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Abstract

In this work, a new family of distributions, which extends the Beta transmuted family, was

obtained, called the Modified Beta Transmuted Family of distribution. This derived family

has the Beta Family of Distribution and the Transmuted family of distribution as subfamilies.

The Modified beta transmuted frechet, modified beta transmuted exponential, modified beta

transmuted gompertz and modified beta transmuted lindley were obtained as special cases.

The analytical expressions were studied for some statistical properties of the derived family

of distribution which includes the moments, moments generating function and order statis-

tics. The estimates of the parameters of the family were obtained using the maximum likeli-

hood estimation method. Using the exponential distribution as a baseline for the family

distribution, the resulting distribution (modified beta transmuted exponential distribution)

was studied and its properties. The modified beta transmuted exponential distribution was

applied to a real life time data to assess its flexibility in which the results shows a better fit

when compared to some competitive models.

1 Introduction

Due to complexity in distributions of real life data, there is need for developing distributions

that are more flexible in fitting these data. The flexible distributions can be derived by addition

of new parameters to the baseline distributions. Over years, many family of distributions has

been developed. Examples like Beta-G [1], Weibull-G [2], Beta-Weibull-G [3], Modified Beta-

G [4], Cubic Transmuted -G [5], Gompertz-G [6], Odd Lindley-G [7] e.t.c. Through these

families of distributions, several models have been developed and applied to real life situations.

[8] derived the transmuted-G family of distribution. In their work, they considered a baseline

cumulative distribution function (cdf) G(x;γ) with corresponding probability density function
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(pdf) g(x;γ) and obtained the c.d.f of transmuted-G family of distribution P(x;γ) as

Iðx; gÞ ¼ Gðx; gÞ½1þ � � �Gðx; gÞ� ð1Þ

with the probability distribution function p.d.f as

iðx; gÞ ¼ gðx; gÞ½1þ � � 2�Gðx; gÞ� ð2Þ

where ϕ is the transmuted parameter. When ϕ = 0 in Eqs 1 and 2, gives the p.d.f and the c.d.f

of the baseline distribution.

In this work, a new family of distribution was derived that will be more flexible than the

transmuted-G family of distribution by the addition of three more parameters to the trans-

muted-G family of distribution [8]. This concept is inspired by the work of Nadarajah et al.

(2014), who obtained the modified beta-G families of distributions. This study will derive

another family of distributions called the modified beta transmuted family of distributions

which is more flexible and model fitting than that of Nadarajah et.al.(2014). Another impor-

tant and crucial motivation is the study of modeling and analyses of lifetime data. The fitness

of the assumed lifetime distribution, on the other hand, has a significant impact on the quality

of statistical analyses. In a bid to achieve this, the modified beta- G family of distribution [4]

was used to obtain the modified beta transmuted family of distribution. Given the c.d.f of

baseline distribution G(x;γ), the c.d.f of the modified beta-G family A(x;γ) of distribution is

given as

Aðx; gÞ ¼

Z tðGðx;gÞÞ

1þððt� 1ÞGðx;gÞÞ

0

tm� 1ð1 � tÞs� 1dt ð3Þ

which equivalently gives

Aðx; gÞ ¼ I tðGðx;gÞÞ

1þððt� 1ÞGðx;gÞÞ

ðm; sÞ ¼
Bðr; m; sÞ
Bða; bÞ

ð4Þ

and the corresponding p.d.f as

aðx; gÞ ¼
tm½Gðx; gÞðGðx; gÞÞ

m� 1
ð1 � Gðx; gÞÞ

b� 1
�

Bðm;sÞ½1 � ð1 � tÞGðx; gÞ�
mþs

ð5Þ

where r ¼ tðGðx;gÞÞ

1þððt� 1ÞGðx;gÞÞ
and B(r; μ, σ) is an incomplete beta function. where μ and σ are shape

parameters, I tGðx;gÞ

1þððt� 1ÞGðx;gÞÞ

ða; bÞ is the incomplete beta function ratio. If μ = σ = τ = 1, it gives the g

(x;γ) and G(x;γ) of baseline distribution. Therefore, in the section 2, the new family of distribu-

tion was derived. In Section 3, the mixture representation of the p.d.f and the c.d.f of the family

of distribution was obtained, section 4 studied the statistical properties and the estimation of

parameters of the family of distribution. Then, in Section 5, the family of distribution was stud-

ied using the exponential distribution as the baseline distribution. The properties were studied

and applied to a real data to assess its performance when compared to some sub-models. Sec-

tion 6 gives the conclusion of the work.
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2 Derivation of the Modified Beta Transmuted-G (MBTG) family of

distribution

Incorporating Eqs 1 in 3, the c.d.f of the MBTG family of distribution is derived as

Aðx; gÞ ¼

Z tGðx;gÞ½1þ�� �Gðx;gÞ�

1þððt� 1ÞGðx;gÞ½1þ�� �Gðx;gÞ�Þ

0

tm� 1ð1 � tÞs� 1dt ð6Þ

which gives

Aðx; gÞ ¼ I tGðx;gÞ½1þ�� �Gðx;gÞ�

1þððt� 1ÞtGðx;gÞ½1þ�� �Gðx;gÞ�Þ

ðm; sÞ ¼
Bðf ; m; sÞ

Bða; bÞ
ð7Þ

where f ¼ tGðx;gÞ½1þ�� �Gðx;gÞ�

1þððt� 1ÞtGðx;gÞ½1þ�� �Gðx;gÞ�Þ
.

