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Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or

common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has

a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration

has been known for longer even than its primary function to generate T cells, however, the

underlying mechanisms controlling the process have been largely unstudied. Although

there is likely continual thymic involution and regeneration in response to stress and

infection in otherwise healthy people, acute and profound thymic damage such as

that caused by common cancer cytoreductive therapies or the conditioning regimes as

part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency;

precipitating high morbidity and mortality from opportunistic infections and may even

facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age

as a function of thymic involution; which even at steady state leads to reduced capacity

to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is

a real clinical need for strategies that can boost thymic function and enhance T cell

immunity. One approach to the development of such therapies is to exploit the processes

of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell

reconstitution in clinical settings of immune depletion such as HCT. In this review, we will

highlight recent work that has revealed the mechanisms by which the thymus is capable

of repairing itself and how this knowledge is being used to develop novel therapies to

boost immune function.

Keywords: endogenous thymic regeneration, immune restoration, T cell reconstitution, thymic epithelial cells,

BMP4, IL-22

INTRODUCTION

Generation of a diverse but tolerant T cell repertoire, which is critical for adaptive immune
function, is dependent on the development and maturation of T cell precursors in the
thymus. The process of T cell development is reliant on the interactions with the stromal
microenvironment, comprised of highly specialized thymic epithelial cells (TECs), endothelial
cells (ECs), mesenchymal cells, dendritic cells (DCs) and macrophages. However, despite its
importance for generating and maintaining T cells, thymic function is extremely sensitive to
acute damage such as that caused by everyday insults like stress and infection, as well as more
profound injuries such as that caused by cytoreductive therapies. Nevertheless, the thymus also
has a remarkable capacity to regenerate itself from these acute injuries (1, 2), although until
recently this phenomena has been largely unstudied. However, despite its crucial function, the
ability of the thymus to facilitate efficient T cell generation deteriorates progressively with age
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(3, 4); which considerably hampers the ability of the thymus
to respond to acute insults. Age-related thymic atrophy
and immunosenescence are hallmarks of immune aging and
ultimately lead to a constriction of the TCR repertoire (5),
decreased naïve T cells and accumulation of memory T
cells in the periphery; and chronic low-grade inflammation
termed “inflamm-aging,” all conferring insufficient protective
responses to pathogens and neoantigens (6–8). Together, these
acute and chronic thymic injuries underlie prolonged immune
deficiency associated with multiple conditions including the
conditioning required for hematopoietic cell transplantation
(HCT) and cytoreductive cancer treatments such as radio-
and chemo-therapies.

Given the poor outcomes that are associated with deficient T
cell immunity, there is a clear clinical need for therapies that can
boost thymic function in periods of acute injury or reverse age-
related thymic involution. In this review, we will outline what
we know about how the thymus is damaged during different
modalities of insult and the work that has been done to develop
therapeutic strategies to boost thymic function; either ensuing
acute insult such as following HCT, or in aged individuals to
boost responses to vaccines or immunotherapy (Figure 1).

ACUTE DAMAGE AND ENDOGENOUS
REGENERATION IN THE THYMUS

Everyday Insults: Stress and Infection
Thymic involution is a routine response to acute insult incurred
by multiple triggers including emotional and physical distress,
malnutrition, and opportunistic bacterial and viral infections.
These can be modeled using approaches such as synthetic
corticosteroid treatment, such as dexamethasone (9); nutrient
depletion (10); sex steroid treatment (11); and several viral and
bacterial infection models. While acute thymic involution results
primarily from the loss of cortical thymocytes (12, 13); in cases
of chronic atrophy, such as that induced by age-related thymic
decline, thymocyte loss is preceded by the loss of Foxn1+ TECs,
resulting in the functional decline the TEC compartment and the
initiation of age-related thymic atrophy (14, 15).

