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Although transcript levels have been traditionally used as a surrogate measure of gene 
expression, it is increasingly recognized that the latter is extensively and dynamically 
modulated at the level of translation (messenger RNA to protein). Over the recent years, 
significant progress has been made in dissecting the complex posttranscriptional 
mechanisms that regulate gene expression. This advancement in knowledge came 
hand in hand with the progress made in the methodologies to study translation both 
at gene-specific as well as global genomic level. The majority of translational control 
is exerted at the level of initiation; nonetheless, protein synthesis can be modulated at 
the level of translation elongation, termination, and recycling. Sequence and structural 
elements and epitranscriptomic modifications of individual transcripts allow for dynamic 
gene-specific modulation of translation. Cancer cells usurp the regulatory mechanisms 
that govern translation to carry out translational programs that lead to the phenotypic 
hallmarks of cancer. Translation is a critical nexus in neoplastic transformation. Multiple 
oncogenes and signaling pathways that are activated, upregulated, or mutated in cancer 
converge on translation and their transformative impact “bottlenecks” at the level of 
translation. Moreover, this translational dysregulation allows cancer cells to adapt to 
a diverse array of stresses associated with a hostile microenviroment and antitumor 
therapies. All elements involved in the process of translation, from the transcriptional 
template, the components of the translational machinery, to the proteins that interact 
with the transcriptome, have been found to be qualitatively and/or quantitatively per-
turbed in cancer. This review discusses the regulatory mechanisms that govern trans-
lation in normal cells and how translation becomes dysregulated in cancer leading to 
the phenotypic hallmarks of malignancy. We also discuss how dysregulated mediators 
or components of translation can be utilized as biomarkers with potential diagnostic, 
prognostic, or predictive significance. Such biomarkers have the potential advantage of 
uniform applicability in the face of inherent tumor heterogeneity and deoxyribonucleic 
acid instability. As translation becomes increasingly recognized as a process gone awry 
in cancer and agents are developed to target it, the utility and significance of these 
potential biomarkers is expected to increase.

Keywords: cancer, messenger RNA translation, dysregulation, biomarker, biological tumor marker, eiF4e, 
translational machinery, neoplastic transformation
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TABle 1 | Common malignancies in which the utility of factors or regulators of 
translation has been explored as potential biomarkers.

Organ of origin Factor

Breast hnRNP A1 (5), Y-box binding protein 1 (YB-1) (6), HuR (7, 8), 
IGF2BP3 (9), eIF4E (10–15), 4E-BP1 (16), eIF4AI (12), eIF4B 
(12), eIF4G (17), PCDC4 (12), fibrillarin (FBL) (18), elongator 
acetyltransferase complex subunit 3 (ELP3) and CTU1/2 (19)

Lung YB-1 (20), HuR (21, 22), PCDC4 (23), tRNA 
isopentenyltransferase 1 (TRIT1) (24)

Gastrointestinal 
tract

hnRNP A1 (25), YB-1 (26–28), HuR (29–31), IGF2BP3 (32–35), 
eIF4E (36, 37), 4E-BP1 (38), PCDC4 (39–41)

Prostate hnRNP C (42), YB-1 (43), eIF4E (44)

Gynecologic 
malignancies

YB-1 (45), HuR (46, 47), IGF2BP1 (48), IGF2BP3 (49, 50), 
4E-BP1 (51), PCDC4 (52)

Central nervous 
system

YB-1 (53), IGF2BP1 (54), PCDC4 (55), eEF2 kinase (eEF2K) 
(56), TRM6/61 (57)
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the protein abundance in a cell, genomic-scale studies have shown 
that the latter is predominantly controlled at the posttranscriptional 
level and especially translation (1). Translation represents a more 
proximal level of control, allowing the cell to adapt swiftly to stress 
conditions by modulating protein synthesis from an existing pool 
of mRNAs, unlike the process of transcription which mediates more 
permanent changes in cell physiology or fate (2). Indeed, studies 
have shown that in response to stress, changes in translation precede 
and are of a greater magnitude than changes in transcription (3). In 
fact, immediate changes in the translation of transcripts encoding for 
transcription factors steer the later-appearing and more permanent 
changes in transcription (3). Translation and translational control is 
emerging as a critical nexus in mediating adaptive stress responses 
allowing cancer cells to overcome a diverse array of stress condi-
tions imposed on them by the tumor microenvironment, immune 
recognition, their own continuous replication, and therapeutic 
modalities. Simultaneously, qualitative and quantitative changes in 
the translational machinery are critical mediators that carry out the 
transformative impact of oncogenes and oncogenic signaling.

This review provides an overview of translation and the 
regulatory mechanisms that govern it in normal cells. We discuss 
ways whereby translation becomes dysregulated in cancer and 
how oncogenic insults uniformly converge at the level of transla-
tion and modulate the translational landscape. Indeed all factors 
involved in carrying out the process of translation, from the mRNA 
which provides the template of the protein to be synthesized, the 
components of the translational machinery tRNA and ribosomes, 
to the multiple and diverse proteins that interact with the mRNA, 
can be perturbed in cancer. Coordinate changes in any or all of 
these elements may contribute significantly to the malignant 
behaviors of the transformed cells. In this context, mediators 
or components of translation that are aberrantly expressed or 
modified in cancer arise as biomarkers with potential prognostic 
or predictive significance (Table  1; Table S1 in Supplementary 
Material). Although none of these factors has reached broad clini-
cal applications, extensive preliminary work has correlated aber-
rations in the components of translation with clinical outcomes. 
Since translation is a downstream process into which diverse 
arrays of oncogenic pathways converge, one potential advantage 