From Eq 6, the p.d.f of the MBTG family of distribution is obtained as

aðx; gÞ ¼
tm½gðx; gÞ½1þ � � 2�Gðx; gÞ�ðGðx; gÞ½1þ � � �Gðx; gÞ�Þ

m� 1
ð1 � Gðx; gÞ½1þ � � �Gðx; gÞ�Þ

b� 1
�

Bðm; sÞ½1 � ð1 � tÞGðx; gÞ½1þ � � �Gðx; gÞ��
mþs

ð8Þ

where μ,σ and τ are the shape parameters and ϕ is the transmuted parameter. The MBTG fam-

ily of distribution has the following as the submodels;

1. when τ = 1, the beta transmuted-G family of distribution [9] is obtained

2. when τ = μ = σ = 1, the MBTG family of distribution becomes the Transmuted-G family [8]

3. when τ = 1 and ϕ = 0, it gives the Beta-G family [1]

4. when τ = μ = σ = 1 and ϕ = 0, it gives the baseline distribution G(x;γ)

5. when τ,σ = 1 it gives the Exponentiated Transmuted G family [10]

The survival function s(x;γ) of MBTG family of distribution is obtained as

sðx; gÞ ¼ 1 �
Bðf ; m;sÞ

Bðm; sÞ
¼

Bðm; sÞ � Bðf ; m;sÞ

Bðm; sÞ
ð9Þ

and the hazard function h(x;γ) is obtained as

hðx; gÞ ¼
Bðm; sÞtm½gðx; gÞ½1þ � � 2�Gðx; gÞ�ðGðx; gÞ½1þ � � �Gðx; gÞ�Þ

m� 1
ð1 � Gðx; gÞ½1þ � � �Gðx; gÞ�Þ

b� 1
�

ðBðm; sÞ � Bðf ; m; sÞÞð1 � ð1 � tÞGðx; gÞ½1þ � � �Gðx; gÞ�Þ
mþs

ð10Þ

2.1 Sub-models of the MBTG family of distributions

In this section, three special models of the MBTG family of distribution is presented. These

models generalize some models that are already existing in literatures. The models have base-

lines of Gompertz (G), Exponential(E) and Lindley(L) distributions.

2.2 Modified Beta Transmuted Gompertz (MBTGo) distribution

The pdf and cdf of Gompertz distribution are given as

gðx; t; �Þ ¼ �teðtþ�x� te�xÞ

and

Gðx; t; �Þ ¼ 1 � e � t e
x
� � 1ð Þð Þ
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respectively, for x>0 and τ, � > 0. Now, the pdf fMBTGo and hazard function hMBTGo of the

MBTGo distribution is given as

fMBTGo ¼

tm ð�teðtþ�x� te�xÞÞ 1þ � � 2� 1 � e � t e
x
� � 1ð Þð Þ

� �h i
1 � e � t e

x
� � 1ð Þð Þ

� �
1þ � � � 1 � e � t e

x
� � 1ð Þð Þ

� �h i� �m� 1
� �

Bðm; sÞ 1 � ð1 � tÞ 1 � e � t e
x
� � 1ð Þð Þ

� �
1þ � � � 1 � e � t e

x
� � 1ð Þð Þ

� �h ih imþs

1 � 1 � e � t e
x
� � 1ð Þð Þ

� �
1þ � � � 1 � e � t e

x
� � 1ð Þð Þ

� �h i� �s� 1

and

hMBTGo ¼
Bðm; sÞtm te

x
�

�
e � t e

x
� � 1ð Þð Þ

� �
1þ � � 2� 1 � e � t e

x
� � 1ð Þð Þ

� �h ih i

ðBðm; sÞ � Bðf ; m; sÞÞ 1 � ð1 � tÞGðx; gÞ 1þ � � � 1 � e � t e
x
� � 1ð Þð Þ

� �h i� �mþs

1 � e � t e
x
� � 1ð Þð Þ

� �
1þ � � � 1 � e � t e

x
� � 1ð Þð Þ

� �h i� �m� 1

1 � 1 � e � t e
x
� � 1ð Þð Þ

� �
1þ � � � 1 � e � t e

x
� � 1ð Þð Þ

� �h i� �s� 1

The MBTGo distribution includes the Transmuted Gompertz(TG) [11] when θ = z = ϕ = 1.

For θ = α = ρ = 1, the MBTGo becomes Beta Gompertz(BGo) distribution [12]. For θ = z = 1,

MBTGo reduces to Exponentiated Transmuted Gompertz(ETGo) distribution (NEW). Plots

of the density function and the hazard function of the MBTGo with various assigned parame-

ter values are shown in Figs 1 and 2 respectively.

2.2.1 Modified Beta Transmuted Exponential (MBTE) distribution. The pdf and cdf of

exponential distribution are given as

gðx; bÞ ¼ be� bx

Gðx; bÞ ¼ 1 � e� bx

Therefore, the pdf (fMBTE) and hazard function (hMBTE) of the MBTE distribution is given as

fMBTEx ¼
tm½ðbe� bxÞ½1þ � � 2�ð1 � e� bxÞ�ðð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ�Þ

m� 1
�

Bðm; sÞ½1 � ð1 � tÞð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ��
mþs

ð1 � ð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ�Þ
b� 1

and

hMBTE ¼
Bðm; sÞtm½ðbe� bxÞ½1þ � � 2�ð1 � e� bxÞ�ðð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ�Þ

m� 1
�

ðBðm; sÞ � Bðf ; m; sÞÞð1 � ð1 � tÞð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ�Þ
mþs

ð1 � ð1 � e� bxÞ½1þ � � �ð1 � e� bxÞ�Þ
s� 1

The MBTE distribution includes the Transmuted Exponential [13] when θ = z = ϕ = 1. For θ =

α = ρ = 1, the MBTE distribution becomes Beta Exponential(BE) distribution [14]. For θ = z =

1, MBTE reduces to Exponentiated Transmuted Exponential(ETE) distribution [15]. Plots of

the density function and the hazard function of the MBTE distribution with various assigned

parameter values are shown in Figs 3 and 4.
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2.3 Modified Beta Transmuted Lindley (MBTL) distribution

The pdf and cdf of lindley distribution are given as

Gðx; b;lÞ ¼ 1 �
e� bxð1þ bþ bxÞ

1þ b

gðx; b;lÞ ¼ b2

bþ1
ð1þ xÞe� bx

Now, the pdf fMBTL and hazard function hMBTL MBTL distribution is given as

fMBTL ¼

tm b2

bþ1
ð1þ xÞe� bx

� �
1þ � � 2� 1 �

e� bxð1þbþbxÞ
1þb

� �h i
1 �

e� bxð1þbþbxÞ
1þb

� �
1þ � � � 1 �

e� bxð1þbþbxÞ
1þb

� �h i� �m� 1
� �

Bðm; sÞ 1 � ð1 � tÞ 1 �
e� bxð1þbþbxÞ

1þb

� �
1þ � � � 1 �

e� bxð1þbþbxÞ
1þb

� �h ih imþs

1 � 1 �
e� bxð1þ bþ bxÞ

1þ b

� �

1þ � � � 1 �
e� bxð1þ bþ bxÞ

1þ b

� �� �� �b� 1

Fig 1. Graphs of p.d.f of MBTGo with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g001
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Fig 2. Graphs of hazard function of MBTGo with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g002