Continuous export of naïve cells from the thymus, or recent
thymic emigrants (RTEs), is essential for effective immune
response to acute and chronic infections (16, 17). However,
most acute bacterial or viral infections result in acute thymic
atrophy, largely due to intense lymphocyte depletion as a result
of increased apoptosis of thymocytes and interference with
thymocyte development (18–21); which can, at least partially,
be attributed to the increased induction of IFNγ from activated
CD8+ T cells (22) and Natural Killer (NK)-driven responses
(23). Most of the studies looking at viral infection-related thymic
function have concentrated on HIV, which leads to several modes
of thymic dysfunction including thymic atrophy, reduced thymic
output, reduced export of immature thymocytes and disruption
of the thymic microenvironment (24–26). Notably, effective
response to anti-retroviral therapies was found to depend on
competent thymic function, with enhanced function in HIV-
infected children with higher basal levels of thymic function

(27), in contrast with infected adults who have a reduced thymic
output and output decreased CD4+ T cells (28, 29). Moreover,
in addition to viral load, quantification of CD4+ RTE has long
been known as a suitable marker for HIV disease progression,
and a recent study has demonstrated the use of RTE CD4+ T
cells as amarker of perinatal HIV infection in infants (30); further
strengthening the link between viral infection, efficient thymic
function, and therapeutic implications of thymic atrophy.

Although less well studied, bacterial infections also have
negative effects on thymic function, primarily by enhancing
thymocyte apoptosis. Streptococcus suis infection promotes
thymic atrophy specifically by inducing increased activation of
pro-apoptotic pathways and apoptotic cell death in thymocytes
(31); while Mycobacterium tuberculosis infection also induces
thymic atrophy (32), possibly by regulating glucocorticoid levels
and in this way impact on homeostatic endocrine-immune
communication (33). In fact, glucocorticoids are central to many
acute forms of thymic involution (34, 35), directly inducing the
apoptosis of CD4+CD8+ DP thymocytes, which preferentially
express the glucocorticoid receptor (36).

Metabolic distress due to lack of nutrients, primarily glucose,
leads to an attenuation of thymic function, with perturbed
thymopoiesis in non-obese diabetic (NOD) mice (37), and
reduced thymic atrophy with glucose supplementation in models
of mitochondrial dysfunction (38).

Cytoreductive Therapies
Most therapies used in cancer treatments are cytoreductive,
such as chemotherapy or radiation. One prominent example
of this is that the pre-conditioning regimens required for
successful HCT result in profound injury to the thymus, and, in
contrast to the relatively early recovery of platelets, erythrocytes,
and leukocytes involved in innate immunity, recipients of an
HCT experience prolonged post-transplant deficiency in the
recovery of adaptive immunity, especially T cell immunity.
This delayed T cell reconstitution can last a year or more
due to a delay in full recovery of function and T cell
repertoire (39–41). Moreover, post-transplant T cell deficiency is
associated with an increased risk of infections (39, 40, 42, 43),
relapse of malignancy (44), and the development of secondary
malignancies (45–50). In fact, infection and relapse account
for >50% of mortality following allogeneic-HCT (allo-HCT)
(51). T cell reconstitution after transplant is critically dependent
on the thymus (39, 41, 47, 52–58) and thymic function pre-
transplant can have a significant impact on clinical outcomes.
Similarly, damage caused by cytoreductive chemotherapy results
in significant thymic damage and can lead to a profoundly
delayed recovery of T cells (45, 59). In mouse models of
chemotherapy, in addition to almost complete depletion of
thymocytes, there was also a severe depletion of TECs, most
prominently MHCIIhi TECs (60); likely as they are the most
highly proliferating TEC subset (61, 62). Specifically, genotoxic
stress caused by chemotherapy leads to senescence in the thymic
stromal compartment and the induction of an inflammatory
environment in the thymus with endothelial cell secretion of
IL-6, generating a chemoresistant niche that is cytoprotectant
to certain cancer cells, such as lymphoma and melanoma
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FIGURE 1 | Therapeutic approaches for boosting thymus function. Regenerative therapies to boost thymic function after acute damage or to reverse age-related

involution can be broadly stratified into four subgroups based on their cellular or molecular targets: (1) targeting the epithelial microenvironment that supports

thymopoiesis; (2) targeting the precursors that provide the supply of developing thymocytes; (3) modulation of hormones and metabolism; and (4) cellular therapies

and bioengineering. However, within each of these therapeutic modalities there are key nexus points at which they act mechanistically. One approach relies on

stimulating TEC function, such as IL-22, BMP4, KGF, RANKL, SSI, which act by either promoting survival, proliferation, differentiation, or expression of key

thymopoietic molecules like DLL4 and KITL. In contrast, approaches such as administration of exogenous IL-7 and chemokine therapies target T cell precursors to

promote their migration, proliferation, and differentiation directly. Similarly, many of the bioengineering approaches have sought to recapitulate these same functions

such as providing TEC signals or a ready supply of T cell precursors. Elements of the figure were generated using Biorender.com.