Abbreviations: 4E-BP, eIF4E-binding protein; A, adenosine; A-site, acceptor 
site; ABCE1, ATP-binding cassette subfamily E member 1; ADAR, adenosine 
deaminase, RNA-specific; ADARB1/2, adenosine deaminase, RNA-specific B1/2; 
AIMP, aminoacyl-tRNA synthetase-interacting multifunctional protein; AML, 
acute myelogenous leukemia; APAF1, apoptotic protease activating factor; ARE, 
AU-rich element; ATF4, activating transcription factor 4; BAT, TGF-B-activated 
translation element; BRAF, B-Raf proto-oncogene, serine/threonine kinase; Bcl-2, 
Bcl-2 apoptosis regulator; BTG1, BTG anti-proliferation factor 1; C/EBPα, CCAAT/
enhancer binding protein alpha; CDK6, cyclin dependent kinase 6; CDK12, cyclin 
dependent kinase 12; CPE, cytoplasmic polyadenylation element; CPEB1–4, cyto-
plasmic polyadenylation element-binding protein 1–4; c-Jun, Jun proto-oncogene; 
c-myc, v-myc avian myelocytomatosis viral oncogene homolog; CTU1/2, cytosolic 
thiouridylase subunit 1/2; DEAD, Asp-Glu-Ala-Asp (tetrapeptide shared by the 
DEAD-box family of proteins); DEK, DEK proto-oncogene; DKC1, dyskerin; 
DNA, deoxyribonucleic acid; eEF1/2, eukaryotic translation elongation factor 1/2; 
eEF2K, eEF2 kinase; eIF (1, 1A, 2, 2α, 2B, 2D, 3, 3d, 4A, 4B, 4F, 5, 5B), eukaryotic 
initiation factor (1, 1A, 2, 2α, 2B, 2D, 3, 3d, 4A, 4B, 4F, 5, 5B); ELP3, elongator 
acetyltransferase complex subunit 3; EMT, epithelial–mesenchymal transition; 
ER, estrogen receptor; ERCC5, excision repair 5 endonuclease; eRF1/3, eukaryotic 
translation termination factor 1/3; ERK1, mitogen-activated protein kinase 3; 
ERK2, mitogen-activated protein kinase 1; FBL, fibrillarin; FGF1/2, fibroblast 
growth factor 1/2; FTO, alpha-ketoglutarate-dependent dioxygenase; GCN2, gen-
eral control non-derepressible 2 kinase; GDP, guanosine-5’-diphosphate; GLD-1, 
female germline-specific tumor suppressor gld-1; GTP, guanosine-5’-triphosphate; 
HIF1α/2α, hypoxia-inducible factor 1α/2α; hm5C, 5-hydroxylmethylcytosine; 
hnRNP A1/C, heterogeneous nuclear ribonucleoprotein A1/C; hnRNP E1, 
poly(rC)-binding protein 1; HRI, heme-regulated eIF2α kinase; HSP90AB1, heat 
shock protein 90 alpha family class B member 1; HuR, ELAV-like RNA-binding 
protein 1; I, inosine; IGF1R, insulin-like growth factor 1 receptor; IGF2BP1/3, 
insulin-like growth factor 2 mRNA-binding protein 1/3; IRES, internal ribosome 
entry site; ITAF, IRES trans-acting factor; LEF1, lymphoid enhancer binding fac-
tor 1; m7Gppp, 7-methyl guanosine; KRAS, KRAS proto-oncogene GTPase; m1A, 
N1-methyladenosine; m5C, 5-methylcytosine; m6A, N6-methyladenosine; m6Am, 
N6,2’-O-dimethyladenosine; MAF1, MAF1 homolog, negative regulator of RNA 
polymerase III; MCT-1/DENR, multiple copies in T-cell lymphoma-1 and density 
regulated protein; MEK, mitogen-activated protein kinase kinase 7; Met, methio-
nine; Met-tRNA, methionyl tRNA; mRNA, messenger RNA; MDR1, ATP-binding 
cassette subfamily B member 1; MNK1/2, MAP kinase interacting serine/threonine 
kinase 1/2; mTOR, mechanistic or mammalian target of rapamycin; mTORC1/2, 
mTORcomplex 1/2; NF-κB, nuclear factor kappa B; NPM1, nucleophosmin; ORF, 
open reading frame; p38 MAP, mitogen-activated protein kinase 14; p53, tumor 
protein p53; PAR-CLIP, photoactivatable ribonucleoside-enhanced crosslinking 
and immunoprecipitation; P-site, peptidyl site; PABP, poly(A)-binding protein; 
PDCD4, programmed cell death 4; PERK, PKR-like endoplasmic reticulum kinase; 
PKR, protein kinase RNA-activated; RB, RB transcriptional corepressor 1; RNA, 
ribonucleic acid; RPL38, ribosomal protein L38; RPS25, ribosomal protein S25; 
rRNA, ribosome RNA; S6K, ribosomal protein S6 kinase; SRP, signal recognition 
particle; TFIIIB, subunit of RNA polymerase III transcription initiation factor 
IIIB; TGFβ, transforming growth factor beta; TIE, translation inhibitory element; 
TIF-1A, tripartite motif containing 24; TRIT1, tRNA isopentenyltransferase 1; 
TRM6/61, tRNA methyltransferase 61A; tRNA, transfer RNA; uORF, upstream 
ORF; UTR, untranslated region; UV, ultraviolet; VEGF, vascular endothelial 
growth factor; XIAP, X-linked inhibitor of apoptosis; YB-1, Y-box binding protein 
1; ψ, pseudouridine.

iNTRODUCTiON

Although our understanding of transcriptional regulation and 
dysregulation in cancer has significantly advanced over the last 
decade, comparatively little is known about dysregulation of gene 
expression at the translational level. However, it is recognized that 
gene expression is extensively and dynamically modulated at the 
translational level accounting to a large extent for the discrepancies 
between messenger RNA (mRNA) and matching protein levels. 
Although transcript levels have been traditionally used as a proxy of 
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of these biomarkers is their fairly uniform perturbation, even 
in the face of tumor heterogeneity underpinned by genomic 
instability and multiple, redundant, interwoven, and bypass-
ing signaling cascades. This advantage has been exemplified in 
BRAF(V600)-mutant melanoma, colon, and thyroid carcinoma, 
whereby the formation of eIF4F translation initiation complexes 
was the common point of convergence of multiple pathways that 
conferred resistance to targeted anti-BRAF, anti-MEK, and anti-
BRAF plus anti-MEK drug combinations (4).

OveRview OF THe eUKARYOTiC 
TRANSlATiON

The process of translation can be divided into four major phases: 
initiation, elongation, termination, and ribosome recycling.

During the initiation phase, a preassembled 43S preinitiation 
complex is recruited to the m7Gppp capped 5′ end of the mRNA 
(2). The 43S preinitiation complex is formed by the association of 
the 40S ribosomal subunit with the eukaryotic initiation factors 
(eIF) 1, 1A, 2, 3, 5, and the ternary complex (composed of eIF2, 
initiator Met-tRNAi, and GTP). Preinitiation complexes attach to 
5′ capped untranslated region (UTR) with the cooperative action 
of eIF4F and eIF4B (58).

eIF4F is composed of the DEAD-box RNA helicase eIF4A, 
the 5′ cap-binding protein eIF4E, and the scaffolding protein 
eIF4G (58). eIF4A in mammals exists two highly related isoforms 
[eIF4AI and eIF4AII; a third isoform, eIF4AIII, acts as a transla-
tion initiation factor specifically for the nuclear cap-binding 
complex bound mRNAs and efficiently unwinds secondary 
structures in their respective 5′ UTRs (59)] which, despite being 
interchangeable in the eIF4F complex and sharing 90% homology 
(60), they seem to have some important functional distinctions 
(61). The activity of eIF4A is modulated by two homologous 
RNA-binding proteins, eIF4B and eIF4H (60, 62). eIF4B and 
eIF4H stimulate the helicase activity of eIF4A, allowing the latter 
to unwind longer and more stable 5′ UTR structures (63). They 
also stabilize single-stranded unwound 5′ UTR regions and pre-
vent reannealing. In doing so, they also promote unidirectional 5′ 
to 3′ ribosome scanning (62). eIF4B and eIF4H share a common 
binding site on eIF4A and, accordingly, their interactions with 
eIF4A are mutually exclusive (64). Furthermore, eIF4F-bound 
eIF4E stimulates the helicase activity of eIF4A independent of 
eIF4E’s 5′ cap-binding function (65). Last, eIF4G also interacts 
with the poly(A)-binding protein (PABP); PABP associates with 
the mRNA 3′ poly(A) tail to circularize and stabilize the mRNA 
(66). The eIF4G–PABP interaction is not absolutely required for 
ribosome recruitment but enhances translational efficiency (67).