Fig 3. Graphs of p.d.f of MBTED with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g003
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and

hMBTL ¼
Bðm; sÞtm b2

bþ1
ð1þ xÞe� bx

� �
1þ � � 2� 1 �

e� bxð1þbþbxÞ
1þb

� �h ih i

ðBðm; sÞ � Bðf ; m; sÞÞ 1 � ð1 � tÞ 1 �
e� bxð1þbþbxÞ

1þb

� �
1þ � � � 1 �

e� bxð1þbþbxÞ
1þb

� �h i� �mþs

1 �
e� bxð1þ bþ bxÞ

1þ b

� �

1þ � � � 1 �
e� bxð1þ bþ bxÞ

1þ b

� �� �� �m� 1

1 � 1 �
e� bxð1þ bþ bxÞ

1þ b

� �

1þ � � � 1 �
e� bxð1þ bþ bxÞ

1þ b

� �� �� �s� 1

The MBTL distribution includes the Transmuted Lindley(TL) [16] when θ = z = ϕ = 1. For θ =

α = ρ = 1, the MBTL becomes Beta Lindley(BL) distribution [17]. For θ = z = 1, MBTL reduces

to Exponentiated Transmuted Lindey(ETL) distribution [18]. Plots of the density function and

the hazard function of the MBTL with various assigned parameter values are shown in Figs 5

and 6.

From the plots of the submodels of the MBTG distribution, it shows that the proposed fam-

ily of distribution can be rightly skewed, symmetric, reverse J shape and other forms of shape

Fig 4. Graphs of hazard function of MBTED with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g004
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inferring that this family of distribution will be suitable in modeling different form of real life

situations due to its flexibility.

3 Mixture representation

In this section, the mixture representation of the p.d.f of the MBTG family of distribution is

derived. Having this expression simplifies the derivation of some statistical properties of

MBTG family.

Using the binomial expression, as written in Wolfram Statistics

ð1 � zÞq� 1
¼
X1

k¼0

ð� 1Þ
k

q

k

 !

zk ð11Þ

such that |z|< 1 and k> 0 real non-integer.

From Eq 8, Considering

E ¼ ½1 � ð1 � tÞGðx; gÞ½1þ � � �Gðx; gÞ��
mþs

ð12Þ

Fig 5. Graphs of p.d.f of MBTL with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g005
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By the application of the binomial expression, Eq 12 is

E ¼
X1

k¼0

� m � s

k

 !

ð� 1Þ
k
ð1 � tÞ

k
ðGðx; gÞ½1þ � � �Gðx; gÞ�Þ

k
ð13Þ

Likewise considering

W ¼ ½1 � Gðx; gÞ½1þ � � �Gðx; gÞ��
s� 1 ð14Þ

and using the binomial expression, Eq 14 is

W ¼
X1

l¼0

s � 1

l

 !

ð� 1Þ
l
ðGðx; gÞ½1þ � � �Gðx; gÞ�Þ

l
ð15Þ

Applying Eqs 13 and 15 to Eq 8, the mixture representation of the p.d.f of the MBTG family is

aðx; gÞ ¼
X1

k¼0

X1

l¼0

� m � s

k

0

@

1

A
s � 1

l

0

@

1

A ð� 1Þ
kþl
ð1 � tÞ

kgðx; gÞ½1þ � � 2�Gðx; gÞ�ðGðx; gÞ½1þ � � �Gðx; gÞ�Þ
mþkþl� 1

ð16Þ

Fig 6. Graphs of hazard function of MBTL with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g006
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Furthermore, Eq 16 can written in form of the exponentiated transmuted G as

aðx; gÞ ¼
X1

k¼0

X1

l¼0

grPmþkþl ð17Þ

where

gr ¼

� m � s

k

0

@

1

A
s � 1

l

0

@

1

A ð� 1Þ
kþl
ð1 � tÞ

k
ðmþ kþ lÞ� 1

and

Pmþkþl ¼ ðmþ kþ lÞ½gðx; gÞ½1þ � � 2�Gðx; gÞ�ðGðx; gÞ½1þ � � �Gðx; gÞ�
mþkþl� 1

Pμ+k+l is the p.d.f of the exponentiated transmuted-G family of distribution with index param-

eters μ+k+l.

From Eq 17, the corresponding c.d.f of the MBTG family of distribution is

Aðx; gÞ ¼
X1

k¼0

X1

l¼0

grbmþkþl ð18Þ

βμ+k+l is the c.d.f of the exponentiated transmuted-G family of distribution with index parame-

ters μ+k+l.

4 Statistical properties

In this section, some statistical properties of the MBTG family of distribution are studied. The

properties include order statistics, moments, moment generating function, shanon entropy

and the quantile function.

4.1 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let X,

X2, X3, X4, . . ., Xn be random sample generated from the MBTG family of distributions. The p.

d.f of ith order statistic, Xi:n, can be written as

fði:nÞðx; gÞ ¼ n
n � 1

n � j

 !

f ðx; gÞ½1 � Fðx; gÞ�
i� 1Fðx; gÞ

n� i
ð19Þ

Inserting Eqs 8, and 6 in 19, then

aði:nÞðx; gÞ ¼ n
n � 1

n � j

 !
tm½Gðx; gÞðGðx; gÞÞ

m� 1
ð1 � Gðx; gÞÞ

b� 1
�

Bðm; sÞ½1 � ð1 � tÞGðx; gÞ�
mþs

" #
Bðm; sÞ � Bðf ; m; sÞ

Bðm; sÞ

� �j� 1 Bðf ; m; sÞ

Bðm; sÞ

� �n� j

ð20Þ

The first order statistics X(1) has the marginal p.d.f. obtained as

n
tm½Gðx; gÞðGðx; gÞÞ

m� 1
ð1 � Gðx; gÞÞ

b� 1
�

Bðm; sÞ½1 � ð1 � tÞGðx; gÞ�
mþs

" #
Bðf ; m; sÞ

Bðm; sÞ

� �n� 1

ð21Þ
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while the last order statistics have the marginal p.d.f as