(63, 64). Accompanying the damage caused by cytoreductive
conditioning, the risk of further thymic damage caused by Graft-
vs.-Host Disease (GVHD) is significant in the context of an allo-
HCT. In fact, the thymus is a particularly sensitive GVHD target
organ and presents pathological features even in the context
of subclinical GVHD (65–67). Furthermore, there is likely a
link between acute GVHD-mediated thymic damage and the

formation of chronic GVHD, which may in part be a failure for

tolerance induction (68–70).

STRATEGIES OF BOOSTING THYMIC
FUNCTION I: TARGETING
NON-HEMATOPOEITIC CELLS

Given the sensitivity of thymic function to negative stimuli, even
everyday insults, a reparative capacity is crucially important for
renewal of immune competence. In fact, this capacity of the
thymus to regenerate itself has been known for longer than
even the immunological function of the tissue was discovered
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(71, 72); however, until recently the mechanisms underlying
this process have been poorly understood. One approach to
developing therapies to enhance thymic function has come from
exploiting these pathways of endogenous regeneration. Many of
these pathways that mediate endogenous regeneration have been
found to be effective for exogenous regeneration in periods of
acute and profound injury such as that caused by cytoreductive
chemotherapy and γ-radiation. Interestingly, many of these
pathways specifically target TECs to mediate regeneration.

Interleukin-22
Although the phenomenon of endogenous thymic regeneration
has been known for over almost a 100 years, it was not until
recently that pathways mediating this regeneration have been
described. The first of these was centered around the production
of Interleukin-22 (IL-22), a member of the IL-10 family that
typically targets non-hematopoietic cells such as epithelial cells
and fibroblasts (73). In this regenerative network, acute damage
to the thymus (and specifically the depletion of thymocytes)
triggers the release of Interleukin-23 (IL-23) from dendritic cells,
which induces the production of IL-22 by a group 3 innate
lymphoid cells (2, 74–76). Expression of IL-22R in the thymus is
lacking on thymocytes but detected in both cTECs and mTECs
populations (2). IL-22 acts on TECs to mediate repair but the
specific molecular mechanisms are not clear. In addition to
the thymus, IL-22 also has a major role in the regeneration of
epithelial cells in a diverse range of tissues including gut, lung,
skin, breast, and kidney (77). The IL-22 receptor is a type 2
cytokine receptor, and a heterodimer formed of two subunits: IL-
10 receptor 1 (IL-10R1) and IL-22 receptor A2 (IL-22RA2) (78).
IL-22 receptor binding induces intracellular inactivation of the
Jak1/Tyk2 complex which further allows downstream signaling
and phosphorylation of Signal Transducer and Activator of
Transcription (STATs) 1, 3, and 5, with a preference for STAT3
phosphorylation (79), including in TECs (2) which is consistent
with the upregulation of Foxn1 concurrently with IL-22 in the
thymus (76), and the importance of STAT3 for TECmaintenance
(80). Furthermore, Ruxolitinib, a chemotherapeutic agent that
inhibits Jak1 signaling also prevents thymic regeneration after
injury (81).

Similar to other tissues (77), IL-22 is not required for
the formation or maintenance of the thymus under steady-
state physiological conditions; however, it has a key role in
driving thymic regeneration after injury, by acting directly
on TECs to induce survival and proliferation, potentially via
regulation of Foxn1 expression (2, 76). Of note, both the
numbers of innate lymphoid cells (ILC) 3 and IL-22 levels
were decreased in the thymus and gut of mice with GVHD
(74, 82), suggesting that ILCs are a target of alloreactive cells
and this depletion likely causes a failure to repair after damage.
Due to the diverse pathophysiological roles of IL-22, and the
key role in epithelial cell regeneration, modulation of the IL-
22-IL22R system is an attractive therapeutic target. In fact, a
clinical trial is currently underway to assess the efficacy and
safety of administration of IL-22 in combination of systemic
corticosteroids to limit the effects of GVHD after hematopoietic

stem cell transplantation, with secondary readouts to assess T cell
reconstitution (NCT02406651).