Besides eIF4E and eIF4F, other cap-binding proteins and 
complexes have been described (68, 69) that drive selective trans-
lation. eIF4E2 is a cap-binding homolog of eIF4E which mediates 
the selective translation of transcripts involved in the adaptive 
hypoxic response (69). Under hypoxic conditions, eIF4E is 
sequestered by hypophosphorylated 4E binding protein (4E-BP)  
(see Regulation of eIF4F Complex Assembly and Activity) while 
eIF4E2 is relatively spared; the RNA-binding protein RBM4 
recruits hypoxia-inducible factor 2α (HIF2α) to a specific RNA 
element (RNA hypoxia response element) in the 3′ UTR of select 

mRNAs and this complex in turn diverts translation of the respec-
tive RNAs through the cap-bound eIF4E2 (69). eIF4E2-mediated 
translation has been shown to be critical for tumor growth in 
sizes greater than the oxygen diffusion limit (70). Oxygen tension 
as well as development and differentiation status seems to deter-
mine the switch between eIF4E2- and eIF4E-mediated modes of 
cap-dependent translation initiation (71). Last, eIF3-specialized 
translation is a recently described mode of translation initiation 
that involves 5′ cap recognition by eIF3d (68, 72). An internal 
stem–loop structure in the 5′ UTR is also concurrently required 
for eIF3 recognition and recruitment (68, 72). The genes that 
are amenable to this mode of translation have been identified 
using photoactivatable ribonucleoside-enhanced crosslinking 
and immunoprecipitation and gene ontology analysis revealed 
that they are functionally enriched in cancer-associated cell 
growth regulatory pathways, including apoptosis, cell cycling, 
and differentiation (72). Examples of these genes include c-Jun, 
calcineurin B, CDK12, and BTG1. Interestingly, eIF3 has opposing 
translational regulatory functions: it promotes the translation of 
c-JUN, which is a proto-oncogene; while it blocks the transla-
tion of BTG1, whose overexpression impairs invasive growth 
in human lung cancer cells (72). The factors that determine the 
transcript-specific translational modulatory function of eIF3 is an 
open question. Intriguingly, a cis-acting RNA element has been 
identified in the c-Jun 5′ UTR that blocks eIF4F even when the 5′ 
cap is intact and the internal stem-loop eIF3-recognition site is 
deleted (68). Such elements that block or render the association of 
the eIF4F with the 5′ cap inefficient are being increasingly recog-
nized and their role is to direct mRNAs into a specific translation 
pathway (72) [see below, translation inhibitory elements (TIEs)].

The preinitiation complex scans downstream the 5′ UTR, 
inspecting successive triplets as they enter the P(peptidyl) decod-
ing site of the ribosome for complementarity to the anticodon 
of Met-tRNAi (2). Hydrolysis of eIF2-bound GTP is stimulated 
by eIF5 in the scanning preinitiation complex, but completion 
of the reaction is impeded at non-AUG triplets (73). A perfect 
match with an AUG start codon triggers the arrest of scanning 
and the irreversible hydrolysis of the GTP in the ternary complex 
(2). Start codon recognition leads to the release of the initiation 
factors and the joining of the large (60S) ribosomal subunit to 
form the 80S initiation complex. The 80S complex is then ready to 
accept the appropriate aminoacyl-tRNA into the A (aminoacyl) 
site and synthesize the first peptide bond (2).

Translation of some eukaryotic mRNAs can be initiated inde-
pendently of the m7Gppp cap by recruitment of the 40S ribosomal 
subunit to a cis-acting element located in the 5′ UTR called 
internal ribosome entry site (IRES). IRES activity is modulated 
(usually enhanced) by proteins called IRES trans-acting factors 
(ITAFs) (74). IRESs are structurally and functionally diverse (75). 
There is no uniformity in the way they operate as well as their 
factor requirements. Variable interactions with canonical initia-
tion factors, ITAFs, and the 40S ribosome are thought to lead to 
proper positioning of the initiation codon to the ribosomal P-site 
(76). For some IRESs, the recruitment of the 40  S ribosome 
involves mRNA–ribosome RNA (rRNA) base pairing between 
the IRES and 18S rRNA (77, 78). In addition, TIEs in the 5′ UTR 
may block cap-dependent translation and divert the translation 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


4

Vaklavas et al. Dysregulation of Translation in Cancer

Frontiers in Oncology | www.frontiersin.org July 2017 | Volume 7 | Article 158

of the respective transcripts through the IRES (79). rRNA meth-
ylation and pseudouridylation enhance IRES-mediated transla-
tion (18, 80, 81); these covalent modifications are mediated by 
the enzymes fibrillarin (FBL) (18) and dyskerin (DKC1) (81), 
respectively. Also, ribosomal proteins ribosomal protein L38 (79) 
and ribosomal protein S25 (82) have been shown to be important 
for IRES-mediated translation. These covalent modifications and 
ribosomal protein associations modulate the mRNA affinities and 
IRES-translational capabilities of the ribosomes. IRES-mediated 
translation is frequently upregulated during stress conditions 
when cap-dependent translation initiation is compromised (83). 
However, for some transcripts containing a TIE such as the Hox 
mRNAs, IRES-mediated translation may constitute the only 
mode of translation initiation (79). An increasing number of 
genes with unequivocal relevance to cancer biology have been 
found to contain IRES; examples include VEGF (84), Bcl-2 (85), 
FGF1 (86), c-Jun (87), Aurora A kinase (88), c-myc (89, 90), XIAP, 
and IGF1R (78, 91). To that end, the expression of ITAFs that 
modulate the translation of these mRNAs has been investigated 
and correlated with clinicopathologic parameters and outcomes 
and may serve as a biomarker in specific cancers (Table  1; 
Table S1 in Supplementary Material). Although studies have 
shown that typically IRES-mediated translation is upregulated 
under cancer-relevant stress conditions, the overall role of this 
non-canonical mode of translation initiation seems to be more 
complex, as transcripts encoding proapoptotic proteins such as 
the apoptotic protease activating factor (APAF1) also contain 
IRESs (92). Changes in the abundance or activity of the ITAFs 
(83) and alterations in the composition of specific ribosome 
subpopulations may modulate IRES-mediated translation.

Translation elongation is mediated by elongation factors eEF1 
and eEF2 (93). eEF1A in complex with GTP binds to and delivers 
aminoacylated tRNA to the A-site of the ribosome. GTP is hydro-
lyzed when codon-anticodon recognition occurs; the eEF1A-
guanosine-5’-diphosphate (GDP) then exits the ribosome and is 
recycled to eEF1A-GTP by the nucleotide exchange factor eEF1B 
complex (94). eEF2 mediates the translocation of the nascent 
protein chain from the A-site to the P-site of the ribosome. eEF2 
can be phosphorylated and inactivated by its cognate kinase eEF2 
kinase (eEF2K), resulting in deceleration of translation elonga-
tion (95). eEF2K in turn is regulated by a diverse array of inputs 
including the mTORcomplex 1 (mTORC1) pathway among other 
nutrient-sensing and growth factor activated signaling pathways. 
Ribosome profiling has shown that global translation elongation 
rates are remarkably consistent across diverse classes of tran-
scripts (96). However, at a single mRNA level, ribosomes move 
in a stop-and-go manner and can pause at various consensus 
sites which, remarkably, do not correspond to rare codons where 
tRNA recruitment might be expected to be rate limiting (96).

Translation termination in eukaryotes occurs in response 
to stop codons in the ribosomal A-site and it involves the 
concerted action of two eukaryotic release factors eRF1 and 
eRF3 (97, 98). eRF1 is responsible for stop codon recognition 
and the hydrolysis of peptidyl-tRNA, whereas eRF3 strongly 
stimulates peptide release by eRF1 in a GTP-dependent manner. 
After peptide release, eRF1 remains bound to post-termination 
complexes and, together with the ATP-binding cassette protein 

ABCE1, dissociates the complex into a 60S subunit and tRNA- 
and mRNA-associated 40S subunits (99). ABCE1also mediates 
the recycling of post-termination complexes (100), an essential 
process in maintaining a pool of free ribosomes in the cell.