n
tm½Gðx; gÞðGðx; gÞÞ

m� 1
ð1 � Gðx; gÞÞ

b� 1
�

Bðm; sÞ½1 � ð1 � tÞGðx; gÞ�
mþs

" #
Bðm; sÞ � Bðf ; m; sÞ

Bðm; sÞ

� �n� 1

ð22Þ

In terms of the mixture representation, order statistics of the MBTG family of distribution is

aði:nÞðx; gÞ ¼ n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #
X1

k¼0

X1

l¼0

grbmþkþl

" #n� i

1 �
X1

k¼0

X1

l¼0

grbmþkþl

 !" #i� 1

ð23Þ

and the first order marginal p.d.f and last order marginal p.d.f given as

n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #
X1

k¼0

X1

l¼0

grbmþkþl

" #n� 1

ð24Þ

n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #

1 �
X1

k¼0

X1

l¼0

grbmþkþl

 !" #n� 1

ð25Þ

4.2 Moments

The rth moment of X, say c
0

r follows from Eq 17 as

c
0

r ¼ E½Xr� ¼
X1

k¼0

X1

l¼0

grE½P
r
mþkþl� ð26Þ

Therefore E½Pr
mþkþl� is the r-th moment of the exp-Transmuted G family.

The nth central moment of X, say Mn is given by

Mn ¼ E½X � c0
1
�
n
¼
Xn

r¼0

n

r

 !

ðc
0

1
Þ

n� rE½Xr� ð27Þ

Xn

r¼0

X1

k¼0

ð� 1Þ
n� rgr

n

r

 !

ðc
0

1
Þ

n� rE½Pr
mþkþl� ð28Þ

4.3 Moment generating function

Using the expression as in Eq 17, the moment generating function of the MBTG family of dis-

tribution is

MxðtÞ ¼
X1

k¼0

X1

l¼0

grMmþkþlðtÞ ð29Þ

where Mμ+k+l(t) is the moment generating function of the exp-Transmuted G family of

distribution.
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4.4 Quantile function

The quantile function of the distribution is discussed here. If X MBTG(μ, σ, τ, ϕ, γ), then the

quantile function of X can be simulated as

X ¼ G� 1
�þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�þ 1Þ
2
þ 4�R

q

2�
; g

0

@

1

A ð30Þ

where

R ¼
I� 1

U ðm;sÞ

c � ðI � 1
U ðm; sÞðc � 1ÞÞ

I� 1
u ðm; sÞ gives B(μ,σ) and U * univariate[0, 1].

4.5 Parameter estimation

Several approaches for parameter estimation exist in the literature but maximum likelihood

method is the most commonly employed. The maximum likelihood estimators (MLEs) enjoy

desirable properties and can be used when constructing confidence intervals and also in test

statistics. The normal approximation for these estimators in large sample theory is easily han-

dled either analytically or numerically. So, estimation of the unknown parameters for the

MBTG family are determined only by maximum likelihood estimation method. Here, the

MLEs of the parameters for complete samples only. Given samples X1, X2, . . ., Xn that follows

the MBTG family of distribution, then the loglikelihood function l is given as

l ¼ nm ln t � n ln Bðm; sÞ þ n ln gðx; gÞ þ
Xn

i¼1

ln ð1þ � � 2�Gðx; gÞÞ þ ðm � 1Þ
Xn

i¼1

ln ðGðxiÞð1þ � � �Gðx; gÞÞÞ

þðs � 1Þ
Xn

i¼1

ln ð1 � GðxiÞð1þ � � �Gðx; gÞÞÞ � ðmþ sÞ
Xn

i¼1

ln ð1 � ðð1 � tÞGðxiÞð1þ � � �Gðx; gÞÞÞÞ ð31Þ

Differentiating Eq 31 with the respective distribution parameters, to have

@l
@m
¼ n ln t � � n

G0ðmÞ

GðmÞ
�
G0ðmþ sÞ

Gðmþ sÞ

� �

þ
Xn

i¼1

ln ðGðxiÞð1þ � � �Gðx; gÞÞÞ

�
Xn

i¼1

ln ð1 � ðð1 � tÞGðxiÞð1þ � � �Gðx; gÞÞÞÞ ð32Þ

@l
@s
¼ � n

G0ðsÞ

GðsÞ
�
G0ðmþ sÞ

Gðmþ sÞ

� �

þ
Xn

i¼1

ln ð1 � ½GðxiÞð1þ � � �Gðx; gÞÞ�Þ

�
Xn

i¼1

ln ð1 � ðð1 � tÞGðxiÞð1þ � � �Gðx; gÞÞÞÞ ð33Þ
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@l
@t
¼

nm
t
� ðaþ bÞ

Xn

i¼1

GðxiÞð1þ � � �Gðx; gÞÞ

ln ð1 � ðð1 � tÞGðxiÞð1þ � � �Gðx; gÞÞÞÞ
ð34Þ

@l
@�
¼
Xn

i¼1

1 � 2Gðx; gÞ

1þ � � 2�Gðx; gÞ
þ ðm � 1Þ

Xn

i¼1

Gðx; gÞð1 � Gðx; gÞÞ

Gðx; gÞð1þ � � �ðGðx; gÞÞÞ
� ðs � 1Þ

Xn

i¼1

Gðx; gÞð1 � Gðx; gÞÞ

1 � Gðx; gÞð1þ � � �ðGðx; gÞÞÞ

þðmþ sÞ
Xn

i¼1

ð1 � tÞGðx; gÞð1 � Gðx; gÞÞ

1 � ðð1 � tÞGðx; gÞð1þ � � �ðGðx; gÞÞÞÞ
ð35Þ

@l
@g
¼

ng 0ðx; gÞ

gðx; gÞ
þ
Xn

i¼1

� 2�G0ðx; gÞ

1þ � � 2�Gðx; gÞ
þ ðm � 1Þ

Xn

i¼1

G0ðx; gÞð1þ � � 2�Gðx; gÞÞ

Gðx; gÞð1þ � � �ðGðx; gÞÞÞ

� ðs � 1Þ
Xn

i¼1

G0ðx; gÞð1þ � � 2�Gðx; gÞÞ

1 � ðGðx; gÞð1þ � � �ðGðx; gÞÞÞÞ
þ ðaþ bÞ

Xn

i¼1

ð1 � tÞG0ðx; gÞ½1þ � � 2�Gðx; gÞ�

1 � ðð1 � tÞGðx; gÞð1þ � � �ðGðx; gÞÞÞÞ
ð36Þ

Setting the set of Eqs in 32, 33, 34, 35, 36 to be equals to zero and solving them simultaneously

yields the MLE d̂ = (ẑ; �̂,ŷ,â,r̂,ĝ) of δ = (z,ϕ,θ,α,ρ,γ). Solving these equations cannot be done

analytically. This can be achieved by the aid of statistical software using iterative methods such

as Newton-Raphson type algorithms to solve numerically.

