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Evaluating the relative importance of different social contexts in which infection transmission occurs is
critical for identifying optimal intervention strategies. Nonetheless, an overall picture of influenza
transmission in different social contexts has yet to emerge. Here we provide estimates of the fraction of
infections generated in different social contexts during the 2009 H1N1 pandemic in Italy by making use of a
highly detailed individual-based model accounting for time use data and parametrized on the basis of
observed age-specific seroprevalence. We found that 41.6% (95%CI: 39–43.7%) of infections occurred in
households, 26.7% (95%CI: 21–33.2) in schools, 3.3% (95%CI: 1.7–5%) in workplaces, and 28.4% (95%CI:
24.6–31.9%) in the general community. The above estimates strongly depend on the lower susceptibility to
infection of individuals 191 years old compared to younger ones, estimated to be 0.2 (95%CI 0.12–0.28). We
also found that school closure over the weekends contributed to decrease the effective reproduction number
of about 8% and significantly affected the pattern of transmission. These results highlight the pivotal role
played by schools in the transmission of the 2009 H1N1 influenza. They may be relevant in the evaluation of
intervention options and, hence, for informing policy decisions.

D
espite influenza transmission has been extensively studied, little is known about the differential transmis-
sibility of influenza viruses in different social settings, e.g., households, schools, and workplaces. A wide
literature exists aimed at understanding and quantifying social contacts between individuals in different

social settings based on different techniques, e.g. surveys on contact patterns1–3, analysis of socio-demographic
data4, time-use data5,6, and radio-frequency identification sensor systems7–9. However, due to the difficulty of
gathering reliable epidemiological data describing how infection is transmitted from one setting to another, these
techniques have not been used to estimate the relative importance of different social contexts in the spread of
influenza.

Adequate epidemiological data on influenza transmission are available for contacts between household mem-
bers10–17 and, since the 2009 H1N1 influenza pandemic, between schoolmates18–20. Although these elements have
been investigated individually in previous work through various modeling studies and statistical techniques, an
overall picture has yet to emerge. Influenza transmission in different social contexts (including, for instance,
workplaces and the general community) remains poorly understood; in fact, previous modeling studies14,21–29

have been mainly based on educated assumptions, rather than on empirical estimates, although evaluating the
relative proportions of transmission in the different social contexts is of paramount importance for identifying the
most optimal intervention strategy. Indeed, the uncertainty regarding the contribution of the various settings at
different stages of the epidemic process clearly limits the ability to properly evaluate the efficacy of interventions
such as closure of schools/workplaces, household quarantine, case isolation, and antiviral treatment. In this work
we aim to fill this gap.

Human-to-human influenza transmission depends on i) frequency of contacts between individuals, ii) dura-
tion of the contact, and iii) intensity and type of contact – in terms of virus transmission interactions between
children at school are substantially different from that of, for instance, adults in workplaces. A highly detailed
individual-based model parametrized using realistic socio-demographic and time-use data is developed in this
work and used to account directly for the first two components of influenza transmission (frequency and duration
of contacts in different social settings, e.g. household, schools, workplaces, and the general community) and
indirectly estimating the transmission rate given an adequate contact. To do this Bayesian statistical techniques
are employed here to analyze serological data collected before and after the 2009 H1N1 influenza pandemic in
Italy30,31. This analysis allows us to parametrize the model and to estimate the fractions of infections generated in
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different social settings. More in detail, Italian time-use data inform
on individuals routine during the day and the time spent in different
social contexts of 55,773 individuals. The analysis of time-use data
enable, at any given time step of the simulation, and according to the
day of the week, to dynamically associate individuals either to one
specific location (e.g., their own household, their own school, etc.) or
to the general community. Here contacts in the general community
are defined as all contacts not occurring between household mem-
bers, schoolmates, and work colleagues; so, for instance, the general
community accounts for contacts occurring on public transporta-
tion, restaurants, shops, etc. Accounting for the time spent by indi-
viduals of different ages in different social contexts and employment
types allows us to mimic the complex heterogeneous mixing of indi-
viduals within the population. Similar approaches have already been
proposed, for instance in5,6,21,32 for studying airborne-transmitted
diseases (like smallpox and influenza) and for deriving synthetic
contact matrices by age. Such a high level of detail allows us to
disentangle the contribution of the distinct social settings in the
spread of the 2009 influenza pandemic. This information will be
critical in deciding future control policies that will maximize the
effectiveness of intervention strategies.