In some cases, post-termination complexes do not undergo 
complete recycling; 40S subunits remain bound to mRNA, and 
termination is followed by reinitiation, usually downstream of 
the stop codon (98). Indeed, multiple studies that employed ribo-
some profiling have revealed translation in the 3′ UTRs (100, 101) 
originating from reinitiation rather than readthrough of the main 
open reading frame (ORF) stop codon (100). 3′ UTR translation 
is upregulated under conditions of nutrient starvation in the 
yeast (100); other stress conditions that upregulate this pattern of 
translation and its implications in cancer are an open question. 
The overwhelming majority of such reinitiation events seems to 
occur when the 5’-proximal ORF is short and can significantly 
impact the translation of the downstream protein-coding ORF 
(98). This is particularly relevant in the human transcriptome 
where nearly half of all transcripts are at least computationally 
predicted to contain upstream or overlapping reading frames 
whose translation in general represses the translation of the 
downstream coding sequence (102). It is generally thought that 
reinitiation involves the same factors as standard initiation; 
however the complex MCT-1/DENR is a non-canonical initiation 
factor that specifically promotes reinitiation in eukaryotes (103). 
In fact, certain mRNAs containing upstream ORFs (uORFs) with 
strong Kozak sequences (i.e., consensus sequences that promote 
translation) selectively require MCT-1/DENR for the proper 
translation of the downstream main coding sequence, and inter-
estingly, these mRNAs are enriched for transcriptional regulators 
and oncogenic kinases (103).

TRANSlATiONAl ReGUlATiON AND 
DYSReGUlATiON iN CANCeR

Transcript-Specific elements That 
Modulate Translation
Sequence elements and structural features of the individual 
mRNA transcript allow for the dynamic modulation of its transla-
tion (93) (Figure 1).

Elements in the 5′ UTR include cap recognition patterns 
(discussed below in relation to eIF4E, the principle cap-binding 
protein), IRESs, uORFs, motifs with RNA-binding protein 
recognition sequences or specialized secondary structures, 
and epitranscriptomic modifications. An example of a 5′ UTR 
structural element with a transcript-specific translational 
impact is a 12-nucleotide guanine quartet (CGG)4 motif that 
can form RNA G-quadruplex structures (104). The presence of 
RNA G-quadruplexes renders the translation of the respective 
transcripts remarkably sensitive to eIF4A inhibition with the 
investigational compound silvestrol (104). Transcripts of many 
oncogenes, superenhancer-associated transcription factors, and 
epigenetic regulators are eIF4A-dependent and, accordingly, 
silvestrol-sensitive (104).

3′ UTRs are typically longer than the 5′ UTRs and are 
thought to allow for greater transcript-selective translational 
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regulation (105). The 3′ UTRs undergo epitranscriptomic 
modifications and contain miRNA-binding sites; the latter 
silence gene expression by translational repression and mRNA 
destabilization (106, 107). Studies have shown that the 3′ UTR 
constitutes the site where most mRNA–RNA-binding protein 
interactions occur (108). Through a process called alterna-
tive cleavage and polyadenylation (109), cells can modulate 
the length of the 3′ UTR and consequently, by retaining or 
excluding miRNA- or RNA protein binding sites, regulate 
the function, stability, localization and translation efficiency 
of the respective mRNAs. Cancer cells usurp this mechanism 
to promote the silencing of antiproliferative genes and evade 
growth inhibition (109, 110).

RNA-Binding Proteins
RNA-binding proteins impact all aspects of RNA biology includ-
ing transcription, pre-mRNA splicing, polyadenylation, RNA 
modification, transport, localization, translation, and turnover. 
Although they bind to RNA through a relatively small reper-
toire of RNA-binding scaffolds, their affinity and specificities 
are extensively modulated by auxiliary domains which in turn 
modulate interactions with other proteins and are subject to post-
translational modifications (111). Although traditionally thought 
that RNA-binding proteins bind to the 5′ and 3′ UTRs of their 
target transcripts, the former can also bind, probably to a lesser 
extent, to the protein-coding region of the message. Depending 
on the binding site across the target mRNA, RNA-binding pro-
teins can mediate different functions. This has been exemplified 
with GLD-1 whereby binding to sites across the protein-coding 
regions of its target transcripts mediated predominantly transla-
tional repression (112). RNA-binding proteins with relevance to 
cancer biology include HuR, the IGF2 mRNA-binding protein 
(IGF2BP) family (mainly IGF2BP1 and IGFBP3), and cytoplas-
mic polyadenylation element-binding (CPEB) (113).

HuR (ELAV-like RNA-binding protein 1) stabilizes and/or 
affects the translation of its target mRNAs by interacting with one 

or several U- or AU-rich elements (AREs) in their 3′ UTRs (114). 
Other functions attributed to HuR include involvement in pre-
mRNA splicing (115–117) and nuclear export of mRNAs (114). 
HuR’s function is predominantly regulated by posttranslational 
modifications which in turn determine HuR’s interactions with its 
target mRNAs and nucleocytoplasmic shuttling machinery (114). 
A number of cancer-related transcripts, including mRNAs for 
proto-oncogenes, cytokines, growth factors, and invasion factors, 
contain AREs and have been identified as HuR targets. Examples 
include c-myc, IGF1R, HIF1α, HSP90AB1, eEF2, interleukin 11, 
and CDK6 (116). It has been proposed that HuR has a central 
tumorigenic activity by enabling multiple cancer phenotypes 
(118). HuR localizes predominantly in the nucleus where it inter-
acts with introns and is involved in pre-mRNA splicing (115–117). 
HuR’s cytoplasmic translocation is thought to be the initial and 
critical step for its target mRNA stabilizing and translational 
modulatory effects (114, 119, 120). Multiple studies have consist-
ently associated cytoplasmic (but not nuclear) expression with 
worse clinicopathologic characteristics and outcomes in diverse 
malignancies (Table 1; Table S1 in Supplementary Material).

The IGF2BPs are oncofetal proteins that are normally expressed 
only during embryogenesis (121); however, the expression of 
IGF2BP1 and IGF2BP3 is induced in various malignancies. 
Examples include neuroblastoma (54) and ovarian carcinoma 
(48) for IGF2BP1; and triple-negative breast cancer (9), ovarian 
(49) and endometrial (50) clear cell carcinoma, gastric adeno-
carcinoma (32), cholangiocarcinoma (33, 122), colon cancer 
(34, 35), renal cell (123, 124), and urothelial carcinoma (125) for 
IGF2BP3 (Table 1; Table S1 in Supplementary Material). During 
development, IGF2BPs are required for proper nerve cell migra-
tion and morphological development, presumably by regulating 
cytoskeletal remodeling and dynamics (126). Likewise, in tumor 
cells, IGF2BPs modulate cell polarization, adhesion, and migra-
tion. Moreover, they are highly associated with cancer metastasis 
and the expression of oncogenic factors (KRAS proto-oncogene 
GTPase, MYC, and MDR1) (126). In fact, IGF2BP1 was originally 
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identified as a protein involved in the stabilization of c-myc 
mRNA (127). Furthermore, IGF2BP1 is an ITAF upregulating 
the IRES-mediated translation of the cellular inhibitor of apop-
tosis 1 leading to resistance to apoptosis in rhabdomyosarcoma 
(128). Multiple studies have evaluated the expression of IGF2BP 
proteins (mainly IGF2BP3) in cancer and have consistently cor-
related IGF2BP3 expression with the subsequent development of 
recurrence or metastases in localized cancer and worse clinical 
outcomes (Table 1; Table S1 in Supplementary Material). There 
is significant homology among the 3 IGF2BP family members, 
thus antibodies used to investigate the expression of IGF2BP1 
and IGF2BP3 may have not differentiated the paralogs (129).