For interval estimation of the model parameters, the observed information matrix is

required. For interval estimation and test of hypothesis on the parameters (z, ϕ, θ, α, ρ, θ), to

obtain a 6x6 unit information matrix

J ¼

Jz;z Jz;� Jz;y Jz;a Jz;r Jz;g
Jz;� J�;� J�;y J�;a J�;r J�;g
Jz;y J�;y Jy;y Jy;a Jy;r Jy;g
Jz;a Ja;� Ja;y Ja;a Ja;r Ja;g
Jz;r Jr;� Jr;y Jr;a Jr;r Jr;g
Jz;g Jg;� Jg;y Jg;a Jg;r Jg;g

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

The corresponding elements are derived by the second derivatives of l with respect to the

parameters.

Under conditions that are fulfilled for parameters, the asymptotic distribution of
ffiffiffi
n
p
ðd̂ �

dÞ is N6ð0; Jðd̂Þ
� 1
Þ distribution of δ can be used to construct approximate confidence intervals

and confidence regions for the parameters and for the hazard and survival functions. The

asymptotic normality is also useful for testing goodness of fit of the beta type I generalized half

logistic distribution and for comparing this distribution with some of its special sub-models

using one of these two well known asymptotically equivalent test statistics- namely, the likeli-

hood ratio statistic and Wald statistic. An asymptotic confidence interval with significance

level τ for each parameter δi is given by

ACIðdi; 100ð1 � tÞÞ ¼ d̂ � zt
2

ffiffiffiffiffiffiffi
J d̂ ;d̂

p
; dþ zd

2

ffiffiffiffiffiffiffi
J d̂ ;d̂

p
ð37Þ

where J d̂ ;d̂ is the ith diagonal element of Knðd̂Þ
� 1

for i = 1, 2, 3, 4, 5, 6 and zτ/2 is the quantile of

the standard normal distribution.
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5 The modified beta transmuted exponential distribution

In this section the exponential distribution is considered as a baseline distribution of the

MBTG family of distribution. The exponential has been studied and many generalizations

have been made by different authors. Some of these works employed the use of transmutation

approach to derived the generalization of the exponential distribution. Such works includes

the transmuted exponential, exponentiated transmuted exponential, exponentiated cubic

exponential e.t.c. The p.d.f of the exponential distribution is

gðx; lÞ ¼ le� lx x > 0;l > 0 ð38Þ

with c.d.f as

Gðx; lÞ ¼ 1 � e� lx ð39Þ

where λ is a scale parameter. Therefore inserting the Eq 38 into Eq 8, the p.d.f of the Modified

Beta Transmuted Exponential Distribution qE(x; γ) is derived as

qEðx; lÞ ¼
tme� lxð1 � �þ 2�e� lxÞð1 � e� lx þ �e� lx � �e� 2lxÞ

m� 1
ðe� lx � �e� lx þ �e� 2lxÞ

s� 1

Bðm; sÞ½1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ�
ð40Þ

and the c.d.f QE(x; λ) as

QEðx; lÞ ¼ IMðx;lÞðm; sÞ ¼
BðMðx; lÞ;m; sÞ

Bðm; sÞ
ð41Þ

where Mðx; lÞ ¼
tð1� e� lxþ�e� lx � �e� 2lxÞð1� �þ2�e� 2lxÞ

1þððt� 1Þð1� e� lxÞð1þ�e� lxÞÞ
and B(M(x; γ);μ, σ) is an incomplete beta

function.

For the distribution, x> 0, λ, τ, μ, σ>0 and |p|< 1.

5.1 Mixture representation of the MBTED

In this subsection, the mixture representation of the MBTED is derived. This will help derive

the analytical expression of the distribution and will be useful in obtaining some properties of

the MBTED.

Inserting Eqs 38 and 39 in Eq 16, the mixture representation of the p.d.f of MBTED is

obtained as

qEðx; lÞ ¼
X1

k¼0

X1

l¼0

� m � s

k

 !
s � 1

l

 !

ð� 1Þ
kþl
ð1 � tÞ

k
le� lx½1 � �þ 2�e� lx�

ðð1 � e� lxÞ½1þ �e� lx�Þ
mþkþl� 1 ð42Þ

Re-writing Eq 42 in terms of the p.d.f of exp-transmuted exponential distribution, it gives

qEðx; lÞ ¼
X1

k¼0

X1

l¼0

grwmþkþl ð43Þ

where

gr ¼
� m � s

k

 !
s � 1

l

 !

ð� 1Þ
kþl
ð1 � tÞ

k
ðmþ kþ lÞ� 1
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and

wmþkþl ¼ ðmþ kþ lÞle� lx½1 � �þ 2�e� lx�ðð1 � e� lxÞ½1þ �e� lx�Þ
mþkþl� 1

χμ+k+l is the p.d.f of the exponentiated transmuted exponential distribution with index parame-

ters μ+k+l as derived by [15].

From Eq 43, the corresponding c.d.f of the MBTG family of distribution is

QEðx; lÞ ¼
X1

k¼0

X1

l¼0

grYmþkþl ð44Þ

Θμ+k+l = ((1 − e−λx)[1 + ϕe−λx])μ+k+l is the c.d.f of the exponentiated transmuted exponential

distribution with index parameters μ+k+l.

