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Imino sugar glucosidase inhibitors as broadly active
anti-filovirus agents
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Ebola virus and Marburg virus are members of the family of Filoviridae and are etiological agents of a deadly hemorrhagic fever disease.

The clinical symptoms of Ebola and Marburg hemorrhagic fevers are difficult to distinguish and there are currently no specific antiviral

therapies against either of the viruses. Therefore, a drug that is safe and effective against both would be an enormous breakthrough. We

and others have shown that the folding of the glycoproteins of many enveloped viruses, including the filoviruses, is far more dependent

upon the calnexin pathway of protein folding than are most host glycoproteins. Drugs that inhibit this pathway would be expected to be

selectively antiviral. Indeed, as we summarize in this review, imino sugars that are competitive inhibitors of the host endoplasmic

reticular a-glucosidases I and II, which are enzymes that process N-glycan on nascent glycoproteins and thereby inhibit calnexin

binding to the nascent glycoproteins, have been shown to have antiviral activity against a number of enveloped viruses including

filoviruses. In this review, we describe the state of development of imino sugars for use against the filoviruses, and provide an

explanation for the basis of their antiviral activity as well as limitations.
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INTRODUCTION

Filoviral hemorrhagic fevers are rare but highly lethal diseases

associated with outbreaks in developing countries.1,2 The causative

agents, Ebola virus and Marburg virus, are considered to be high

level biothreat agents by the United States Centers for Disease

Control and Prevention and the National Institutes of Health.3

There are no effective vaccines to be used as prophylactics and no

effective antiviral interventions to manage the diseases. Because the

clinical symptoms of Marburg and Ebola hemorrhagic fevers are

difficult to distinguish, a drug that is effective against either would

be a first, and one that is effective against both the viruses would be

an enormous breakthrough.

Filoviruses are non-segmented negative-strand RNA viruses that

produce filamentous enveloped virions.4 There are currently four

known clinically relevant species of Ebola virus4 and a single species

of Marburg virus.5 Initial virus replication occurs in mononuclear cells

and viremia is usually apparent within 2 days after infection.6–9 Death

can occur in up to 90% of the infections after 7–10 days of symptoms,

usually due to hemorrhagic fevers.5

Although the cell receptors for either Ebola virus or Marburg virus

have not been fully characterized, the broad cell tropism of the viruses

suggests a wide distribution of their receptors. In any regard, the tri-

meric envelope glycoprotein (GP) spikes of the filoviruses are believed

to mediate their entry into host cells via endocytic pathways. Within

endo/lysosomal compartments, host endosomal cysteine proteases

(cathepsins) cleave the filoviral GP1 protein to generate an entry inter-

mediate comprising an N-terminal GP1 fragment and GP2. Recent

work indicates that a cleaved form of Ebola virus GP subsequently

interacts with Niemann-Pick C1, an endo/lysosomal cholesterol trans-

porter, to trigger membrane fusion.9

As illustrated in Table 1, the pipeline of candidate anti-filovirus

therapeutics is limited. However, promising work on inhibition of

the virus entry into their host cells with small molecules,21 recombi-

nant C type lectins13,22 or immuno-adhesion technology,23 disruption

of viral RNA capping24 and directly targeting viral RNA with antisense

oligos or siRNAs10,11,25,26 have recently been reported.

As Table 1 also indicates, the oligonucleotide-based therapeutics

appear to be the farthest along in development, reaching Phase I clini-

cal trials, but challenges remain and the extent to which these

approaches will progress is uncertain. Some of these challenges are

inherent to the oligonucleotide approach and the lack of efficient cell-

specific delivery technologies.27 Although a morpholino modification

or a lipid nanoparticle formulation has been used for these approaches

in their anti-filovirus applications, specific targeted delivery of oligo-

nucleotide into disease-relevant tissues and cells remains a major issue

to address.28

Only a few small molecule antivirals have been shown to have in vivo

efficacy against filoviruses. FGI-103, 104, 106 and NSC62914 were

discovered using cell-based high-throughput screening, and their

antiviral mechanisms are largely unknown. The other two families

of small molecules target host enzymes, the S-adenosyl-L-homocys-

teine hydrolase and endoplasmic reticulum (ER) a-glucosidases I and

II. The ER a-glucosidases are especially interesting because the broad-

spectrum antiviral activities of their inhibitors have been extensively

demonstrated with a variety of enveloped viruses from many families

(Table 1). In addition, more than 1000 US FDA-approved drugs were
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tested for new antiviral indications.18 This effort resulted in the dis-

covery that chloroquine could disrupt entry and replication of two or

more viruses in vitro and protect mice against Ebola virus challenge in

vivo.

