutants [53]. OSCA1.3 was 
shown to be rapidly phosphorylated in response to PAMP treatment and is implicated in 
early immune signaling [54]. Also in this group are two receptor like kinases, the cysteine 
rich receptor like kinase, CRK11, and a leucine rich receptor kinase (LRR kinase). Expres-
sion of CRK11 was shown to increase rapidly in response to Ozone (O3) as well as various 
bacterial and fungal elicitors [55]. SGT1A is a co-chaperone protein that is induced upon 
pathogen infection [56] and is involved in stabilizing JA receptor complexes [57]. Addi-
tionally, isochorismate synthase (ICS1) catalyzes the first step in SA biosynthesis [58]. 

Interestingly, expression of CML8 (which encodes for an atypical calmodulin like 
protein) decreases with increasing g. CML8 was reported to be a positive regulator of SA-
mediated plant immunity to bacterial pathogens. CML8 gene expression was rapidly in-
duced upon infection, and over-expression of CML8 resulted in increased resistance [59].  

3.6. Cell Wall 
At least sixteen of the genes encode for enzymes involved in cell wall synthesis or 

modifications. Nine of the sixteen cell wall associated genes exhibit a decrease in expres-
sion with increasing g levels (Figure 5). 

 
Figure 5. Cell wall-related genes with fractional g responses. Each dot on the graph shows the nor-
malized gene expression level for the transcription factor in the sixteen microgravity replicates (µg), 
and the four replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level 
in that gravity level. Shown are three representative cell wall-associated genes: (a) PGL3 which in-
creases linearly with increasing g levels and two pectin lyase genes, (b) At3g59580 and (c) 
At3g61490, which show highest expression in microgravity and then decrease. 

Two genes involved in cell wall synthesis cellulose synthase (namely, CSLA2 and 
CSLA3) are opposite in their expression patterns. Beta galactosidase (BGAL3), glycosyl 
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Figure 5. Cell wall-related genes with fractional g responses. Each dot on the graph shows the nor-
malized gene expression level for the transcription factor in the sixteen microgravity replicates (µg),
and the four replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level in
that gravity level. Shown are three representative cell wall-associated genes: (a) PGL3 which increases
linearly with increasing g levels and two pectin lyase genes, (b) At3g59580 and (c) At3g61490, which
show highest expression in microgravity and then decrease.

Two genes involved in cell wall synthesis cellulose synthase (namely, CSLA2 and
CSLA3) are opposite in their expression patterns. Beta galactosidase (BGAL3), glycosyl hy-
drolase (GH9B8), and polygalacturonase (PGL3) expression levels increase with increasing g
levels and are lowest in microgravity. Cell wall related genes are a major category that have
been reported to have altered expression in spaceflight and microgravity. These findings
are consistent with the fact that reinforced plant cell walls are necessary on Earth to coun-
teract the gravity vector and provide structural support to aerial tissues. A reduced gravity
environment therefore might be expected to impact cell wall rigidity and fortification.

Interestingly, nine of the sixteen cell wall associated genes exhibit a decrease in expres-
sion with increasing g levels, including two genes encoding for pectin acetylesterase (PAE7
and PAE12), as well as two genes encoding for pectin lyases. Pectin is a major structural
component of primary cell walls in plants with many different enzymes involved in pectin
modification and breakdown. Pectin lyases [60] are enzymes that degrade pectin polymers
and higher expression of pectin lyases under microgravity is suggestive of increased pectin
breakdown. Pectin acetyl transferases (PAEs) reduce the degree of pectin acetylation.
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While PAE7 is implicated in Arabidopsis growth and development and is highly expressed
across different plant tissues, PAE12 is most abundant in seeds [61]. The literature also
suggests that a reduced degree of pectin acetylation is correlated with resistance to fungal
pathogens [62].

3.7. Chaperone DNA J and Heat Shock Proteins

Interestingly, 9 of the 101 genes encode for heat shock and chaperone type proteins
(Figure 6) with 8 of them showing increased expression with increasing g. It is worth noting
that a heat shock responsive transcription factor, HsfA3, also showed increased expression
with increasing g. One of the heat shock genes (HSP15.4) which belongs to the small heat
shock family [63] showed downward response with higher expression at micro g.

Life 2021, 11, x FOR PEER REVIEW 11 of 17 
 

 

(PAE7 and PAE12), as well as two genes encoding for pectin lyases. Pectin is a major struc-
tural component of primary cell walls in plants with many different enzymes involved in 
pectin modification and breakdown. Pectin lyases [60] are enzymes that degrade pectin 
polymers and higher expression of pectin lyases under microgravity is suggestive of in-
creased pectin breakdown. Pectin acetyl transferases (PAEs) reduce the degree of pectin 
acetylation. While PAE7 is implicated in Arabidopsis growth and development and is 
highly expressed across different plant tissues, PAE12 is most abundant in seeds [61]. The 
literature also suggests that a reduced degree of pectin acetylation is correlated with re-
sistance to fungal pathogens [62].  