The survival function of the MBTED is

sðx; lÞ ¼ 1 � IMðx;gÞða; bÞ ¼
Bðm; sÞ � BðMðx; gÞ; m; sÞ

Bðm; sÞ
ð45Þ

and the hazard function as

hðx; lÞ ¼
tme� lxð1 � �þ 2�e� 2lxÞð1 � e� lx þ �e� lx � �e� 2lxÞ

m� 1
ðe� lx � �e� lx þ �e� 2lxÞ

ðBðMðx; lÞ; m;sÞÞ½1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ�
ð46Þ

5.2 Quantile function

Inverting qE(x; λ) = U, the quantile function of the MBTED is determined as

x ¼
� 1

l
ln 1 �

�þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�þ 1Þ
2
þ 4�R

q

2�
; g

0

@

1

A

0

@

1

A ð47Þ

where

R ¼
I� 1

U ðm;sÞ

c � ðI � 1
U ðm; sÞðc � 1ÞÞ

I� 1
u ðm; sÞ gives B(μ,σ) and U * univariate[0, 1].

5.3 Order statistics of MBTED

Let X1, X2, X3, X4, . . ., Xn be random sample generated from the MBTED distributions. The p.

d.f of ith order statistic, Xi:n, can be written as

qEði : nÞðx; lÞ ¼ n
n � 1

n � j

 !

qEðx; lÞ½1 � QEðx; lÞ�
i� 1
ðQEðx; lÞÞ

n� i
ð48Þ

Inserting Eqs 40 and 41 in 48, the order statistics of the MBTED has the expression as

qEði : nÞðx; lÞ ¼
tme� lxð1 � �þ 2�e� lxÞð1 � e� lx þ �e� lx � �e� 2lxÞ

m� 1
ðe� lx � �e� lx þ �e� 2lxÞ

s� 1

Bðm; sÞ½1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ�

� �

BðMðx; gÞ; m; sÞ

Bðm; sÞ

� �i� 1 Bðm; sÞ � BðMðx; gÞ; m; sÞ

Bðm; sÞ

� �n� 1

ð49Þ
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In terms of the mixture representation, order statistics of the MBTG family of distribution can

be written as

qEði : nÞðx; lÞ ¼ n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #
X1

k¼0

X1

l¼0

grbmþkþl

" #n� i

1 �
X1

k¼0

X1

l¼0

grbmþkþl

 !" #i� 1

ð50Þ

and the first order marginal p.d.f and last order marginal p.d.f given as

n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #
X1

k¼0

X1

l¼0

grbmþkþl

" #n� 1

ð51Þ

n
n � 1

n � j

 !
X1

k¼0

X1

l¼0

grPmþkþl

" #

1 �
X1

k¼0

X1

l¼0

grbmþkþl

 !" #n� 1

ð52Þ

5.4 Moments of MBTED

The moments of the Exponential Transmuted exponential distribution, as established by [15]

is

E Pr
mþkþl

h i
¼ ðmþ kþ lÞ

X1

m¼0

X1

w¼0

X1

z¼0

ð� 1Þ
m
rwþzð1 � rÞ

1� z
aþ kþ l � 1

m

 ! aþ kþ l � 1

w

 !
1

z

 !

2zGr þ 1

ðiþ jþmþ 1Þ
rþ1
rr

ð53Þ

the moments of the MBTED is derived as

E Xr½ � ¼
X1

k¼0

X1

l¼0

X1

m¼0

X1

w¼0

X1

z¼0

ð� 1Þ
mþkþl
ð1 � tÞ

k
rwþzð1 � rÞ

1� z

aþ kþ l � 1

m

 ! aþ kþ l � 1

w

 !
1

z

 !
� m � s

k

 !
s � 1

l

 !
2zGðr þ 1Þ

ðiþ jþmþ 1Þ
rþ1
rr
ð54Þ

From the expression in Eq 54, the mean E[X], second moment E[X2], Variance, Kurtosis and

Skewness can be derived.

5.5 Moment generating function of MBTED

Using the moment generating function as established by [15], to have the moment generating

function of MBTED as

MXðtÞ ¼
X1

k¼0

X1

l¼0

X1

m¼0

X1

w¼0

X1

z¼0

ð� 1Þ
mþkþl
ð1 � tÞ

k
rwþzð1 � rÞ

1� z

aþ kþ l � 1

m

 !
aþ kþ l � 1

w

 !
1

z

 !
� m � s

k

 !
s � 1

l

 !
ðmþ kþ lÞ2zl

lðmþ wþ z þ 1Þ � t
ð55Þ
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5.6 Shanon entropy

Entropy measures the uncertainty of a random variable X. The entropy of the MBTED is

B ¼ � E logðf ðxÞÞ½ � ð56Þ

B ¼ � E log
tme� lxð1 � �þ 2�e� lxÞð1 � e� lx þ �e� lx � �e� 2lxÞ

m� 1
ðe� lx � �e� lx þ �e� 2lxÞ

s� 1

Bðm; sÞ 1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ½ �

� �� �

ð57Þ

This can be estimated iteratively.

5.7 Parameter estimation of MBTED

If samples X1, X2, . . ., Xn is set of reandom samples distributed to the MBTED, then the loglike-

lihood function l is given as

l ¼ nm ln t � n ln Bðm; sÞ þ
Xn

i¼1

ln ðle� lxÞ þ
Xn

i¼1

ln ð1 � �þ 2�e� lxÞ þ ðm � 1Þ
Xn

i¼1

ln ð1 � e� lx þ le� lx � le� 2lxÞ

þðs � 1Þ
Xn

i¼1

ln ðe� lx � le� lx þ le� 2lxÞ � ðmþ sÞ
Xn

i¼1

ln ð1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞÞ ð58Þ

Differentiating Eq 58 with the respective distribution parameters, to have

@l
@m
¼ n ln s � n

G0ðmÞ

GðmÞ
�
G0ðmþ sÞ

Gðmþ sÞ

� �

þ
Xn

i¼1

ln ð1 � e� lx þ le� lx � le� 2lxÞ

�
Xn

i¼1

ln 1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ
� �

ð59Þ

@l
@s
¼ � n

G0ðsÞ

GðsÞ
�
G0ðmþ sÞ

Gðmþ sÞ

� �

þ
Xn

i¼1

ln ðe� lx � le� lx þ le� 2lxÞ

�
Xn

i¼1

ln 1 � ð1 � tÞð1 � e� lx þ �e� lx � �e� 2lxÞ
� �

ð60Þ

@l
@�
¼
Xn

i¼1

e� lx � 1

1 � �þ 2�e� lx
þ ðm � 1Þ

Xn

i¼1

e� lxð1 � e� lxÞ

1 � e� lx þ le� lx � le� 2lx
� ðs � 1Þ

Xn

i¼1

1 � e� lx

1 � �þ �e� lx

þðmþ sÞ
Xn

i¼1

e� lxð1 � tÞð1 � e� lxÞ

1 � ðð1 � tÞð1 � e� lxÞð1 � �þ 2�e� lxÞÞ
ð61Þ

@l
@l
¼ � nl �

Xn

i¼1

2�le� lx

1 � �þ 2�e� lx
þ ða � 1Þ

Xn

i¼1

le� lxð1 � �þ 2�e� lxÞ

1 � e� lx þ �e� lx � le� 2lx

� ðs � 1Þ
Xn

i¼1

1 � �þ 2�e� lx

1 � �þ �e� lx
þ ðmþ sÞ

Xn

i¼1

le� lxð1 � tÞð1 � �þ 2�e� lxÞ

1 � ðð1 � tÞð1 � e� lxÞð1þ �e� lxÞÞ
ð62Þ
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@l
@t
¼