Results
Characterizing human behavior. As can be derived from Fig. 1A,
the individual routine during a work day (Monday to Friday) is very

much dependent on the occupational status (e.g., student, worker,
retired/unemployed). Indeed, during the morning, school-aged
individuals spend their time at school mixing with peers of the
same age, i.e. mixing is assortative by age. Similarly, a large
fraction of adults spend their time at work whereby they tend to
have contacts with colleagues. This also implies that during the
morning, contacts in households and in the general community
mainly involve retired/unemployed individuals (i.e., mainly the
elderly). During the daytime, adults and children spend most of
their time in the general community during lunchtime hours and
before and after work/school time, including the time required for
commuting from home to school/work and vice versa. The elderly
spend a considerable amount of time in the general community
(3.5 hours per day per individual aged 651 years), with a peak of
activity in the central part of the morning when students are
generally attending classes and the presence of adults is marginal.
During the late evening, and even more overnight, the mixing pattern
is mainly characterized by contact between household members
(about 95% of all contacts occurring between midnight and 6am is
between household members).

Such a pattern of human activity is one of the main determinants
of the infection process in different social settings. As clearly shown
in Fig. 1B, according to model predictions, infections occur in dif-
ferent social contexts at different hours of the day – the overall
transmission is also variable during the course of the day, see
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Figure 1 | Daily time use and impact on disease transmission. (A) Cumulative probability of being in different social settings (household, school,

work, general community) at each time of the day (with time step 10 minutes) during work days for different age groups. We considered only time-use

data collected from September 1 to May 31 to exclude potential effects of summer vacations. This is coherent with the timing of the 2009 H1N1 pandemic

in Italy, characterized by a single epidemic wave from September 2009 (with the reopening of schools after summer holidays) to January 2010.

(B) Predicted average (lines) and 95%CI (colored areas) of the hourly percentage of daily transmission in different social contexts during work days.

Results refer to infections occurring at day 48 of the simulated epidemics in a population of 100,000 individuals and with parameters as estimated for the

2009 influenza pandemic. (C) and (D) Same as (A) and (B), but for weekends. Differently from many other countries, most schools in Italy are open on

Saturdays.
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Supplementary Information – with peaks of transmission in schools
during the morning, in the general community during the evening,
and in households overnight. Simulations also show a peak of trans-
mission in the general community early in the morning, ascribable to
contacts in the time required to commute from home to school/
workplace.

One aspect of influenza transmission not clearly analyzed yet is the
role of weekends. Weekends could contribute to breaking the chain
of transmission in schools and workplaces, because influenza gen-
erally has a short generation time – about the length of a weekend –
thus influencing the overall pattern of spread. Therefore, the weekly
calendar was expressly considered to account for the effect of week-
ends. The activity of individuals is regulated in such a way as to
cyclically follow time-use data collected on workdays for five simu-
lated days and then to follow time-use data collected on weekends for
the next two simulated days. Specifically, we define the activity of
individuals during a weekend day to be the activity reported in the
time-use survey during Saturdays and Sundays, without distinguish-
ing between them. Weekends are characterized by much more time
spent in the general community (3.4 hours per day per individual
during work days compared to 4.8 hours per day per individual on
weekends) and much less at school (5 hours per day per student
during school days compared to 1.7 hours per day per student on
weekends) or work during the daytime (see Fig. 1C) resulting in a
larger fraction of cases generated in the general community in the late
morning and afternoon (see Fig. 1D).

Our analysis also highlights that, even if all individuals spend some
time in the general community, mixing patterns in this setting are far
from being homogeneous. In fact, different age groups spend their
time in the general community at different times of the day, thus
lowering the transmission probability of airborne diseases between
different age groups.