3.7. Chaperone DNA J and Heat Shock Proteins 
Interestingly, 9 of the 101 genes encode for heat shock and chaperone type proteins 

(Figure 6) with 8 of them showing increased expression with increasing g. It is worth not-
ing that a heat shock responsive transcription factor, HsfA3, also showed increased ex-
pression with increasing g. One of the heat shock genes (HSP15.4) which belongs to the 
small heat shock family [63] showed downward response with higher expression at micro 
g. 

 
Figure 6. HSP genes with fractional g responses. Each dot on the graph shows the normalized gene 
expression level for the transcription factor in the sixteen microgravity replicates (µg), and the four 
replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level in that gravity 
level. Shown are five HSPs with a gravity-level responsive increase in transcription: (a) HSP70, (b) 
HSP90.1, (c) HSP101, (d) Chaperone DNA J domain, and (e) ATJ10. In contrast, (f) HSP15.4 decreases 
with increasing g with lowest expression at 0.65 g. 

As the name implies, heat shock proteins are characterized as protein chaperones 
with a protective function to prevent protein denaturation under high temperatures [64]. 
In addition to heat stress, heat shock proteins are associated with a wide range of plant 
stress responses including: salinity, drought, cold temperatures, flooding, heavy metal ex-
posure, pathogen interactions, and spaceflight stressors [7,65]. 

Figure 6. HSP genes with fractional g responses. Each dot on the graph shows the normalized gene
expression level for the transcription factor in the sixteen microgravity replicates (µg), and the four
replicates at 0.53 g, 0.65 g, and 0.88 g. The red line indicates the mean expression level in that gravity
level. Shown are five HSPs with a gravity-level responsive increase in transcription: (a) HSP70,
(b) HSP90.1, (c) HSP101, (d) Chaperone DNA J domain, and (e) ATJ10. In contrast, (f) HSP15.4 decreases
with increasing g with lowest expression at 0.65 g.

As the name implies, heat shock proteins are characterized as protein chaperones with
a protective function to prevent protein denaturation under high temperatures [64]. In
addition to heat stress, heat shock proteins are associated with a wide range of plant stress
responses including: salinity, drought, cold temperatures, flooding, heavy metal exposure,
pathogen interactions, and spaceflight stressors [7,65].

3.8. Auxin Related

Interestingly, three genes involved in auxin transport and metabolism showed increas-
ing expression with increasing g. These genes encode for an ER localized auxin transport
facilitator PIN like 5 (PILS5) [66], a protein involved in regulating root auxin transport
NDL2 [67], and an IAA oxidase localized in root cap cells, DAO2 [68].
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3.9. Relationship between Gravity and Other Mechanical Stimuli

The response of plants to gravitational stimuli, touch, and mechanical stimulation
share overlapping signaling pathways [69]. We therefore investigated whether the ex-
pression of the 101 fractional g responsive genes also respond to touch or mechanical
stimulation. Surprisingly, limited overlap was detected between this dataset and touch
responsive genes reported by Lee et al. [41]. The eight common genes are listed in Table S2
and include two DNA J domain chaperone proteins, a WD repeat containing transducing
protein, the OSCA Ca2+ channel, and U-box 17. In a recent publication, Xu et al. [42]
carried out a comprehensive analysis of touch responsive gene expression with a focus
on identifying mitochondrial involvement. The authors subjected Arabidopsis seedlings
to repeated mechanical stimulation (at three different time points, 0, 12, and 24 h) and
compared the transcriptional response of several mutants (affected in mitochondrial func-
tion or regulation) to wild type seedlings. Comparison between the 101 genes and genes
that responded to touch (in wild type and the mutants defective in mitochondrial activity)
revealed an overlap of eight genes (Table S2) with 5 genes showing elevated expression at
all three time points. Xu et al. also reported that several transcription factors were touch
responsive either increasing or decreasing with the touch stimulus in either wild type
only or a subset of the mutants. This includes eight of the twenty transcription factors in
the 101 gene list (Table 2). Interestingly, there were three common genes between both
touch responsive datasets [41,42] and the 101 genes reported here. Additionally, Xu et al.
concluded that defense response was over-represented in their touch responsive dataset,
which is consistent with our finding of several defense-related genes upregulated with
increasing g.