Last, the CPEB family of RNA-binding proteins (CPEB1–4) 
bind to cytoplasmic polyadenylation elements (CPEs; consen-
sus sequence UUUUUAU) in the 3′ UTR of target mRNAs  
(113, 130) and modulate translation (both activation and repres-
sion) through regulation of poly(A) tail length (131). Multiple lines 
of evidence suggest a tumor-suppressive role for CPEB1 (130). The 
expression level of CPEB1 mRNA are decreased in a diverse array 
of malignancies and this reduction has been associated with prolif-
eration, invasion, angiogenesis, increased resistance to nutritional 
stress, loss of polarity, and epithelial-to-mesenchymal transition 
(130, 132, 133). CPEB4 on the other hand is overexpressed in 
pancreatic ductal adenocarcinoma, high-grade gliomas (134), and 
early in the development of melanoma (135). CPEB4 associates 
with a large number of CPE-containing mRNAs, which seem to 
be tissue-specific (134, 135), and steers the translational landscape 
to support the phenotypic hallmarks of malignancy, i.e., invasive 
growth (pancreatic adenocarcinoma), uncontrolled tumor growth, 
and aberrant angiogenesis (high-grade gliomas) (134).

Epitranscriptomic Modifications
Although RNA modifications have been known for nearly 
60  years, only recently, has it been appreciated how extensive 
and dynamic these chemical modifications to the mRNA may 
be (136). Recent technical advances have led to the discovery, 
identification, and mapping of widespread mRNA modifications 
with N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseu-
douridine (ψ), N6,2’-O-dimethyladenosine (m6Am), 5-hydrox-
ylmethylcytosine (hm5C), inosine (I), and N1-methyladenosine 
(m1A) (137, 138). Analogous to the epigenetic modifications of 
the deoxyribonucleic acid (DNA), mRNA modifications involve 
epitranscriptomic “writers,” “erasers,” and “readers”; i.e., enzymes 
that insert, remove, or recognize these covalent modifications, 
respectively, and facilitate mRNA-templated processes. Single 
nucleotide polymorphisms in the m6A eraser alpha-ketoglutarate 
dependent dioxygenase (FTO), a gene that traditionally has been 
associated with obesity, have been associated with melanoma 
(139) and estrogen receptor-negative breast cancer (140). These 
mRNA modifications can potentially affect most posttranscrip-
tional steps in gene expression and, specifically for m6A, are 
highly dynamic (137). Common themes that arise so far link m6A 
modifications with mRNA stability, splicing, and translational 
efficiency (137). m6A sites are enriched near stop codons (141) 
and an association between m6A modification and proximal 
alternative cleavage and polyadenylation, i.e., 3′ UTR shortening 
has been established (142). m6A modifications in the 5′ UTR have 

been associated with cap-independent translation (143, 144). The 
role of the epitranscriptome in cancer remains an open area of 
investigation.

RNA Editing
The most frequent type of RNA editing in the human transcrip-
tome is adenosine-to-inosine (A-to-I), which involves hydrolytic 
deamination of adenosine by the adenosine deaminase, RNA-
specific (ADAR) family of RNA editases, ADAR1, ADAR2/
ADARB1, and ADAR3/ADARB2 (145). The resulting inosine 
bases are subsequently read as guanosines, thus inducing A-to-G 
posttranscriptional changes. Most RNA editing sites occur in 
non-coding sequences, such as 5′ UTRs, 3′ UTRs, and intronic 
sequences (145). ADARs may influence gene expression by 
modulating mature miRNA biogenesis, splicing, alternative 
cleavage, and polyadenylation (146). Aberrant activation of 
ADAR-mediated RNA editing has emerged as a driver of cancer 
progression (145) but how it distorts the translational landscape 
is an open question.

Regulation of eiF4F Complex Assembly 
and Activity
Oncogenes and oncogenic signaling pathways uniformly con-
verge at the level of translation and the transformative potential of 
oncogenic insults “bottlenecks” at the level of translation (44, 147, 
148): ribosomal protein (147) and eIF4E haploinsufficiency (148) 
or non-phosphorylatable eIF4E (44) suppress the transformative 
potential of Myc and Ras oncogenes.

Initiation has been considered the rate-limiting step in trans-
lation and has been intensively investigated. Figure  2 provides 
an overview of the components and regulation of translation 
initiation. In many human cancers, eIFs are either overexpressed 
or ectopically activated by oncogenic signaling cascades, result-
ing in increased survival and accelerated proliferation (149). To 
that end, many eIFs are considered bona fide proto-oncogenes 
(149). Multiple studies in diverse malignancies and settings 
have investigated correlations between expression levels of 
eIFs with clinical parameters or outcomes (Table 1; Table S1 in 
Supplementary Material). Components of the eIF4F complex are 
perhaps the most intensively investigated factors with potential 
utility as biomarkers. In the sections that follow, we outline the 
pathobiology of eIF4F and its components which underpins its 
potential utility as a biomarker.

The Oncogenic Transformative Potential of eIF4E
eIF4E was the first translation initiation factor documented to 
have oncogenic transformative potential (150, 151). Although 
eIF4E is the least abundant (i.e., most limiting) of the initiation 
factors (60), multiple studies have shown that partial depletion 
of eIF4E has only a moderate impact on protein synthesis rates 
(152). Indeed, mice haploinsufficient in Eif4e develop normally 
with near normal global mRNA translation levels (148). This 
Eif4e excess becomes critical in the context of oncogenic 
signaling (148). Although eIF4E is required for cap-dependent 
translation of all mRNAs, changes in its levels have a highly 
selective (as opposed to global) impact on a subset of mRNAs 
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that encode proteins with prosurvival and proliferative func-
tions. Transformed cells usurp this excess Eif4e to translate 
genes involved in cell signaling, apoptosis, ribosome biogenesis, 
control of proteasome activity, nucleotide biosynthesis, oxidative 
phosphorylation, and the oxidative stress response, all of which 
act in concert to promote tumorigenesis (148). Many of these 
eIF4E-responsive mRNAs possess complex and highly structured 
5′ UTRs (153) that impede ribosome recruitment and scanning; 
eIF4E availability allows the cell to overcome this impediment 
by virtue of stimulating eIF4A helicase activity (65). The basis 
of eIF4E translational selectivity may also rely on the fact that, 
although m7Gppp is the invariant component of the 5′ cap, there 
is variability in the affinity with which eIF4E associates with the 
5′ cap determined by the second nucleotide (67, 154). Of note, the 
first and second nucleotide following the m7Gppp can be variably 
methylated; the physiologic significance of these modifications is 

not yet known. Moreover, the association of the eIF4E with the cap 
blocks decapping leading to mRNA stabilization (67). Besides its 
role in translation, eIF4E mediates nucleocytoplasmic transport 
of specific transcripts such as cyclin D1 which promotes cell cycle 
progression, and this function contributes to the transformative 
activity of eIF4E (155).