As for many other enveloped viruses,29–36 the morphogenesis of

filoviruses appears to depend upon ER a-glucosidases mediated pro-

cessing of envelope glycoproteins. Therefore, the amplification and

propagation of filoviruses are sensitive to imino sugar derivatives that

inhibit the ER a-glucosidases I and II.37 Due to their unusual antiviral

mechanism, imino sugars should be complementary to the other anti-

viral approaches and have the advantage of being broadly active.

TARGETING HOST FUNCTIONS TO SUPPRESS VIRAL

INFECTION

Medical management of virus infection can, in theory and has in

practice, involve targeting either virus or host functions. Targeting

virus specified functions such as viral enzymes (DNA or RNA

polymerases, proteases, helicases, neuraminidases) has been enor-

mously effective and offered opportunities for great selectivity.38–40

On the other hand, drugs targeting host functions, upon which the

viruses rely, have been approached with more skepticism because of

concerns regarding selectivity and toxicity. Table 1 shows a few exam-

ples that have been attempted for filoviruses, and discovery of the virus

receptor may lead to a few more. The success of the interferon therapy

makes the point that it is possible to identify host functions that can

serve as targets of broad spectrum antivirals.41,42 However, there are,

to date, very few examples of small molecule antivirals that target host

functions and retain broad activity. It is a short list, including inhibi-

tors of host cellular cyclophilins,43,44 inosine 5-monophosphate dehy-

drogenase,45 3-hydroxy-3-methylglutaryl-coenzyme A reductase,46 S-

adenosyl-L-homocysteine hydrolase14,47 and ER a-glucosidases. The

ER a-glucosidase inhibitors are thus in a rare group, having been

shown to have selective antiviral activity for multiple enveloped

viruses in tissue cultures and, in several cases, in animal models

Table 1 Antiviral therapeutics in clinical and preclinical development for the management of human pathogenic filoviruses

Name Type Virus Target Animal model Efficacy Reference Note

AVI-6002 PMOs EBOV VP24, VP35 Rhesus macaques K–1 h post-exposure,

60% protection

10 Phase I clinical trial

AVI-6003 PMOs MARV VP24, NP Cynomolgus

macaques

K–1 h post-exposure,

100% protection

10 Phase I clinical trail

TKM-100201 SNALP-siRNAs EBOV L polymerase, VP24,

VP35

Rhesus macaques K h post-exposure,

67%–100% protection

11 Phase I clinical trial

MB-003 Mouse/human

chimeric mAbs

EBOV GP epitopes Rhesus macaques 1–2 day post-exposure,

67% protection

12

rhMBL Recombinant

mannose-

binding lectin

EBOV GPs C57BL/6 mice 12 h post-exposure, 40%

protection

13

C-c3Ado Adenosine analog EBOV S-adenosyl-L-

homocysteine

hydrolase

BALB/c mice 2 days post-exposure,

.80% protection

14

c3-Npc A Adenosine analog EBOV S-adenosyl-L-

homocysteine

hydrolase

BALB/c mice 3 days post-exposure,

100% protection

14

FGI-103 Small molecule EBOV Unknown C57BL/6 mice 1 day post-exposure,

60% protection

15

MARV BALB/c mice 1 day post-exposure,

100% protection

FGI-104 Small molecule EBOV Unknown C57BL/6 mice Post-exposure, 100%

protection

16 Broad-spectrum, in

vitro

FGI-106 Small molecule EBOV Unknown C57BL/6 mice 1 day post-exposure,

90% protection

17 Broad-spectrum, in

vitro

Chloro-quine Small molecule EBOV Unknown BALB/c mice 80% protection 18 Broad-spectrum, in

vitro

NSC62914 Small molecule

antioxidant

EBOV Unknown C57BL/6 mice 1 day post-exposure,

50% protection

19 Broad-spectrum, in

vitro

MARV BALB/c mice 1 h pre-exposure, 90%

protection

IHVR11029 Small molecule

imino sugar

EBOV ER a-glucosidases C57BL/6 mice 4 h post-exposure, 60%

protection

20 Broad-spectrum, in

vitro

IHVR17028 Small molecule

imino sugar

EBOV ER a-glucosidases C57BL/6 mice 4 h post exposure, 50%

protection

20 Broad-spectrum, in

vitro

MARV BALB/c mice 1 day pre-exposure, 70%

protection

IHVR19029 Small molecule

imino sugar

EBOV ER a-glucosidases C57BL/6 mice 4 h post-exposure, 80%

protection

20 Broad-spectrum, in

vitro

MARV BALB/c mice 4 h post-exposure, 70%

protection

Abbreviations: EBOV, Ebola virus; mAb, monoclonal antibody; MARV, Marburg virus; PMO, phosphorodiamidate morpholino oligomer; SNALP-siRNA, stable nucleic acid

lipid particle-small intefering RNA.
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(Table 2). Why viral functions are more sensitive to glucosidase

inhibition than are host functions is becoming appreciated and

touched on briefly below.