nm
t
ðmþ sÞ

Xn

i¼1

ð1 � e� lxÞð1 � �þ 2�e� lxÞ

1 � ðð1 � tÞð1 � e� lxÞð1þ �e� lxÞÞ
ð63Þ

The maximum likelihood estimator of parameters can be obtained solving this nonlinear sys-

tem of Eqs in 59, 60, 61, 62, 63. It is usually more convenient to use non-linear optimization

algorithms such as quasi-Newton algorithm to numerically maximize the log-likelihood

function.

5.8 Simulation study

In this section, a simulation study was performed using the MBTED in orfer to assess the per-

formance of the maximum likelihood estimates of the distribution. To conduct this, 1000

samples of sizes 30,100,200 were generated from the quantile function of the MBTED for

parameter values (2,3,2.5,-0.7,2),(3.2,1.3,1.5,0.5,0.5) and (3,3,3.5,0.2,2). The results of the simu-

lation study are presented in Tables 1–3. These results show that the estimates for the mean is

close to the parameter values as the sample sizes increase. Also, the mean square error

decreases as the sample size increases.

5.9 Application to real data

In this section, applications to two real data(Medicine and Behavioral datasets) are presented

to illustrate the importance and the fit of the MBTED. The maximum likelihood estimates (M.

L.E) of the distribution and that of the competitive distributions will be obtained. The good-

ness of fit of the distributins was assessed using the log-likelihood, Akaike’s information

Table 1. Simulation result of MBTED(2,3,2.5,-0.7,2).

Sample Size μ σ τ ϕ λ

50 AE 2.342 3.533 1.142 2.107 2.470

Bias 0.582 1.773 -0.617 0.346 0.710

MSE 2.588 3.382 2.558 3.625 2.958

100 AE 2.160 4.043 0.915 2.508 2.298

Bias 0.400 2.283 -0.844 0.748 0.538

MSE 2.049 3.598 2.051 3.901 2.69

200 AE 2.120 4.646 0.999 2.965 1.902

Bias 0.360 2.886 -0.760 1.205 0.142

MSE 1.793 3.903 2.187 4.189 2.553

https://doi.org/10.1371/journal.pone.0258512.t001

Table 2. Simulation result of MBTED(3.2,1.3,1.5,0.5,0.5).

Sample Size μ σ τ ϕ λ

50 AE 2.695 1.339 0.463 0.553 1.319

Bias 1.295 -0.060 -0.936 -0.846 -0.080

MSE 7.798 1.626 2.481 1.898 1.462

100 AE 2.318 1.204 0.364 0.681 1.191

Bias 0.918 -0.195 -1.035 -0.718 -0.208

MSE 5.666 1.493 1.808 1.301 1.200

200 AE 1.990 1.171 0.314 0.717 1.090

Bias 0.590 -0.228 -1.085 -0.682 -0.309

MSE 1.901 1.262 1.536 1.279 1.163

https://doi.org/10.1371/journal.pone.0258512.t002
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criterion (AIC), Bayesian information criterion (BIC), corrected Akaike’s information crite-

rion (CAIC), Hannan-Quinn Information Criterion(HQIC) and the Kolmogorov Smirnov

test for the models. The fits of the MBTED is compared with other competitive distributions

which are Exponentiated Generalized Weibull(EGW) [19], Exponentiated Kumuraswamy

Exponential(EKE) [20], Beta Burr XII [21], Modified Beta Gompertz(MBG) [22], Exponential,

Exponentiated Transmuted Exponential(ETED) [15]. The p.d.fs of these distributions are as

Table 3. Simulation result of MBTED(3,3,3.5,0.2,2).

Sample Size μ σ τ ϕ λ

50 AE 2.556 4.762 2.437 1.199 5.135

Bias 0.216 2.422 0.097 -0.846 2.795

MSE 2.714 5.304 3.402 5.973 6.176

100 AE 2.594 4.446 2.409 1.200 4.503

Bias 0.254 2.106 0.069 -1.140 2.163

MSE 2.377 4.611 3.320 5.717 4.616

200 AE 2.366 4.037 2.489 0.978 4.295

Bias 0.026 1.697 0.149 -1.361 1.955

MSE 2.186 3.104 3.086 3.442 4.437

https://doi.org/10.1371/journal.pone.0258512.t003

Table 4. Table displaying descriptive analysis of survival time of breast cancer patients.

Minimum First Quartile Median Mean Third Quartile Maximum

0.30 17.50 40.00 46.33 60.00 154.00

https://doi.org/10.1371/journal.pone.0258512.t004

Fig 7. TTT plot of survival times of breast cancer.

https://doi.org/10.1371/journal.pone.0258512.g007
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follows:

EGW ¼ abðtgtxt� 1e� ðgxÞtÞð1 � e� ðgxÞtÞa� 1
1 � ð1 � e� ðgxÞtÞa
� �b� 1

EKE ¼ abgðte� txÞð1 � e� txÞa� 1
ððe� txÞaÞb� 1

ð1 � ð1 � ð1 � e� txÞaÞbÞðg� 1Þ

BBXII ¼
ðgtxt� 1ð1þ xtÞ� g� 1

Þ 1 � 1

1þxy

� �t� �a� 1
1

1þxy

� �t� �b� 1

Bða;bÞ

MBG ¼
ga 1 � e� tyðeyxÞ� 1

� �a� 1

e� tyðeyxÞ� 1

� �b� 1

teyx� t
y
ðeyx � 1Þ

� �

Bða; bÞ 1 � ð1 � cÞ 1 � e� tyðeyxÞ� 1
� �� �� �ðaþbÞ

ED ¼ le� lx

5.9.1 Survival times of breast cancer patients. The real data set represent the survival

times of 121 patients with breast cancer obtained from a large hospital in a period from 1929 to