Bone Morphogenic Protein 4
Although the role of thymic BMP4 and the endogenous
BMP4R antagonist Noggin have been well-described in thymic
development (83, 84), only recently has BMP4 been described
as a regulator of thymic regeneration after acute injury (85). In
the thymus, the source of BMP4 is fibroblasts and endothelial
cells (ECs) (85). ECs are a highly radio-resistant population of
cells in the thymus (85, 86) and are unique in their ability to
induce BMP4 production in response to injury. Importantly,
thymic expression of both Bmpr1a and Bmpr2 were identified
on TEC populations, with a higher expression of the non-
redundant Bmpr2 on cTECs (85); consistent with BMP4-induced
expression of FOXN1 and its downstream target delta-like 4
(DLL4) specific to cTECs (85, 87). Although the importance for
FOXN1 and DLL4 for the development of TECs and thymocytes,
respectively, has been well studied (88, 89), recent findings have
also highlighted their importance for thymic regeneration, with
intrathymic concentration of DLL4 profoundly impacting on
thymic size (90), and reports suggesting that the induction of
FOXN1 can counteract age-associated thymic involution (91),
acute damage (85), and thymic damage post-transplantation
(92). While much of the role of BMP4 seems to be mediated
by induction of the FOXN1/DLL4 axis, given the requirement
for BMP4 in in vitro differentiation of TECs from multipotent
progenitors (93–95), it is possible that an alternate mechanism
may be by stimulating bipotent progenitors present in the adult
thymus (96–99). Unfortunately, the preclinical studies assessing
BMP4 have yet to successfully treat mice with recombinant
protein, a therapeutic strategy has been developed that utilizes
a technique of allowing for the propagation and expansion
of tissue-specific ECs that can be transplanted and mediate
regeneration acrossmultiple tissues (85, 100–105). In the thymus,
it was found that this therapeutic cellular strategy was dependent
on the expression of BMP4 by transplanted ECs (85).

Keratinocyte Growth Factor
Keratinocyte growth factor (KGF, also known as FGF-7), is
a fibroblast growth factor and acts as a mitogen targeting
TECs, inducing epithelial proliferation in several organs (106–
108). In the thymus, KGF is primarily produced by mature
αβ+ thymocytes and feeds back to facilitate the proliferation
and expansion of mTECs via the activation of p53 and NF-
κB pathways (106, 108), preserving the thymic cytoarchitecture.
Of note, KGF is also produced by thymic fibroblasts (108).
Expression of the KGF receptor, fibroblast growth factor
receptor-2 of the IIIb variant (FgfR2IIIb), is limited to TECs
(109), and FgfR2-IIIb−/− mice have defective thymopoiesis and
reduced cellularity, accounted for specifically by a reduction in
TECs (110). KGF modulates TEC functionality by negatively
regulating the levels several gatekeepers of positive selection, such
as MHC-II invariant chain (Ii), and cathepsin L (CatL) (108), and
acts on TECs to produce several cytokines that act directly on
thymocytes to facilitate maturation, such as bone morphogenic
protein 2 (BMP2), BMP4, Wnt5b, and Wnt10b (109).
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Under normal physiological conditions, KGF can enhance
thymic cellularity by increasing the number of early thymic
progenitors (ETPs) equating to an enhanced number of
engraftment niches, and increased TEC proliferation (109).
Although it was shown that KGF is not essential in uninjured
conditions (110, 111), studies using KGF−/− mice demonstrated
the critical role of KGF on thymus function and immune
reconstitution after insult, modeled by both syngeneic and
allogeneic bone marrow transplant (112). The same study
showed that exogenous administration of recombinant KGF
enhanced thymopoiesis in young and middle-aged mice, and
attenuated the negative effects of acute thymic injury, such as
that caused by dexamethasone treatments, cyclophosphamide,
and irradiation, highlighting an extremely attractive therapeutic
approach to efficiently facilitating immunocompetence after
damage. Additionally, exogenous KGF administration improved
post-transplantation T cell reconstitution. Furthermore, pre-
conditioning with KGF prior to bone marrow transplantation
reduces GVHD in mouse models by protecting against epithelial
injury (113). However, a recent clinical trial noted a reduction in
thymopoiesis in lymphopenic patients following administration
of KGF (114), highlighting that more studies need to be carried
out before KGF can be used across the board as a therapeutic
regulator of thymic regeneration.