FUNCTION OF ER a-GLUCOSIDASES AND CONSEQUENCES OF

INHIBITION

Briefly, as illustrated in Figure 1, the N-linked glycans of mammalian

glycoproteins are ‘processed’ with the sequential removal of their terminal

glucose residues by the ER-resident glucosidases I and II, shortly after

becoming glycosylated at specific asparagine residues. Remarkably, cells in

culture can tolerate complete shutdown of these ER a-glucosidases.74–78

Gucosidase I and II knockout mice have limited life spans.79–81 People can

tolerate long-term (months and years) treatment with glucosidase inhi-

bitors under conditions where there is substantial repression of the ER

enzymes. However, there are troubling adverse effects (i.e., gastric distress)

which must be taken into consideration.36,82

Glucosidase inhibitors have been approved for the management of

type II diabetes, Gaucher’s disease. Glucosidase inhibitors had also

advanced to phase II human trials for management of hepatitis C virus

and human immunodeficiency virus infection.82,83 Thus, although

mammalian cells and animals tolerate significant, and even total, repres-

sion of ER glucosidases, many viruses cannot. Indeed, completion of the

Table 2 Broad-spectrum antiviral activity of imino sugar derivatives in vitro and in vivo

Virus family Efficacy in vitro Efficacy in vivo Reference

Herpesviridae Herpes simplex virus-2 Herpes simplex virus-1, efficacy in mouse 48

Cytomegalovirus 49

Hepadnaviridae Hepatitis B virus Woodchuck hepatitis virus, in woodchucks 30,31,50,51

Retroviridae Human immunodeficiency

virus

Human phase II clinical trials, limited efficacy 52–55

Togaviridae Sindbis virus 33

Semliki forest virus 56

Flaviviridae Hepatitis C virus Phase II clinical trials, limited efficacy; synergy

with interferon and ribavirin

35,57

Dengue virus 58–67

Japanese encephalitis virus Efficacy in several mouse models; phase

II clinical trial, ongoing

60,68

West Nile virus Efficacy in mouse model 34,64

Coronaviridae Severe acute respiratory

syndrome coronavirus

69

Paramyxoviridae Measles virus 70

Rhabdoviridae Vesicular stomatitis virus 71

Filoviridae Ebola virus Ebola and Marburg virus in mouse model 20

Arenaviridae Lassa fever virus 20

Junin virus 72

Bunyaviridae Rift Valley fever virus 20

Orthomyxoviridae Influenza A virus Efficacy in mouse model 33,73 (Ramstedt et al., patent 20110065752)

Glu
Glu

Glu

Complex

UGGT

Misfolding, ER retention, degradation

Glucose Mannose

ER α-glucosidase inhibitors

α-glucosidase II α-glucosidase IIα-glucosidase I

Folding, Golgi 
transport and 
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Interaction with
calnexin

N-acetylglucosamine

Figure 1 Glucosidase mediated steps in the N-linked glycosylation pathway. The pathway of N-linked glycosylation at asparagine of nascent polypeptides is shown.

Polypeptides synthesized by translation in the ER are shown as the ribbon line (black) as unfolded, with the unprocessed 3-glucose terminal containing ‘lollipop’

oligosaccharide structure, attached at an asparagine. The terminal glucose and second to terminal glucoses (Glu) of this oligosaccharide is removed processively by ER

resident, membrane bound, glucosidases I and II. Following removal of these glucose molecules, the protein chaperon, Calnexin, mediates folding of the polypeptide,

which is then transported to the Golgi and further processed for secretion. Inhibition of ER glucosidases prevents polypeptide interaction with Calnexin and results in

polypeptide misfolding, retention and/or degradation.
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life cycle of many enveloped viruses requires functional glucosidases.29

For example, viruses such as the hepadnaviruses, flaviviruses, filoviruses

and influenza virus are significantly repressed by imino sugars under

conditions where there is no detectable affect upon the host cells, or in

the cases of animal experiments, only limited affect upon the host ani-

mals36,74,84 (Table 2). The sensitivity of these viruses to glucosidase inhi-

bitors is presumably because they possess envelope proteins that must

oligomerize, and they have an apparent requirement for glucosidase

processing of their glycoproteins presumably to enable time-sensitive

proper calnexin mediated folding for their oligomerization.35,49,52,58,85

Taken together, the trend is clear and has not been broken for any of

the viruses that have been tested so far: enveloped viruses that bud

from intracellular membranes and/or use calnexin dependent path-

ways are selectively sensitive to glucosidase inhibitors. This has been

expanded to viruses from four families causing hemorrhagic fevers

(Filoviridae, Bunyaviridae, Arenaviridae and Flaviviridae) (Table 2).