A similarly selective impact on translation has been observed 
with eIF4E phosphorylation. eIF4E is phosphorylated by the 
MNK1/2 serine/threonine kinases, which are activated in 
response to mitogenic and stress signaling downstream of 
ERK1/2 and p38 MAP kinase, respectively (Figure  2). eIF4E 
phosphorylation [which is dispensable for normal growth and 
development and, per se, does not globally affect protein synthe-
sis (156)] is associated with upregulated translation of a select 
subset of protumorigenic mRNAs (44). The mechanistic basis 
by which phosphorylated eIF4E achieves that remains a critical 
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unanswered question; in fact, in a seemingly counterintuitive 
fashion, phosphorylated eIF4E has lower affinity for the cap 
structure (60, 157, 158). Nonetheless, eIF4E phosphorylation 
underpins epithelial-to-mesenchymal transition, invasion, and 
migration (159, 160) and is associated with higher-grade and 
hormone-refractory prostate cancer (44).

Signaling Pathways Upregulate eIF4F Assembly and 
Activity through Mechanistic or Mammalian Target of 
Rapamycin (mTOR)
The mammalian/mechanistic target of rapamycin is a serine/
threonine kinase that forms 2 distinct multiprotein complexes 
termed mTOR complex 1 and 2 (Figure 2). Each complex has 
distinct substrates and, accordingly, regulates different cellular 
processes (161). mTORC1 links many extracellular and intracel-
lular nutrient and growth cues to the translation process mainly 
by regulating the eIF4F assembly (66). Simultaneously, mTORC1 
(in association with CK2) regulates ternary complex recycling to 
couple coordinate changes in eIF4F assembly and, consequently 
modulate the rate-limiting step of translation initiation (162).

mTORcomplex 1 stimulates global protein synthesis, as well as 
translation of a specific subset of mRNAs (163). Eukaryotic trans-
lation initiation factor 4E-BPs and ribosomal protein S6 kinases 
(S6Ks) are the most extensively studied and best-understood 
downstream effectors of mTORC1 (163).

4E binding proteins modulate eIF4F assembly by competing 
with eIF4G for the same binding site on eIF4E. 4E-BPs’ affinity for 
eIF4E depends on the phosphorylation status of the former, which 
in turn depends on the activity of mTORC1. Activation of the 
mTORC1 pathway leads to the phosphorylation of 4E-BPs, which 
in turn dissociate from eIF4E allowing the latter to associate with 
eIF4G and form the eIF4F complex. In mammals, there are three 
known 4E-BPs (4E-BP1, 4E-BP2, and 4E-BP3). The activity of 
4E-BP1 and 4E-BP2 is primarily controlled by phosphorylation. 
mTOR inhibitors downregulate 4E-BP1 and 4E-BP2 phospho-
rylation leading to eIF4E sequestration. However, a common 
mechanism of acquired resistance to mTOR inhibitors involves 
downregulation of 4E-BP1 and 4E-BP2, which leads to increased 
eIF4E availability. The eIF4E:4E-BP ratio has been proposed 
as a predictive biomarker of response to mTOR inhibitors that 
can personalize treatment selection (164). Unlike 4E-BP1 and 
4E-BP2, 4E-BP3 is mainly regulated by transcriptional induction 
(165). 4E-BP3 is an important determinant in mediating the 
antiproliferative effects of mTOR inhibitors and induction of its 
expression has been associated with antitumor response to mTOR 
inhibition (165). 4E-BP3 induction of expression upon mTOR 
inhibition can potentially predict response as well as duration of 
response associated with mTOR inhibition.

Ribosomal protein S6 kinases (S6K1 and S6K2 in mam-
mals) have various downstream substrates including ribosomal 
protein S6, eIF4B, and programmed cell death 4 (PDCD4). The 
impact of ribosomal protein S6 phosphorylation on translation 
is not very well understood. eIF4B, however, is an important 
auxiliary factor that stimulates the helicase activity of eIF4A; its 
phosphorylation by S6K (166) as well as other kinases (167) selec-
tively and positively impacts the translation of protumorigenic 

transcripts with structured 5′ UTRs (168). The phosphorylation 
of PDCD4 by S6Ks leads to its proteasomal degradation and the 
liberation of eIF4A from PDCD4-eIF4A inhibitory complexes 
(169). Alongside upregulating translation initiation, S6Ks also 
phosphorylate eEF2K which in turn, accelerates elongation. Last, 
mTORC1 upregulates ribosome biogenesis by activating RNA 
polymerase I transcription initiation factor TIF-1A (170), and 
tRNA synthesis by phosphorylating and suppressing the RNA 
polymerase III inhibitor MAF1 (171, 172) (see tRNA Abundance 
and Modifications Fostering Oncogenic Translation).

Oncogenic Transcription Factors Upregulate the 
eIF4F Complex
The c-myc oncogene has a pervasive impact on translation and 
the upregulation of translational output is a critical determinant 
of its oncogenic activity in vivo (147). Myc modulates the tran-
scription of 10–15% of all genes and Myc-target genes belong 
to diverse functional categories (173); specifically regarding 
translation, Myc upregulates ribosome biogenesis, tRNA levels, 
and key translation initiation and elongation factors (174). All 
components of the eIF4F complex (eIF4E, eIF4AI, and eIF4GI) 
are under the direct transcriptional control of c-Myc and are 
coordinately upregulated when c-myc is overexpressed (174, 175). 
Increased eIF4F, in turn, selectively upregulates the translation 
of protumorigenic mRNAs including c-Myc mRNA (Figure 2). 
Normally, the activity of this c-Myc–eIF4F feed-forward loop 
is modulated by negative regulators of Myc or downregulators 
of eIF4F assembly [e.g., mTORC1, see Signaling Pathways 
Upregulate eIF4F Assembly and Activity through Mechanistic or 
Mammalian Target of Rapamycin (mTOR)]. In cancer, however, 
the c-Myc–eIF4F feed-forward loop fuels neoplastic progression 
as the negative checkpoints of this loop are circumvented by 
mutations or perturbations in signaling pathways (174).

Other transcription factors can also modulate eIF4F assembly 
and activity (66). In a positive feedback loop, the leukemogenic 
p30 isoform of C/EBPα upregulates the transcription of eIF4E 
and eIF4E in turn upregulates the translation of C/EBPα (176). 
The dysregulated activity of this loop may underpin the dysplastic 
phenotype of myelodysplastic syndrome/acute myelogenous leu-
kemia (AML) associated with nucleophosmin deficiency (176). 
In the context of M4 and M5 AML, NF-κB directly upregulates 
the transcription of eIF4E; this association has not been seen in 
other AML subtypes or normal hematopoietic cells (177) suggest-
ing that other transcription factors besides c-Myc may upregulate 
eIF4E in a context-dependent or tissue-specific manner. Under 
conditions of hypoxia in breast cancer cells, HIF1α promotes 
eIF4E1 expression acting through hypoxia response elements in 
the proximal promoter region of eIF4E1 (178). In the context of 
this adaptive response, eIF4E1 upregulates the translation of a 
select subset of mRNAs important for mammosphere formation 
and growth (178).

Posttranscriptional Upregulation of eIF4E in Cancer
The eIF4E mRNA stability is modulated by 2 competing 3′ UTR 
RNA-binding proteins, HuR (see RNA-Binding Proteins) and 
AU-rich binding factor 1 (AUF1/HNRNPD) (179). In cancer, 
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overexpression of HuR leads to eIF4E mRNA stabilization and 
consequently elevated eIF4E protein levels. By increasing the sta-
bility of multiple client transcripts and through the upregulation 
of translation of a select subset of protumorigenic mRNAs, HuR 
and eIF4E, respectively, coordinately dysregulate gene expression 
at the posttranscriptional and translational level (179).