Age-specific seroprevalence. The epidemic transmission process
is modeled according to a classic susceptible-latent-infectious-
removed (SLIR) epidemiological model, describing virus transmis-
sion in the general community (R), with explicit transmission in
households (H), schools (S), and workplaces (W). At any given
time step, infectious individuals can infect only susceptible indi-
viduals who are sharing their same location at the same time (see
Methods section and Supplementary Information). Specifically,
three different disease transmission models characterized by an
increasing level of complexity and realism of the social structures
have been considered, namely:

. Model HR: only households and the general community are mod-
eled and the latter accounts also for school and workplace con-
tacts;

. Model HSR: households, schools, and the general community are
modeled and the general community accounts also for workplace
contacts;

. Model HSWR: households, schools, workplaces, and the general
community are modeled.

We found that the two models explicitly considering transmission
in schools (models HSR and HSWR) both perform significantly
better than the simple structure model (model HR) in reproducing
the observed post-pandemic age-specific seroprevalence (Fig. 2A).
Model performances were evaluated by the Deviance Information
Criterion (DIC; we recall that models with smaller DIC should be
preferred). The DIC of the three considered models is 39.3 for model
HR, 33.6 for model HSR, and 31.7 for model HSWR. Model HR
results in overestimating the seroprevalence in pre-school children
and underestimating seroprevalence in children and adolescents (see
Fig. 2A). As for models HSR and HSWR, results show a significantly
higher seroprevalence in school-aged children and adolescents
(around 55–65%) – a high fraction of seropositive individuals

(around 35–45%) is also estimated in pre-school children – com-
pared to older age classes. These estimates compare well with
observed data (see Fig. 2A). The fraction of H1N1 seropositive
among elderly individuals does not significantly increase with
respect to the pre-pandemic baseline (see Supplementary Infor-
mation). All in all, the analysis suggests that 1) schools may have
played a pivotal role in the transmission of influenza – this is why
models HSR and HSWR, explicitly accounting for transmission in
schools, outperform model HR – and 2) younger individuals could
have been more susceptible, for either biological or behavioral rea-
sons, to the disease than adults – this is why the inclusion of work-
places in the model does not result in significantly better estimates
with respect to model HSR.

Epidemic doubling time. The epidemic doubling time is the time
required for the number of new daily cases to double their value, that
is log(2)/r where r is the exponential growth rate of the incidence of
new infections. The exponential growth rate of the simulated
epidemics has been computed by fitting a linear model to the
logarithm of the predicted daily incidence of new infections over a
time windows of two weeks chosen in the initial phase of the
epidemic, when the depletion of susceptibles is negligible and the
incidence grows exponentially.

Estimates of the doubling time are 7.6 days (95% Credible Interval,
CI: 4.3–13.6 days) for model HR, 5.4 days (95%CI: 3.6–8.7 days) for
model HSR, and 5.6 days (95%CI: 3.6–8.7 days) for model HSWR. As
for models accounting for explicit transmission in schools, although
they are calibrated only on the basis of seroprevalence data, which
does not include any direct information about the growth rate of the
epidemic, they lead to estimates of the doubling time in satisfactory
agreement with those reported in three independent studies31,33,34

(see Fig. 2B). Estimates provided by model HR are slightly larger
than those reported in these studies (see Fig. 2B).

Reproduction number. A key measure of the transmission potential
of a disease is the reproduction number R0, which is defined as the
average number of individuals infected by a typical infectious
individual in a fully susceptible population. The effective
reproduction number Re is used when a fraction of the population
is already immune to the disease35. The procedure used for
computing R0 is detailed in the Supplementary Information. As a
fraction of the population, mainly concentrated in the elderly, was
immune to the virus at the beginning of the 2009 pandemic, we
provide estimates of Re.

We found Re 5 1.29 (95%CI: 1.14–1.48) for model HR, 1.4
(95%CI: 1.23–1.58) for model HSR, and 1.39 (95%CI: 1.23–1.59)
for model HSWR, in satisfactory agreement with independent esti-
mates regarding the 2009 influenza pandemic in Italy, resulting from
the analysis of different datasets and obtained by using different
approaches31,33,34,37,38 (see Fig. 2C).