RANKL
Receptor activator of nuclear factor kappa-B ligand (RANKL),
a member of the Tumor necrosis factor (TNF) superfamily,
is implicated in multiple physiological roles in the periphery,
primarily in bone biology (115). RANKL has an essential role in
the thymus as a potent inducer of epithelial cell differentiation
by regulating the key mTEC transcription factor Aire (116).
In this way, RANKL governs the maturation of Aire− mTECs
to Aire+ mTECs which subsequently present MHC-II peptides
that drive the elimination of self-reactive T cells during negative
selection (117). RANKL is non-redundant for fetal Aire+mTEC
development, and is produced during development by ILCs,
and subsequently by subsets of thymocytes (116, 118–120);
although absence of RANKL postnatally can be compensated
for by other factors (121). Importantly, RANKL is increased in
CD4+ thymocytes and ILCs after injury from the cytoreductive
conditioning required prior to HCT, suggesting that RANKL
plays a role in endogenous regeneration of the thymus (2, 122).

The prominent role of RANKL in mTEC biology points
to the ability of RANKL to modulate thymic regeneration
and output. RANKL administration shows an enhancement
of thymic function after bone marrow transplantation by
boosting TEC subsets, including TEC progenitor niches (122).
Moreover, systemic administration of recombinant soluble
RANKL (sRANKL) improved thymic medullary architecture in
RANKL deficient mice (123), and transgenic mice overexpressing
human sRANKL, or mice lacking the soluble RANKL receptor
OPG, have an enlarged thymic medulla with increased numbers
of Aire+ mTECs (119, 124, 125), highlighting a therapeutic
platform for the use of recombinant RANKL as a therapeutic for
thymus regeneration.

STRATEGIES OF BOOSTING THYMIC
FUNCTION II: TARGETING
HEMATOPOEITIC CELLS

Given the fact that Cell development requires the input of
hematopoietic progenitors, and the fact that the supply of those
progenitors is severely limited after acute injury (126, 127), one
approach to promoting thymic function is to directly stimulate
precursor populations; either in the BM or thymus.

Bone Marrow Progenitors
Several approaches have been attempted that seeks to improve
thymic function by stimulating the function of bone marrow
hematopoietic progenitors. For instance, preclinical studies have
shown that administration of Flt3L can also enhance both thymic
dependent and independent T cell reconstitution (128, 129).
The effects of Flt3L are predominantly due to an expansion in
Flt3+ progenitors in the BM (130). However, increases in T cell
reconstitution can be at the expense of B-lymphopoiesis which
is significantly declined with exogenous Flt3L administration
and, in particular, its effects on the EPLM subset of BM
progenitors (131, 132).

Chemokines are key regulators of thymopoiesis, facilitating
thymic population and intrathymic cell migration. Importantly,
as the thymus does not contain long term progenitors that
would enable self-renewal, repopulation of the thymus requires
continuous recruitment of T cell progenitors (133). CCL25 (with
its receptor CCR9) and CCL21 (with its receptor CCR7) play
an important role in thymic colonization with hematopoietic
progenitors (134). Interestingly, chemokine therapy, whereby
bone marrow progenitors received CCL25 and CCL21 treatment
prior to transplant, rescues thymic homing of progenitors which
is otherwise suppressed in irradiated mice (86).