Regulation of Ternary Complex Formation
eIF2 consists of an α, β, and γ subunit and cycles between a 
GDP- and GTP-bound forms. Following start codon recogni-
tion, eIF2-bound GTP hydrolysis is completed resulting in the 
formation of eIF2–GDP complex, which in turn dissociates from 
the 40S ribosomal subunit (180). For another cycle of initiation 
to occur, GDP bound to eIF2 is replaced by GTP by the guanine 
exchange factor eIF2B (180). In response to virtually all stresses, 
eIF2α is phosphorylated at serine 51 resulting in the conversion 
of eIF2α from a substrate to a competitive inhibitor of eIF2B 
(180, 181) (Figure  2). Four eIF2α kinases catalyze this phos-
phorylation in a cell type- and stress-specific manner: protein 
kinase RNA-activated (PKR) is activated by viral infection, 
PKR-like endoplasmic reticulum kinase (PERK) is activated 
by the accumulation of unfolded polypeptides in the lumen of 
the endoplasmic reticulum, general control non-derepressible 
2 kinase (GCN2) is activated by amino acid starvation and 
ultraviolet (UV) light, and heme-regulated eIF2α kinase (HRI) 
is activated by heme deficiency and redox stress. Since eIF2B 
is present in limiting concentrations, phosphorylation of even a 
small fraction of eIF2α significantly inhibits eIF2–GDP–eIF2–
GTP recycling leading to a global inhibition of protein synthesis 
(181). Nonetheless, the phosphorylation of eIF2α enhances 
the translation of a select group of mRNAs, which encode for 
proteins involved in stress adaptation and recovery (181).

The mechanism by which the eIF2α phosphorylation status 
modulates translation of a given mRNA relies on the presence or 
absence of uORFs. This has been exemplified by the modulation 
of the expression of the transcription factor ATF4 (182). The 
mouse activating transcription factor 4 (ATF4) mRNA has two 
uORFs. When eIF2-GTP is abundant in non-stressed cells, ATF4 
expression is downregulated as ribosomes scanning downstream 
of uORF1 reinitiate at the next coding region, uORF2, which 
overlaps with the ATF4-coding sequence. During stress condi-
tions, phosphorylation of eIF2 and the accompanying reduction 
in the eIF2-GTP levels increase the time required for the scan-
ning ribosomes to become competent to reinitiate translation. 
This delayed reinitiation allows for ribosomes to scan through 
the overlapping uORF2 and instead reinitiate at the ATF4-coding 
region. Physiologically, the increased expression of ATF4 contrib-
utes to the expression of genes involved in remediation of cellular 
stress damage (182). Along these lines, polymorphisms in the 5′ 
UTR that create or delete such uORFs may modulate the transla-
tion of the downstream coding sequences under conditions of 
stress. One such example involves a polymorphism in the 5′ UTR 
of excision repair 5 endonuclease (ERCC5) present in 35% of 
Caucasians (183). ERCC5 encodes for a protein directly involved 
in nucleotide excision repair, i.e., the DNA damage repair path-
way that removes bulky DNA adducts induced by exposure to 
UV radiation and cisplatin. This common polymorphism results 

in the generation of an uORF in the 5′ UTR of ERCC5 mRNA 
which in turn is associated with upregulated ERCC5 expression 
following DNA damage. At the clinical level, this polymorphism 
has been associated with significantly lower progression free 
survival in pediatric patients with ependymoma treated with 
cisplatin-containing regimens (183).

Additionally, under conditions of stress when eIF2α phospho-
rylation diminishes significantly the availability of ternary com-
plex, IRES-mediated translation (which does not require eIF2α) is 
upregulated (181). Under such conditions, Met-tRNAi may form 
an alternative ternary complex with factors like eIF5B, MCT-1, 
and ligatin (eIF2D) (181). Through this mechanism, cancer cells 
can circumvent the global downregulation of protein synthesis 
mediated by eIF2α phosphorylation and gain a survival advan-
tage by the preferential translation of IRES-containing mRNAs. 
Transcript isoforms may contain or exclude an IRES as a result 
of alternative splicing and polymorphisms in the 5′ UTR may 
have functional implications in the cap-independent translation 
of the specific transcript. Indeed, two prevalent polymorphisms 
in the insulin like growth factor 1 receptor (IGF1R) 5′ UTR and 
more specifically the Loop3 poly(U)-tract of its IRES have func-
tional implications in terms of translation initiation mediated 
through the IRES; minimizing the length of this poly(U)-tract 
has been associated with a consistent increase in the activity of 
the IRES (78). Collectively, eIF2α phosphorylation promotes the 
translation of select mRNAs that are inefficiently translated in the 
absence of stress (180). This shift in the translational landscape 
may explain why elevated levels of eIF2α phosphorylation cor-
relate with cancer cell survival (181).

Regulation of Translation elongation
Given its complexity and the requirement for the coordinate func-
tion of multiple factors, initiation has been traditionally thought 
as the rate-limiting step in translation. However, accumulating 
evidence suggests that translation can also be modulated at the 
level of elongation (184).

Multiple factors bind to the ribosomal A site during transla-
tion elongation and modulate translocation to the endoplasmic 
reticulum, polypeptide release, ribosome recycling, and mRNA 
decay (184). Ribosomes stall when the signal recognition particle 
(SRP) binds the N-terminus of the nascent polypeptide and 
docks into the ribosomal A site. Further tRNA entry is blocked 
and elongation is arrested until the ribosome/mRNA complex 
translocate to the endoplasmic reticulum (184). The SRP path-
way is the best understood and thoroughly investigated pathway 
that regulates spatial organization and compartmentalization of 
translation (185) but other mechanisms also exist (186). Of note, 
recent studies have challenged the notion that only secretory 
proteins are translated in the endoplasmic reticulum; mRNAs 
encoding both cytosolic and topogenic signal-encoding proteins 
can be translated in the endoplasmic reticulum with similar 
translational efficiencies, which are consistently higher than the 
translational efficiencies in the cytosolic compartment (187).

Translation elongation may be modulated by factors acting on 
elements in the 3′ UTR. This is exemplified by hnRNP E1 which 
binds a 33-nucleotide TGF-B-activated translation (BAT) element 
(188, 189). This element is present on the 3′ UTR of transcripts 
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that mediate epithelial–mesenchymal transition (EMT). Through 
this interaction, hnRNP E1 stalls translation elongation by 
inhibiting the release of eEF1A1 from the ribosomal A site. 
TGF-β-mediated hnRNP E1 phosphorylation, however, disrupts 
the BAT complex, thereby restoring translation elongation of the 
respective EMT-promoting transcripts (188, 189).

