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INTRODUCTION

Alzheimer disease (AD) is a neurodegenerative disease charac-
terized by loss of neurons and synapses, leading to declines in 
learning and memory function in the brain [1,2]. The main 
hallmark of AD is the aggregation and deposition of amyloid-β 
(Aβ) peptides on the extracellular surface of neuronal cells, 
leading to the formation of Aβ oligomers and fibrils in the brain 
[3]. Another phenomenon observed in AD patients is hyper-
phosphorylation of tau protein in the brain, which accumulates 
in the microtubules of neurons and forms neurofibrillary tan-
gles [4,5]. It is known that these 2 major hallmark features exert 

cytotoxic activities against neuronal cells, ultimately inducing 
the destruction of brain structure and memory decline [6,7].
  Additionally, increasing evidence suggests that astrocytes 
and microglia are colocalized with Aβ plaques and neurofibril-
lary tangles in the brain of individuals with AD [8], implying 
that neuroinflammation may be a major component of AD 
pathogenesis. In epidemiological studies, AD patients who re-
ceive long-term treatment with an anti-inflammatory drug 
have shown diminished development of AD. Moreover, the 
correlation between genes regulating the immune response and 
AD pathogenesis has been confirmed by genome-wide associa-
tion studies [9-11]. During the progression of AD, astrocytes 

Review Article

Vo
lum

e 19 | N
um

b
er 2 | June 2015   pages 131-210

IN
J

IN
T

E
R

N
AT

IO
N

A
L 

N
E

U
R

O
U

R
O

LO
G

Y
 JO

U
R

N
A

L

Official Journal of 
Korean Continence Society / Korean Society of Urological Research / The Korean Children’s Continence 
and Enuresis Society / The Korean Association of Urogenital Tract Infection and Inflammation

einj.org
Mobile Web

pISSN 2093-4777
eISSN 2093-6931

IN
T

E
R

N
AT

IO
N

A
L  N

E
U

R
O

U
R

O
LO

G
Y

  JO
U

R
N

A
L

Alzheimer disease (AD) is a neurodegenerative disorder characterized by the loss of neuronal cells and the progressive decline 
of cognitive function. The major pathological culprit of AD is aggregation of amyloid-β (Aβ) and hyperphosphorylation of 
tau, eventually leading to progressive neuronal cell death and brain atrophy. However, the detailed molecular and cellular 
mechanisms underlying AD development as a result of neuronal cell death are little known. Although several hypotheses have 
been proposed regarding the development of AD, increasingly many studies suggest that the pathological progress of AD is 
not restricted to neuronal components such as Aβ and tau, but is also closely related to inflammatory responses in the brain. 
Abnormalities of Aβ and tau cause activity of pattern recognition receptors on the brain’s immune cells, including microglia 
and astrocytes, and trigger the innate immune system by releasing inflammatory mediators in the pathogenesis of AD. In this 
review, we present a basic overview of the current knowledge regarding inflammation and molecular mediators in the patho-
logical progress of AD.
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and microglia are activated by the stimulation of Aβ plaques 
and neurofibrillary tangles. Activated astrocytes and microglia 
then migrate and surround the plaque and tangles, releasing in-
flammation-associated proteins such as cytokines, chemokines, 
and other pro-inflammatory mediators in the brain (Fig. 1) 
[12,13]. However, the cellular and molecular mechanisms un-
derlying neuroinflammation in AD are not fully understood. 
Therefore, understanding the mechanisms that regulate neuro-
inflammatory processes and their impact on AD processes is 
important for the development of new strategies for AD treat-
ment.
 