Thymic T Cell Precursors
While there are several approaches that have been postulated that
target thymic precursor cells the most prominent and developed
of these is with the lymphopoietic cytokine interleukin-7 (IL-
7). IL-7 has a non-redundant role as a survival molecule in
lymphoid tissues in mice and humans, most importantly in
the thymus where IL-7 is critical for appropriate thymocyte
development. An elegant study by Shitara et al. (135) showed
that specific deletion of IL-7 in TECs resulted in the profound
reduction in αβ and γδ T cells; and mice deficient for Il-7 have
a peripheral loss of γδ T cells, a significant reduction in αβ T
cells (136), an absence of innate lymphoid cell subsets (137), and
disorganization of lymphoid tissue (138). Moreover, mice lacking
Il-7 have a reduced number of DN2 or DN3 cells (139, 140),
essentially creating a thymic block and limiting the progression
thymocytes to maturity.

IL-7 is produced primarily by non-hematopoietic stromal cells
such as TECs and signals by binding to the heterodimeric IL-7
receptor (IL-7R), comprised of IL-7R? (also known as CD127)
and the cytokine receptor γ-chain (also known as CD132),
and induces an anti-apoptotic pro-survival signaling cascade
via the activation of phosphoinositide 3-kinase (PI3K) and the
Janus Kinase (JAK)-STAT pathway. The expression of IL-7R?
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on developing thymocytes occurs in a cyclical pattern, with
expression seemingly dependent on the fluctuating need for IL-
7 signaling at different stages of thymocyte maturation (141),
demonstrated by absence in the earliest T cell progenitors,
expression at later DN stages, absence at the DP stage and
re-expression in SP thymocytes.

These critical roles of IL-7 in both thymocyte development
and in peripheral T cell homeostasis (142) reveal IL-7 as a
strong therapeutic candidate to enhance T cell development and
activation. Clear evidence exists for the therapeutic potential
of IL-7 administration on thymic regeneration, centered on
the beneficial effects of IL-7 on increasing progenitor T cells
in the thymus and subsequently expanding circulating naïve T
cells in viral infection setting (143); however, IL-7 therapy only
transiently increased naïve T cells in the aged setting in rhesus
macaques, with a more prominent and long lasting effect in
the memory T cell compartment (144). Although recombinant
IL-7 immunotherapy has had some success in clinical trials for
treating septic shock (145), infection (146), and cancer remission
(147), along with some early promise in the setting of HCT
(148), further studies are necessary to identify a strategy for
thymus-dependent IL-7 therapy.

STRATEGIES OF BOOSTING THYMIC
FUNCTION III: MODULATION OF
HORMONES AND METABOLISM

Given the impact of sex steroids on thymic function (149,
150), surgical or chemical ablation of sex steroids has been a
well-studied means of boosting thymic function (58, 151). In
fact, sex steroid inhibition (SSI) has been shown to promote
thymic function in young as well as old mice, and enhances
reconstitution after acute insult such as chemotherapy or HCT
(60, 152–154). Furthermore, given that SSI is a standard and
approved therapy for prostate cancer, thymic function has been
assessed in prostate cancer and after HCT and significant
improvement observed (155, 156). Although whole organismal
ablation of sex steroids will understandably have systemic
effects, and the specific means by which SSI improves thymic
function are not yet clear, several putative mechanisms have
been proposed. In particular, SSI has been shown to (1) promote
lymphoid potential and overall function of hematopoietic stem
and progenitor cells (2, 152, 157, 158) induce the expression of
CCL25 (159), which promotes the importation of hematopoietic
progenitors from the circulation (3, 134, 160) induces the
expression of the Notch ligand DLL4 (90). Interestingly, KGF was
not required for the beneficial effects of SSI on thymus (154),
and in fact combination therapies have shown great promise,
with the combined KGF administration and androgen blockage
with Lupron, revealing reduced epithelial damage and enhanced
T cell reconstitution after bone marrow transplant in mice (161).
However, it has also been reported that regrowth of the thymus
can result in an increase in autoreactive T cells in the periphery,
particularly in models of castration, reflecting a lack of synergy
between quality and quantity of thymopoiesis (162).