Translation elongation is also regulated by the phosphoryla-
tion status of eEF2 (190). During the stage of tumorigenesis, cells 
in whom oncogenic signaling pathways have been activated may 
rely on uninhibited translational elongation for malignant trans-
formation (191). In fact, it is the enhanced translational elonga-
tion (rather than enhanced translation initiation) mediated by 
downregulation of the eEF2K and, consequently, activation of 
eEF2 that may underpin the increased protein synthesis during 
the stage of tumorigenesis (191). There have been contrasting 
reports about the role of eEF2K in cancer biology (95, 191, 192). 
By virtue of downregulating protein synthesis, high levels of 
eEF2K would be expected to impair proliferation. Indeed, the 
activity of eEF2K is inhibited by multiple oncogenic signals; 
however, high levels of eEF2K have been shown to increase the 
adaptability of tumor cells in nutrient deprivation accounting for 
the observation that elevated eEF2K transcript levels are associ-
ated with poor prognosis in medulloblastoma and glioblastoma 
multiforme (56) (Table 1; Table S1 in Supplementary Material).

rRNA Modifications Associated with 
Cancer: The Oncogenic Ribosome
Recent studies have challenged the view that ribosomes are 
constitutive components of the translational machinery with no 
regulatory function (79, 193). There is significant heterogeneity in 
ribosome composition that results from the differential expression 
and posttranslational modification of ribosomal proteins, rRNA 
diversity, and the activity of ribosome-associated factors (193). 
This ribosomal heterogeneity has a significant impact on the trans-
lational output of the transcriptional template (193). As outlined 
previously, DKC1 and FBL mediate the rRNA pseudouridylation 
(81) and methylation (18), respectively, which are important 
ribosomal modifications for IRES-mediated translation (18, 80, 
81). Mutations or deletions of the DKC1 gene encoding DKC1 
have a negative impact on the IRES-mediated translation of the 
tumor suppressor genes p53 and p27 predisposing to hematologic 
and solid malignancies (81). Altered rRNA methylation patterns 
mediated by FBL are associated with upregulated IRES-mediated 
translation of many oncogenes including IGF1R, MYC, FGF1, 
FGF2, and VEGFA (18). The expression of FBL is regulated by the 
tumor suppressor p53 and p53 inactivation, a common genomic 
alteration that occurs in multiple malignancies, leads to FBL 
upregulation. High expression of FBL mRNA has been associated 
with poor relapse-free and breast cancer-specific survival (18).

tRNA Abundance and Modifications 
Fostering Oncogenic Translation
The human genome contains 61 sense codons, many of which 
are synonymous on the basis that they encode the same amino 
acid (194). Synonymous codons are used with variable but non-
random frequency across the genome constituting the basis of 

codon bias (195). Synonymous codons base pair with tRNA 
isoacceptors, i.e., tRNAs that are charged with the same amino 
acid but have a unique anticodon sequence. Normally, tRNA 
transcription via RNA polymerase III is regulated in response 
to nutrient availability and environmental cues, in coordination 
with rRNA transcription via RNA polymerase I (196). tRNAs 
have been typically considered as housekeeping products with 
little regulatory function; however, misregulation in tRNA abun-
dance and modifications has been inherently linked to human 
disease including cancer (196).

In cancer, tRNAs are overexpressed to meet the demands 
of upregulated protein synthesis. Indeed, oncogenes such as 
c-myc and tumor suppressor genes such as p53and RB, regulate 
positively and negatively, respectively, the transcription of 
RNA polymerase III (197). The transcription of RNA poly-
merase III (and consequently tRNA synthesis) is also modu-
lated by oncogenic signaling pathways; ERK phosphorylates 
the transcription factor TFIIIB, which in turn upregulates the 
transcription of RNA polymerase III (198), while mTORC1 
phosphorylates and inactivates MAF1, a repressor of RNA 
polymerase III activity (172).

Multiple lines of evidence suggest that the implications of 
upregulated tRNA synthesis in cancer go beyond the simple 
need to meet the demands of increased protein synthesis. 
Experimentally, overexpression of Met-tRNAi in human breast 
epithelial cells reprogrammed the tRNA pool and led to increased 
metabolic activity and proliferation rates (196). Studies show that 
changes in the tRNA pool and composition are neither uniform 
nor random; tRNA overexpression is selective and coordinates 
with the status of the cell to favor a specific translational program  
(199, 200). Indeed, malignant proliferating cells and non-
malignant differentiating cells have distinct tRNA pools whose 
anticodon composition suits the codon usage signature of prolif-
eration/cancer-related and differentiation-related/housekeeping 
genes, respectively (199, 200). In this context, assessment of tRNA 
pools by tRNA microarrays or other methodologies holds prom-
ise as a biomarker to determine the natural history of a tumor or 
malignant potential of a premalignant lesion.

tRNAs also undergo extensive posttranscriptional modifica-
tions; these dynamic modifications have been traditionally linked 
with an adaptive stress response, whereby mRNA translation is 
rapidly suppressed or altered (201, 202). However, several recent 
studies link these modifications with cancer. This is exemplified by 
the role of the TRM6/61 methyltransferase complex, which medi-
ates the methylation of adenosine at position 58 of Met-tRNAi 
(57). This important modification stabilizes Met-tRNAi, which in 
turn allows for the selective translation of oncogenic transcripts. 
Increasing levels of TRM6/61 correlate with the transition from 
grade II or III gliomas to glioblastomas, i.e., tumors of the central 
nervous system with progressively more aggressive natural his-
tory (57). The elongator acetyltransferase complex subunit 3 and 
CTU1/2 enzymes mediate the posttranscriptional modification 
of the wobble uridine 34, a highly conserved modification that 
contributes to translational fidelity (19). Increasing levels of those 
enzymes correlated with the transition from normal breast tissue to 
non-invasive and invasive breast cancer. This posttranscriptional 
modification is important for the translation of an ITAF (DEK 
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proto-oncogene), which in turn upregulates the IRES-mediated 
translation of the transcription factor lymphoid enhancer bind-
ing factor 1 (LEF1) (19); of note, LEF1 is an important effector of 
the WNT- and TGFβ-signaling pathways, which lead to invasion 
and metastases. On the other hand, the isopentenyltransferase 
TRIT1, which catalyzes the addition of N6-isopentenyladenosine 
on residue 37 of tRNAs, is a tumor suppressor gene in lung cancer 
(24).

Aminoacyl-tRNA synthetases catalyze the ligation of amino 
acids to their cognate tRNAs (203). Some of the synthetases are 
tightly bound together in a large multisynthetase complex, with 
three tRNA synthetase associated proteins at the core designated 
as aminoacyl-tRNA synthetase-interacting multifunctional 
protein (AIMP) 1, 2, and 3 (203). Eukaryotic synthetases contain 
unique extensions and domains, which, alongside with variable 
subcellular localization (nuclear, cytoplasmic, or secreted) either 
within complexes or free, endows them with an increasingly 
recognized functional diversity extending beyond translation 
(203, 204). Although the importance of the canonical functions 
of the tRNA synthetases in cancer has been recognized early (205, 
206), it is the additional non-canonical activities that are more 
indicative of a role in tumorigenesis (207).

CONClUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

Collectively, over the recent years, the complexity of posttran-
scriptional regulation of gene expression is becoming increasingly 
recognized. New technologies and advances in next-generation 
sequencing have allowed us to dissect the mechanistic underpin-
nings of translational regulation at an unprecedented scale and 
resolution (93). Translation becomes distinctively dysregulated 
in cancer and this dysregulation is critical for oncogenes and 
oncogenic signaling pathways to carry out their transformative 
potential while at the same time, endows cancer cells with distinc-
tive adaptive capabilities to a diverse nature of stresses.

In this context, multiple factors involved in the posttranscrip-
tional regulation of gene expression arise as biomarkers with 
potential diagnostic, prognostic, or predictive utility. Assessment 
of these factors can help us in the diagnosis of equivocal cases, 
determine the malignant potential of premalignant lesions, predict 
response to a specific therapy, determine the risk of recurrence or 
cancer-related death, and altogether help us in clinical decision 
making and the refinement of our treatment approaches. Rapidly 
emerging new data are likely to provide even greater insight and 
rationale for the utilization of these translational regulatory fac-
tors in patient stratification and treatment selection. Moreover, 
as new drugs targeting the translational machinery enter clinical 
investigations, the role and importance of those biomarkers are 
expected to expand.
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