CURRENT USES AND LIMITATIONS OF GLUCOSIDASE

INHIBITORS

A wide variety of structurally diverse compounds, from both nature

and synthesis, have been identified as glucosidase inhibitors.86,87

Some of them have been successfully used to treat human dis-

eases.82,83 For example, inhibition of intestinal glucosidases digest-

ing carbohydrates is therapeutic for the management of type II

diabetes.88 The imino sugar N-butyl-deoxynorjirimycin (NBDNJ)

is currently approved for the treatment of Gaucher’s disease, with

patients taking near gram amounts a day for many years.89,90

However, the molecular target of the imino sugar in Gaucher’s

disease is a glucocerebroside transferase, which is highly sensitive

to NBDNJ, and not ER a-glucosidases. Nevertheless, these successes

demonstrate the principle of tolerability of this category of drugs, as

well as their practical therapeutic benefits.

The benefits of imino sugar glucosidase inhibitors in the treatment of

viral infections have been less clear. The currently available and human-

tested glucosidase inhibitors are all limited by side effects and poor

pharmacokinetic properties that make them less appealing for control-

ling chronic diseases. For example, although glucosidase inhibitor cell-

gosivir met the viral reduction milestone for the treatment of chronic

hepatitis C in human studies, the drug was not advanced presumably

because of gastritis and, frankly, the emergence of more potent direct

acting antivirals. Thus, a consistent problem has been maintaining

serum concentrations of compounds that are antiviral without causing

the intestinal upsets, due to the inhibition of intestinal glucosidases.30,91

ANTIVIRAL ACTIVITY OF IMINO SUGARS AGAINST

HEMORRHAGIC FEVER VIRUSES

There are now several reports showing that orally administrated imino

sugar derivatives inhibited dengue virus59–62 and Japanese encephalitis

virus 67 in mice, as well as woodchuck hepatitis virus in woodchucks.30

Although the reduction of viremia level was limited, the results were

encouraging. We note, however, that reduction of viremia by even 1–2

logs has been anticipated to significantly improve clinical outcomes by

reducing the severity of disease and increasing survival rates.39,92

Along these lines, we recently reported imino sugar compounds that

significantly reduced mortality in mouse model of lethal derivatives

inhibited dengue virus infection.63 Taken together, these results make

it reasonable to consider finding broadly active glucosidase inhibitors

reaching therapeutic levels in people for multiple viral indications.

However, as indicated, one major limitation for developing imino

sugar antivirals has been the lack of potency and/or poor pharmaco-

kinetic properties, which lead to difficulty in maintaining therapeutic

drug concentrations in vivo. We have improved the antiviral potency

of imino sugars from the platform (NBDNJ) by more than 500-fold

(Figure 2). For example, based upon the encouraging in vivo efficacy
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Figure 2 Modifications of the imino sugar NBDNJ that greatly improve antiviral activity but not enzyme inhibitory activity. The imino sugar NBDNJ is a butylated DNJ

with millimolar antiviral activity in vitro. Alterations of its side chain as represented in compounds CM-10-18 and IHVR-19029, improve antiviral activity by up to
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results achieved with Dengue mouse models, we have synthesized

imino sugar glucosidase inhibitors, represented by tert butyl urea

(u) DNJ (19029), with submicromolar antiviral activity against four

families of hemorrhagic fever viruses in cultured cells.37 In addition,

significant in vivo efficacy in Ebola and Marburg virus infected animals

has also been achieved (70%–80% protection).