1938 [23]. The data are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8,

12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4,

20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0,

37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0,

44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,

Fig 8. Estimated pdf plots.

https://doi.org/10.1371/journal.pone.0258512.g008
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60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0,

96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

Table 4 shows the summary statistics for the real data. Fig 7 is the TTT plots of the dataset

which shows a non decreasing curve. Fig 8 shows the fitted plot of the data using the MBTED

and the competitive distributions. This indicated that the model fits the data. Table 5 reveals

that the modified beta transmuted exponential distribution gives the best fit when compared

to its submodels, due to lowest values of AIC, BIC, CAIC and HQIC therefore making it the

preferred model to consider for this data.

5.9.2 Recidivism failure time data. The second data consists of 61 observed recidivism

failure times (in days) revealed by correctional institutions in Columbia USA by [24]. The fail-

ure times data were:138, 141, 146, 217, 217, 228, 156, 162, 168, 183, 185, 1, 6, 9, 29, 30, 34, 39,

422, 438, 441, 465, 41, 44, 45, 49, 56, 84, 89, 91, 100, 103, 104, 238, 241, 252, 258, 271, 275, 276,

279, 282, 305, 313, 329, 331, 334, 336, 336, 362, 209, 233, 384, 404, 408, 115, 119, 124, 198, 486,

556. Table 6 shows the summary statistics for the real data. Fig 9 is the TTT plots of the dataset

which shows a non decreasing curve. Fig 10 shows the fitted plot of the data using the MBTED

Table 5. Table displaying results of analysis of survival times of breast cancer patients.

Model Parameter Estimate L AIC CAIC BIC HQIC KS(p-value)

MBTED ϕ 0.693 578.30 1167.095 1167.617 1181.074 1172.773 0.048(0.936)

μ 4.436

σ 0.6050

τ -0.971

λ 0.011

ETED λ 0.019 581.8153 1169.632 1169.843 1183.23 1175.02 0.055(0.079)

ϕ 0.663

σ 1.645

EGW α 1.258 579.603 1169.207 1169.729 1183.186 1174.884 0.058(0.803)

β 1.351

γ 1.152

τ 52.384

EKE α 2.419 579.772 1169.545 1170.067 1183.524 1175.223 0.061(0.756)

β 1.384

γ 0.689

τ 0.022

θ
BBXII α 61.620 582.383 1174.764 1175.285 1188.743 1180.441 0.774(0.462)

β 27.297

γ 0.372

τ 0.792

MBG α 2.756 579.43 1170.864 1171.601 1187.639 1177.677 0.061(0.761)

β 0.679

γ 2.090

τ 0.003

θ 0.030

ED λ 0.022 585.1277 1172.26 1175.05 1172.29 1173.391 0.120(0.059)

https://doi.org/10.1371/journal.pone.0258512.t005

Table 6. Table displaying descriptive analysis of recidivism failure time data.

Minimum First Quartile Median Mean Third Quartile Maximum

1.0 100.0 209.0 211.7 313.0 556.00

https://doi.org/10.1371/journal.pone.0258512.t006
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Fig 9. TTT plot of recidivism failure times data.

https://doi.org/10.1371/journal.pone.0258512.g009

Fig 10. Estimated pdf plots.

https://doi.org/10.1371/journal.pone.0258512.g010
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and the competitive distributions. This indicated that the model fits the data. Table 7 reveals

that the modified beta transmuted exponential distribution gives the best fit when compared

to its submodels, due to lowest values of AIC, BIC, CAIC and HQIC therefore making it the

preferred model to consider for this data. Clearly, based on the values of the criteria used, all of

the two applications provided indicate that the MBTED distribution is superior to the other

models. It has lower values for the LL, AIC, CAIC, BIC, and HQIC than it does for the others.

6 Conclusion

In this article, a new family distribution called the Modified Beta Transmuted-G family is

introduced. The properties of the family such as moments, generating functions, quantile

function, random number generation, reliability function and order statistics were extensively

studied. Furthermore, expressions for the the maximum likelihood estimation of parameters

for the Modified Beta Transmuted-G family of distribution were derived. An exponential dis-

tribution was applied as a baseline distribution for the modified beta transmuted-G to derive

the modified beta transmuted exponential distribution. The properties of the modified beta

transmuted exponential distribution were also been discussed and estimation of parameters

done using the maximum likelihood estimation method. The modified beta transmuted expo-

nential distribution was applied on a real data set in which it was observed that the modified

beta transmuted exponential distribution provides better fit than its submodels. We anticipate

Table 7. Table displaying results of analysis of survival times of breast cancer patients.

Model Parameter Estimate L AIC CAIC BIC HQIC KS(p-value)

MBTED ϕ 0.567 379.517 769.034 770.125 779.589 773.171 0.044(0.999)

μ 148.429

σ 0.002

τ -0.907

λ 0.006

ETED λ 0.079 387.658 781.316 781.737 787.649 783.798 0.136(0.208)

ϕ -0.008

σ 0.059

EGW α 0.226 380.684 771.367 772.458 781.922 775.504 0.049(0.998)

β 0.273

γ 3.532

τ 266.704

EKE α 13.158 382.232 774.463 775.5539 785.0174 778.5994 0.062(0.971)

β 7.250

γ 0.120

τ 0.003

BBXII α 78.35 388.614 787.228 788.319 797.783 791.365 0.109(0.456)

β 36.520

γ 0.286

τ 0.736

MBG α 0.741 379.576 771.153 772.709 783.818 776.117 0.051(0.996)

β 1.188

γ 0.454

τ 0.003

θ 0.002

ED λ 0.005 387.671 777.343 777.410 779.453 778.170 0.136(0.208)

https://doi.org/10.1371/journal.pone.0258512.t007
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that the proposed model will be used to investigate a wider range of applications in diverse

areas of applied research in the future, and that it will be considered a superior alternative to

the baseline model. The model could also be applied in other fields such as machine learning

and artificial intelligence.
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