Plants may also be sensitive to sound vibrations (SV)s [70]. Ghosh et al. [71] in-
vestigated differential gene expression in response to different frequencies ranging from
250–3000 Hz. The highest number of genes were responsive to 500 Hz and upregulated
categories included touch responsive genes, transcription factors, and genes involved in
ROS homeostasis and defense. A follow-up study [72] suggests that although SV and touch
share some common signaling components, these signals may be perceived as distinct
from each other. Comparison of the fractional g and SV responsive datasets only identified
four common genes, a serine decarboxylase (SDC1) and PILS5 that were upregulated by
SV, and a gene involved in the response to UV-B (RUP1) and an ATPase (AFG1) that were
downregulated by SV. Additionally, the fractional g response was opposite for each of the
two genes up- and downregulated by SV. More work will be needed to explore possible
relationships between partial g and SV.

3.10. Response to Hypergravity

We were particularly interested in following up on the heat shock proteins given
that nine genes showed a dose-dependent upregulation with increasing g. HSPs have
been implicated in response of plants to microgravity in both flight- and clinostat-based
transcriptional studies [5,7]. Experiments with Arabidopsis cell cultures demonstrated
upregulation of HSP17.6A and HSP101 in spaceflight and prolonged clinorotation [7].

We focused on the heat shock group of genes and investigated whether their expres-
sion could be induced further by hypergravity. Seedlings (growing on agar plates) were
exposed to 4 h centrifugation at 6.5× g in the dark. Control plates remained stationary in
the dark for the same duration. Roots from control and treated seedlings were assayed
for heat shock gene expression by quantitative RT-PCR. As seen in Figure 7, all of the
queried heat shock genes (HSP70, HSP90.1, HSP101, and the DNA J domain) showed a
robust increase in expression (> 9-fold relative to the 1 g stationary control).
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Interestingly, HSP70 and HSP90.1 were also shown to increase in response to hy-
pergravity in Arabidopsis floral buds [73]. Notably, HSP70, HSP90.1, and HSP101 were
not induced by touch [41,42], although other heat shock related genes were found to be
touch-responsive. These results indicate that the response of these HSPs to increasing g is
not merely due to mechanical stimulation. Furthermore, of the 101 genes in this study, only
the HSPs were found to be common with genes altered in parabolic flight [43]. Interestingly,
most of the HSPs listed here were down regulated after the first sixteen parabolas [43].
Conversely, the small heat shock-related gene HSP15.4, which decreases with increasing g,
was upregulated in parabolic flight (Table 2). Taken together, these data suggest that HSP
genes are highly responsive to gravitational perturbations.

3.11. Comparison with Other Partial g Studies

Other investigators have documented transcriptional changes with partial g lev-
els [6,15,16]. Similar to our study, these spaceflight experiments were also conducted in the
EMCS facility and allowed for simultaneous g gradients with different ranges. However,
the range of g levels between our plant signaling experiment and the other flight experi-
ments do not overlap. Additionally, the differences in experimental conditions including
lighting regimes between these experiments lead to confounding variables; therefore, direct
comparisons of partial g responses are complicated.

Unsurprisingly, few common genes are shared between these partial-g experiments
and our data set. We found 2 common transcription factor genes (NAC97 and GRF3)
between the 101 genes reported here and genes reported by Harranz et al. as up or down
regulated under micro g compared to 1 g [15]. Additionally, CNGC19 and AT2G20142
(which encodes for a TIR domain protein), were shared between the 101 genes and genes
downregulated at low-g (0.09 g) compared to 1 g [15]. We found no overlap in datasets with
the study by Villacampa et al. which compared 1 g (ground) with spaceflight-simulated
mars-g and µg [16].
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4. Conclusions

In this work, we have shown that select genes appear to respond to a narrow gradient
of fractional g ranging from 0.53 g to 0.88 g. Six different patterns of expression were
identified and GO annotation revealed that transcription, cell wall modification, biotic
interactions, and heat shock responses were enriched biological functions. Many of these
categories have been previously described as being responsive to the space environment.
Our results also highlight that plant defense responses may be compromised in space,
an unwelcome hazard that might be exacerbated if plant pathogens develop increased
virulence in space as has been shown [74]. With near and long-term plans for Moon and
Mars colonization, understanding plant transcriptional response to altered gravity will be
particularly important. Such studies will provide valuable insight on how plants sense and
respond to gravity on earth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11101010/s1, Table S1: List of fractional g responsive DEGs (Padj < 0.001) and normalized
counts for all replicate samples; Table S2: Transcription Factor binding sites; Table S3: Transcription
factor targets; Table S4: Overlap between fractional g responsive DEGs and touch and hypergravity
datasets; Table S5: Sequence of primers used in this study.
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