Age-specific susceptibility to infection. One peculiarity of the 2009
influenza pandemic was an age-specific pattern of susceptibility to
infection, as observed by studies focusing on the United States15,
Mexico41, and European countries31,38. All these studies have
highlighted remarkably larger relative susceptibility to infection in
school-aged children and adolescents compared to adults and the
elderly. Differential susceptibility to infection by age is accounted by
assuming that individuals aged 191 years are exposed to a lower
force of infection with respect to younger individuals (see Methods
for details).

In all tested models, we estimate a pattern characterized by lower
susceptibility to infection in adults and the elderly compared to
individuals 18 years of age or younger (see Fig. 2D), specifically
0.11 (95%CI 0.07–0.15) for model HR, 0.21 (95%CI 0.14–0.33) for
model HSR, and 0.2 (95%CI 0.12–0.28) for model HSWR. Estimates
provided by models HSR and HSWR (about 0.2 on average for all
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individuals 19 years of age or older) compare well with values
reported in31.

These findings reveal the pivotal role played by schools in the
transmission of the 2009 H1N1 influenza, acting as amplifiers of
influenza transmission. In order to reproduce the observed profile
of seroprevalence, model HR is forced to estimate a remarkably high
(and hardly plausible) susceptibility to infection of school children
and adolescents with respect to adults, in order to counterbalance the
lack of contacts in schools between children and adolescents. In fact,
as shown in3,4, these age groups are characterized by a higher number
of contacts and a larger assortativity mainly due to school contact.
Results reported so far allow us to exclude model HR from the rest of
the analysis.

Influenza transmission by setting. According to model HSR, the
resulting fraction of transmission per setting is 42.8% (95%CI: 39.9–
45.6%) in households, 27.2% (95%CI: 21.1–33.2%) in schools, and
30% (95%CI: 25.9–34.3%) in the general community (which also
accounts for workplace infections); by assuming model HSWR the
figure becomes 41.6% (95%CI: 39–43.7%) in households, 26.7%
(95%CI: 21–33.2) in schools, 3.3% (95%CI: 1.7–5%) in workplaces,
and 28.4% (95%CI: 24.6–31.9%) in the general community. Results
are summarized in Fig. 3A.

Estimates obtained by assuming either model HSR or HSWR do
not differ much; this is a consequence of the low level of transmission

associated with contacts between work colleagues, as estimated by
model HSWR. Such a low proportion of transmission within work-
places has already been found in38 and is possibly ascribable to the
low susceptibility to infection of adults compared to that of younger
individuals.

Lower values of within-household transmission (about 33%) have
been estimated for the 1999–2000 influenza season in France (see
Ferguson et al.14). Similar results have also been reported in17 for
seasonal influenza (estimated range 22%–35%) and for pandemic
influenza (estimated range 23%–37%) in Hong Kong. However, as
hypothesized in22 and later confirmed in42, the fraction of transmis-
sion occurring in households strongly depends on the socio-
demographic structure of the population where the virus spreads.
The average age of the population and the household size are both
factors critically affecting these estimates. Moreover, simulations
show a high variability of estimates over time, especially in the initial
phase of the epidemic when the number of cases is still low and the
epidemic follows highly stochastic chains of infection. This should be
cautiously taken into account when analyzing field data.

Estimates of the proportion of transmission in households are not
very sensitive to R0 and adults susceptibility to infection compared to
that of younger individuals, but the proportion of transmission in
schools, in the general community, and to a lesser extent, in work-
places are (see Fig. 3B). We found that for each value of R0 the
proportion of transmission in households is higher for intermediate

Figure 2 | Model calibration and validation. (A) Distribution (mean, 50%CI and 95%CI as resulting from exact binomial tests) of the post-pandemic

influenza seroprevalence by age group observed in the serological samples (grey; a sample is considered seropositive when HI titer is $ 40) and posterior

distribution (mean, 50%CI and 95%CI) estimated with transmission models HR (blue), HSR (green) and HSWR (red). (B) Posterior distribution

(mean, 50%CI and 95%CI) of the epidemic doubling time estimated with transmission models HR (blue), HSR (green) and HSWR (red). The grey bar

refers to range estimated an independent study (Merler et al.31); grey points refer to the average values estimated in Poletti et al.33 and in Ajelli et al.34.