CELLULAR MEDIATORS OF 
NEUROINFLAMMATION IN AD

Microglia
Microglia are the resident phagocytes of the brain, where they 
are ubiquitously present. They contribute to protection against 
infection by recognizing and responding to foreign antigens, 
while simultaneously supporting maintenance of the brain tissue 
[14]. To maintain these physiological functions, including mi-
croglial homeostasis, microglia express or release various mole-
cules during brain development and in the normal adult central 
nervous system (CNS). In brain development, microglia regulate 

apoptosis of neuronal subpopulations by CD11b, triggering re-
ceptor expressed on myeloid cells 2 (TREM2), and DAP12; re-
lease neurotrophic factors such as brain-derived neurotrophic 
factor; and guide sprouting vessels. Microglia also contribute to 
maturation of the neuronal network and the maintenance of 
neuronal health by releasing CX3CR1 in the adult CNS [15].
  Once activated by pathological triggers such as oxidative 
stress or misfolded protein aggregates, microglia begin to mi-
grate to the locus of infection and initiate the innate immune 
response [16,17]. The initiation of the immune response by 
pathological triggers is mediated by receptor binding to pat-
tern-associated molecular patterns or danger-associated molec-
ular patterns. It has been suggested that the initial pathological 
trigger of microglial activation in AD is Aβ oligomers and fi-
brils, which are recognized by and bind with a variety of im-
mune receptors including CD36, CD14, and toll-like receptors 
(TLR2, TLR4, TLR6, and TLR9) [18-21]. This binding of Aβ 
with immune receptors results in microglial activation, which 
induces the release of several pro-inflammatory cytokines and 
chemokines. It has been shown that removal of the immune re-
ceptor gene CD36 results in the reduction of Aβ-induced pro-
inflammatory cytokine production and the prevention of intra-
cellular Aβ deposition [22,23]. Aβ oligomers and fibrils are en-
gulfed by the phagocytosis of activated microglia, and conse-

Fig. 1. Neuroinflammation during Alzheimer disease development. In the presence of amyloid-β aggregates and neurofibrillary tan-
gles, immune cells are activated and produce a variety of inflammatory mediators such as cytokines and chemokines.
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quently undergo endosomal/lysosomal degradation processes 
for the clearance of Aβ [24].
  In animal models of early AD development, the immune re-
sponse induces Aβ clearance through the activation of microg-
lia, indicating that the immune response favorably regulates 
AD-related pathologies [25-27]. However, chronic activation of 
the immune response by microglia results in an aggravation of 
AD pathologies, such as reactive microgliosis. The continuous 
activation results in sustained signaling transduction by pro-in-
flammatory cytokines, leading to neuronal damage and result-
ing in the loss of phagocytosis activity by microglia and dimin-
ished breakdown of Aβ plaques [28,29].
  Further compelling evidence that compromised microglial 
function elevates the risk of AD through mis-regulation of the 
inflammatory response comes from studies identifying a rare 
mutation in the extracellular domain of TREM2 [30-32]. 
TREM2 is mainly expressed by the microglia and regulates the 
phagocytosis of Aβ. A rare mutation in TREM2 results in sub-
stantially increased AD risk [33-35] .
  In the CNS of aging animals, microglial cells show an en-
hanced response to inflammatory triggers, similar to that ob-
served in microglia in individuals with an ongoing neurode-
generative disorder [36,37]. Furthermore, microglia primarily 
have an immunomodulatory function and express many im-
mune response-related antigens and molecules [38]. A recent 
study by Zare et al. [39] studied accumulation and effects of Aβ 
itself, suggesting these changes may reach beyond the CNS. A 
transgenic mouse model showed AD mice had immunoreac-
tivity against Alzheimer’s disease markers in the bladder. These 
transgenic mice not only expressed Aβ in the bladder, but also 
these changes were associated inducing voiding dysfunction in-
dependent of the CNS, possibly through peripheral neurogenic 
means. However, the detailed mechanism of microglial func-
tion within the CNS remains debatable. Given that microglial 
activation continuously occurs, inducing innate and adaptive 
immune responses in the brain, further research will be needed 
to define the roles of microglia during AD pathogenesis.