MOLECULAR BASIS OF THE ANTIVIRAL SELECTIVITY OF

GLUCOSIDASE INHIBITORS

Imino sugars, such as those with DNJ head groups, are glucose

mimetics competitive inhibitors of the N-glycan processing

enzymes glucosidase I and II (Figure 2). As stated and shown in

Figure 1, all N-linked glycans, following transfer to acceptor aspara-

gine amino acids on nascent glycoproteins, are ‘trimmed’ in the ER

by a series of sequentially active glycoprocessing enzymes. ER a-

glucosidases I and II are the first enzymes to function in this path-

way.77,78 Specifically, all nascent N-linked glycoproteins contain

three terminal glucose residues at the distal termini of their N-

glycans following transfer of the oligosaccharide to the protein by

way of the enzyme oligosaccharyltransferase. Immediately following

this transfer, the terminal glucoses are removed, sequentially, by the

action of ER resident enzymes glucosidases I and then II. The ER

chaperons, calnexin and calreticulin, recognize monoglucosylated

N-glycans and then ‘fold’ the nascent glycoprotein after which it

is further processed by mannosidases and transferred to the Golgi

where it is further modified into its characteristic complex car-

bohydrate structures. Underglucosylated polypeptides that have

not been folded and have not transferred to the Golgi may get

second chances following reglucosylation and the possibility of cal-

nexin and calreticulin interactions by the enzyme UDP-glucose

glycoprotein: glucosyltransferase. However, ultimately, misfolded

or unfolded polypeptides are sent to the proteasomes where they

are degraded. Thus, glucosidase inhibitors prevent the interaction

of nascent N-glycoprotiens with calnexin and calreticulin and cause

their misfolding and degradation. Misfolded or unfolded polypep-

tides may be sent to the proteasomes for degradation. It has been

known for more than 20 years that many viruses are sensitive to

glucosidase inhibition, and the sensitivity of Sindbis virus, influenza

virus and fowl plague virus envelope proteins was reported in the

1980s.33

Viruses that depend upon calnexin and calreticulin would thus be

expected to be the most sensitive to glucosidase inhibition. And we

developed a ‘biogenesis’ theory that viruses that bud from the endo-

plasmic reticulum would be sensitive to glucosidase inhibitors. This

was not to say that viruses that did not bud from the ER would not be

sensitive to glucosidase inhibitors, and indeed the infectivity of retro-

viruses which bud from the plasma membrane is apparently greatly

affected by glucosidase inhibitors.93 We would now offer a refinement

of the ‘biogenesis’ theory, in light of what is now known, to claim that

viruses that depend upon the calnexin/calreticulin type pathway for

morphogenesis will be sensitive to glucosidase inhibition.

These predictions, for the most part, seem to be supported by

experimental results. Most strikingly is the example of hepatitis B virus

and bovine viral diarrhea virus which are both sensitive to glucosidase

inhibition, and are two completely different viruses.8,94–96 Hepatitis B

virus has a DNA genome and is a human pararetrovirus that primarily

infects hepatocytes. Bovine viral diarrhea virus is a flavivirus with an

RNA genome and grows primarily in non-liver cells. Both, however,

acquire their envelopes by budding into the endoplasmic reticu-

lum.8,94–96 Both, we now know, also depend upon calnexin for the

maturation of specific viral glycoproteins.97–100 As Table 2 shows, both

are also greatly inhibited by glucosidase inhibitors at concentrations

that do not apparently affect cell viability.

ADDITIONAL BIOLOGICAL ACTIVITY OF IMINO SUGARS

Although imino sugars have been developed as host glucosidase inhi-

bitors to disrupt viral glycoprotein folding and consequentially, virion

morphogenesis, the compounds have additional biological activities

due to either on-target suppression of ER a-glucosidases or off-target

interference of other cellular components.101 For example, on-target

inhibition of ER glucosidase results in viral glycoprotein degradation

has been shown to enhance major histocompatibility complex I pre-

sentation of epitopes derived from viral envelope glycoproteins.

Moreover, changes in the glycan structures associated with viral gly-

coproteins may also alter their interaction with C-type lectins and

consequentially, inhibit pro-inflammatory cytokine production.62 In

addition, some imino sugars may even have off target activities,

repressing the virus by mechanisms that do not involve inhibition of

ER glucosidases.59 Off-target activities are not unusual in compound

development, and in the case of extra biological effects upon antigen

presentation and cytokine function, could even be beneficial. They

may also provide interesting research leads. However, it is essential

that such activities be recognized and be part of the decision to either

progress or disqualify a compound, and if compounds with off-target

activity are advanced, these activities must be monitored.

CONCLUSIONS

The imino sugars have, in the past, been proposed primarily for use in

chronic infections such as human immunodeficiency virus and

chronic viral hepatitis.30,82,83 However, they may be best suited to treat

acute viral infections, such as filoviral hemorrhagic fevers which

involve weeks of therapy, as opposed to chronic infections which

may require years of use. This would certainly avoid the complications

that sometimes appear with longer-term use. Moreover, the new gen-

eration of compounds being brought forward should be designed to

avoid or reduce intestinal distress. Finally, used for life-threatening

infections such as the hemorrhagic fevers or severe influenza, either

alone or in combinations with other management regimes, the gluco-

sidase inhibitors could provide a powerful option in the treatment tool

kit.
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