(C) Posterior distribution (mean, 50%CI and 95%CI) of the effective reproduction number estimated with transmission models HR (blue), HSR (green)

and HSWR (red). Grey bars refer to range estimated in independent studies (Merler et al.31 and Dorigatti et al.37); grey points refer to the average values

estimated in Poletti et al.33 and in Ajelli et al.34. (D) Posterior distribution (mean, 50%CI and 95%CI) of the relative susceptibility to infection of adults

(191 year-old) with respect to younger individuals estimated with transmission models HR (blue), HSR (green) and HSWR (red).
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values of relative susceptibility (about 0.3–0.5). Higher values of
relative susceptibility result in much more transmission in the gen-
eral community (more than 40% of cases generated in the general
community) and much less transmission in schools (less than 10% of
cases generated through school contacts). The opposite effect is
observed when considering lower values of relative susceptibility,
with less than 30% of cases generated in the general community
and more than 35% of cases generated through school contacts.

Together with R0, another measure of the transmission potential
of a disease is represented by Rindex, which is defined as the average
number of individuals infected by the first infectious individual (the
index case) in a fully susceptible population22,36. The effective Rindex

e is
used when a fraction of the population is already immune to the
disease. The use of Rindex

e allows us to investigate the transmission
potential by age groups. The procedure used for computing Rindex

e is
detailed in the Supplementary Information.

As shown in Figure 3C, the estimated Rindex
e of the overall popu-

lation is 1.13 by assuming model HSWR (Rindex
e ~1:08 by assuming

model HSR). Such a value is lower than the estimated effective repro-
duction number as the initial infective individual is randomly chosen
and it cannot thus be considered a ‘‘typical’’ infector, as required in
the definition of Re – the difference between the estimated Re and
Rindex

e is in line with literature values22,36. Our results show that
younger individuals (especially students) have a higher transmission
potential than adults. Specifically, we found Rindex

e ~1:82 by assum-
ing model HSWR (Rindex

e ~1:83 by assuming model HSR) for indi-
viduals aged 0–18 years, which is about twofold than that of
individuals aged 19 years or more (specifically, Rindex

e ~0:95 by
assuming model HSWR and Rindex

e ~0:89 by assuming model
HSR). This result is in agreement with the current knowledge on
the 2009 influenza pandemic, suggesting that school age individuals
have shown a higher transmission potential than adults (see for
instance39,40). Moreover, we can also observe the relative contribution
of the different settings to the overall Rindex

e . By looking at the entire

population, we found that Rindex
e is 0.57 in households, 0.18 in

schools, 0.07 in workplaces, and 0.3 in the general community
according to model HSWR (0.59 in households, 0.18 in schools,
and 0.31 in the general community according to model HSR). A part
from obvious differences in the transmission potential at school, we
found that Rindex

e in household is 0.77 for individuals aged 0–18 years
according to model HSWR (0.77 by assuming model HSR), while for
individuals aged 191 years it is 0.52 according to model HSWR (0.54
by assuming model HSR). This remarkable difference stems from the
fact that younger individuals more likely live in larger households
and with other young individuals4.

The role of weekends. To assess the impact of weekends on the
spread of the 2009 H1N1 pandemic we compare the above results
to those obtained from a theoretical scenario where changes in
individuals’ habits during the weekend are not considered, i.e.,
weeks consist of seven work days. Results show that weekends
(with more time spent in the general community and much less at
school and work) are responsible for a reduction of Re of 6.7% on
average according to model HSR (without weekends Re increases to
1.5, 95% CI 1.31–1.72), and a 8% reduction on average according to
model HSWR (without weekends Re increases to 1.51, 95%CI 1.33–
1.73). We also found that the fraction of cases in different settings is
affected by weekends. According to model HSWR, weekends
contribute to increase transmission in households of 3.5% (without
modeling weekends the fraction of cases in households decreases to
40.2%, 95% CI 37.9–41.9), to decrease transmission in schools of
19.3% on average (without weekends the fraction of cases in
schools increases to 33.1%, 95% CI 26.4–40), to decrease
transmission in workplaces of 23.3% (without weekends the
fraction of cases in workplaces increases to 4.3%, 95% CI 2.4–6.4),
and to increase transmission in the general community of 26.8% on
average (without weekends the fraction of cases in the general
community decreases to 22.4%, 95% CI 19.5–25.3). Similar results
were found with model HSR (see Supplementary Information).
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Figure 3 | Influenza transmission in different social settings. (A) Posterior distribution (mean, 50%CI and 95%CI) of the proportion of transmission in