In addition to sex steroids, several other hormones and
metabolic components have been implicated in thymic function
and their modulation has been shown to improve thymopoiesis,
particularly in the aged. Administration of the appetite
stimulating hormone Ghrelin led to improved thymic cellularity
and thymic output in aged mice (163), and similarly oral zinc
supplementation increased thymic cellularity in aged mice (164).
Targeting accumulating reactive oxygen species with antioxidants
has proven to be beneficial in protecting against age-related
thymic atrophy, whereby treatment with the mitochondrial
antioxidant SkQ1 reduced age-associated thymic atrophy and
increased the number of CD4+ and CD8+ thymocytes (165).
Similarly, Leptin, a peptide hormone secreted from adipose
tissue, has a protective effect on thymopoiesis in LPS-treated
mice and mice that had been starved, primarily due to
rescue frommetabolic defects including increased corticosterone
levels (10, 166).

STRATEGIES OF THYMIC REGENERATION
IV: CELL THERAPIES AND
BIOENGINEERING APPROACHES

Hematopoietic Precursors
In addition to the use of growth factors and hormone
modulation, several groups have been working on cellular
therapies that may enhance thymic function. Given that some
of the delay in T cell reconstitution is due to the limited supply
of BM-derived progenitors (126), in addition to the time taken
for development into a naïve lymphocyte from a transplanted
HSC, early studies that concentrated on providing hematopoietic
cells found that lymphoid precursors isolated from donor bone
marrow could be used to boost thymic function when infused
into a recipient at the time of HCT, giving an early boost to
T cell development (167). To overcome the limited number
of hematopoietic progenitors in BM, an alternate approach of
using precursor T cell populations that have been expanded
using ex vivo culture systems that use Notch-1 stimulation
of hematopoietic precursor cells has been demonstrated (168–
173). Using this regimen, adoptive transfer of T cell precursors
into lethally irradiated allogeneic HCT recipients caused a
significant increase in thymic cellularity and chimerism, as
well as enhanced peripheral T and NK cell reconstitution
compared with recipients of allogeneic hematopoietic stem cells
only (168, 174–178).

Thymic Epithelial Cells
In addition to the use of hematopoietic cells that can act as
a boost of T cell precursors, another approach is to identify
and isolate populations of thymic epithelial progenitor cells
(TEPC). TEPC have been successfully isolated from fetal thymi
and induced to generate a new thymus in athymic recipients
(179–182), and neonatal TECs, or TECs derived from pluripotent
progenitors can promote enhanced thymic function (183, 184).
However, while there is evidence of a bipotent TEPC in the
postnatal thymus (97–99), their capacity to self-organize as a
whole organ like fetal TEPCs is limited. A TEC-like progenitor
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cell appropriate for this purpose has also been generated by
direct conversion of embryonic fibroblasts by induced expression
of the TEC transcription factor FOXN1 (185); although the
efficacy of this therapy in a regeneration setting has not
been investigated.

Artificial Thymic Niches
Finally, there are also several approaches that do not rely on the
endogenous thymus at all, but rather concentrate on de novo
formation of whole organs ex vivo that can be transplanted into
patients as required (186, 187). Although in vivo evidence of their
efficacy is still only limited, several approaches have been used
to generate artificial thymuses ex vivo, including decellularizing
the tissue, which has been performed in several tissues including
the thymus, as well as generating synthetic matrices to support
T cell development (188–190). Both of these approaches would
require some cellular input to generate a functional thymus;
namely the thymic epithelial microenvironment would need to
be recapitulated with specific factors or, more likely, cells such as
TECs derived from multipotent progenitors or reprogrammed,
as above. Moreover, a recent report has demonstrated the
efficacy of an artificial pre-thymic niche by implanting a scaffold
with the Notch ligand DLL4 that acts as an intermediary
between the BM and thymus (191). Although these approaches
have shown some promise in preclinical mouse studies (192),
further advances need to be made before this can be a viable
therapeutic option.

CONCLUSION

Enhancing the regenerative capacity of the thymus and
increasing thymic output, together with the expansion of the
TCR repertoire has immensely beneficial clinical implications.
Although there has been extensive progress in the development
of multiple therapies targeting thymic regeneration and
output, a deeper understanding of key endogenous molecular
mechanisms that govern involution and regeneration of the
thymus are needed to further the development of clinically
translatable therapies.
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