households, schools, workplaces and in the general community estimated with transmission models HSR (green) and HSWR (red). (B) Proportion of

transmission in different social settings as obtained by simulating transmission model HSWR and by varying R0 and susceptibility to infection of

adults (191 year-old) relative to younger individuals. Violet points represent central estimates of Re and susceptibility to infection of adults for the 2009

H1N1 pandemic in Italy. Results are obtained by averaging over 1,000 model simulations for each pair R0-relative susceptibility. Color scale on the right

side of each panel. (C) Rindex
e , overall and in different settings, for all individuals (left subpanel), individuals aged 0–18 years (middle subpanel), and

individuals aged 191 years (right subpanel). Green points refer to model HSWR and red points to model HSR.
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While the estimated difference of transmission in households is
not epidemiologically very relevant, results show that weekends may
be responsible for a drop of about 19–25% of influenza transmission
in schools. However, on the other side, a higher average proportion of
transmission in the general community and, to a lesser extent, in
households is also associated to weekends. This may be particularly
relevant when considering school closure policies.

Discussion
In this work we analyzed age-specific seroprevalence data collected in
Italy pre and post the 2009 H1N1 influenza pandemic to identify the
main routes of influenza transmission and to quantify their relative
importance. Our results suggest that the two main routes of infection
were household contacts (accounting for about 42% of all infections)
and school contacts (accounting for about 27% of all infections).
Only a negligible fraction of infection has been associated with
within-workplace transmission (about 3%) while about 28% of all
infections have been due to contacts occurring in other social con-
texts (e.g., public transportation system, leisure places, shops, restau-
rants, etc.). These figures, which are quite stable under different
modeling assumptions, must be considered specific to the 2009
H1N1 pandemic. In fact, remarkably low levels of susceptibility to
infection are associated with adults and the elderly compared to that
of younger individuals, and it is not clear whether such a pattern is
specific to the 2009 pandemic or a common signature of influenza
pandemics. We estimated adults and the elderly to be about 5 times
less susceptible to infection than children and adolescents. This value
of relative susceptibility to infection, however, may depend on factors
both biological (e.g., related to the strain of the virus and the host
immune response) and behavioral (e.g., interactions between chil-
dren at school are substantially different for chance of virus trans-
mission than that of, for instance, adults at work). However, at this
time, it is not possible to quantify the relative contributions of these
factors in determining the overall pattern of susceptibility to infec-
tion. Different values of R0 and, even more importantly, of relative
susceptibility, give rise to completely different figures – transmission
in schools may vary from 5% to 35% and transmission in the general
community may vary from 25% to 45%. We also found that the
transmission potential of younger individuals (aged 18 years at most)
was about two times higher than that of adults. Moreover, our ana-
lysis highlights that weekends are responsible for a decrease of the
effective reproduction number of about 8%. Moreover, we found
different figures of transmission by setting during weekends, with a
drop of transmission in schools, a higher proportion in the general
community and in households. These findings may inform policies
to optimize containment/mitigation measures when facing a new
influenza pandemic.

Methods
Modeling population’s demographic, social, and behavioral characteristics. We
simulate a population of 100,000 individuals (roughly the average size of an Italian
municipality). The model is informed with detailed socio-demographic data on the
Italian population as described in4. Here we also consider that individuals can move
among different locations during the course of the day on the basis of time-use data
for the Italian population, stratified by age and employment, work days and
weekends, at 10-minute time resolution. Details are provided in Supplementary
Information.

Disease transmission model. Influenza transmission is modeled according to the
classic SLIR scheme: (S) susceptible, individuals who can acquire the infection; (L)
latent, individuals who are infected but not able to infect yet; (I) infectious, individuals
who are infected and able to infect; and (R) removed, individuals who are immune to
the disease, for instance because they recovered from infection.

One of the most striking features emerged from the analysis of the 2009 pandemic
has been a higher susceptibility to infection of children/adolescents with respect to
adults15,31,38,41. On the other hand, differences in infectiousness by age have never been
reported in the literature and this hypothesis has even been ruled out15. Therefore,
according to the literature, we assume age-specific susceptibility to infection, but not
age-specific infectiousness. We stress, however, that this does not necessarily imply
that all individuals have the same transmission potential – what remains constant is

the transmission probability given an adequate contact. In fact, for instance, students
would have a higher transmission potential than the elderly, as they tend to have a
large pull of contacts (e.g. at school), most of which are individuals with high sus-
ceptibility to infection. With regard to susceptibility to infection, the population is
divided into two susceptibility age classes: children and adolescents (individuals aged
0–18) and adults (191 year-old individuals).

As each individual at any time step of the simulation is located in a specific location,
we assume that susceptible individuals can get infected only through contact with
infectious individuals who are sharing the same place at the same time. Specifically, at
any time step t of the simulation, any susceptible individual i has a probability
qi~1{e{li tð ÞDt of being infected, where li(t) is the instantaneous risk of infection
and Dt is the length of the time step of the simulation. We assume homogeneous
mixing between all individuals who are co-located in the same setting at the same time
and thus the risk of infection can be computed at any time step of the simulation as:

li tð Þ~
br aið ÞIhi tð Þ

Nhi tð Þ
ð1Þ

where

. hi(t) identifies the place where individual i is located at time t. hi can be the
household of individual i, its school (if any), its workplace (if any), or the general
community;

. Nhi tð Þ is the number of individuals co-located in place hi at time t. Thus, for

instance, if hi(t) is a household, Nhi tð Þ can be at most the number of household

members;
. Ihi tð Þ is the number of infectious individuals co-located in place hi at time t;
. ai is the age of individual i;
. r is the age-dependent susceptibility to infection of individuals. We assume that

r(ai) 5 1 if ai # 18 to avoid over-parametrization and r aið Þ~�rw0 if ai . 18.
. b is the (setting independent) influenza transmission rate.

At each time step of the simulation, latent individuals enter the infectious phase
with probability vDt, where 1/v is the average length of the latent period, which is
assumed to be 1.5 days. Similarly, infectious individuals recover with probability cDt,
where 1/c is the average length of the infectious period, which is assumed to be 1.2
days. This leads to a generation time of 2.7 days, in agreement with estimates given in
the literature (see for instance15,20,38). Recovered individuals are assumed to have
acquired full immunity to the circulating pandemic virus. Moreover, to account for
the presence of immune individuals in the population before the pandemic, we
randomly assign individuals to be in the removed class on the basis of the observed
pre-pandemic age-specific seroprevalence rates30,31.

Model calibration. The model has two free parameters: the influenza transmission
rate b and the susceptibility to infection �r of adults (191 years of age) compared to
younger individuals (0–18 years of age). Posterior distributions of the free parameters
were explored by Markov Chain Monte Carlo (MCMC) sampling applied to the
likelihood of post-pandemic serological data reported in31. Specifically, by assuming
that for each considered age group the number of positive samples is binomial B(n, p),
the likelihood is defined as:

L~P
a

n að Þ
k að Þ

� �
p a; hð Þk að Þ 1{p a; hð Þð Þn að Þ{k að Þ ð2Þ

where index a runs over the age groups considered in the serological surveys (i.e., 0–5,
6–18, 19–64 and 651 year-old individuals), n(a) is the number of samples tested, k(a)
is the number of positive samples and p(a; h) is the seroprevalence for age group a as
resulting from model simulations with parameter set h~ b,�rð Þ.
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