Astrocytes
Astrocytes are the predominant glial cells observed in the CNS 
and play major roles in neuroprotection, organization, and 
maintenance in the brain. They are involved in multiple pro-
cesses in the CNS, including neurotransmitter secretion and 
metabolism, synaptic remodeling, modulation of stress, neural 
information processing, and neuronal signaling transduction 

[40-42]. In early AD, similar to activated microglia, activated as-
trocytes are located around Aβ plaques and accompany the 
phagocytosis and degradation of Aβ, suggesting that they play 
an important role in the clearance of aggregated and accumulat-
ed Aβ in brain tissue affected by AD, along with microglia [13].
  In AD animal models, the early response manifests by mor-
phological changes including the atrophy of astrocytes, which 
may have functional consequences for synaptic connectivity. 
These changes have been shown to affect astrocytes located far 
from senile Aβ plaques in the later phase of AD progression 
[43-45]. Similar to microglia, astrocytes respond to fibrillar Aβ 
aggregates, which are responsible for the activation of astrocytes 
in brain tissue affected by AD. Reactive astrocytes then release 
many molecular mediators such as cytokines, nitric oxide, and 
other potentially toxic molecules, thereby enhancing the in-
flammatory response in the CNS. In an animal study, direct in-
jection of Aβ oligomers strongly induced a significant activa-
tion of astrocytes via activation of the nuclear factor-kappa B 
(NF-κB) transcription factor and production of inflammatory 
mediators such as tumor necrosis factor (TNF)-α, interleukin 
(IL)-1β, S100, and cyclooxygenase-2 (COX-2). By activating as-
trocytes, NF-κB signaling tightly regulates the production of 
cytokines and chemokines, leading to neurodegeneration [46].

Oligodendrocytes
Oligodendrocytes are crucial for neurotransmission and the 
maintenance of neuronal morphology. It also has been established 
that oligodendrocytes are involved in immunological reactions in 
other neurological diseases, particularly multiple sclerosis. How-
ever, little is known regarding the functions of oligodendrocytes in 
the progression of AD [47,48]. A few studies have indicated that 
myelin abnormalities were found in the white matter of AD pa-
tients and that focal demyelination of axons was associated with 
Aβ aggregation in the gray matter of AD patients, as well as in the 
brains of AD transgenic mice [48,49]. Another study revealed that 
Aβ injections induced microglial proliferation, with attenuated 
damage to myelin and a functional loss of oligodendrocytes [50]. 
In an in vitro analysis, several types of Aβ peptides, such as Aβ 
(25-35), Aβ (1-40), and Aβ (1-42) induced cytotoxic effects on the 
oligodendrocytes [48,51,52]. It was also suggested that the differ-
entiation and function of oligodendrocytes are affected by the 
PS1M146V mutation and Aβ deposition [53].
  Finally, oligodendrocytes express mRNA of complement 
components such as C1q, C1s, C2, C3, C4, C5, C6, C8, and C9, 
leading to a complement-associated immune response in 
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pathologically susceptible lesions of brain tissue affected by AD 
[54]. Therefore, complement-activated oligodendrocytes may 
an important target cell type in AD patients in whom inflam-
matory responses have been observed.

MOLECULAR MEDIATORS OF 
NEUROINFLAMMATION IN AD

Complement System
The complement system is an essential mechanism of the innate 
and adaptive immune response against pathogens. This system 
consists of cell surface proteins and proteases that are cleaved 
and activated in a cascade [55]. The complement system is di-

vided into 3 pathways: (1) the classical pathway induced by the 
binding of antibody isotypes bound to antigens, (2) the alterna-
tive pathway induced by the binding of microbial cell surfaces in 
the absence of antibodies, and (3) the lectin pathway induced by 
the binding of mannose-binding protein, which binds to surface 
carbohydrates on microbes. During early steps of complement 
activation, complement components are sequentially cleaved by 
C3 convertase and C5 convertase in all 3 pathways. In the late 
steps of activation, C5b binds to C6, C7, C8, and C9 to form the 
membrane attack complex (Fig. 2) [56-59].
  In studies of AD, amyloid precursor protein (APP) transgen-
ic mice in which C3 activation is inhibited have shown in-
creased Aβ accumulation. Consistent with this finding, in-

Fig. 2. Schematic overview of the 3 complement pathways. MAC, membrane attack complex. 
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creased Aβ deposition was observed in the brain of C3-defi-
cient APP transgenic mice [25,60]. Moreover, activated comple-
ment components such as C1q have been reported to recognize 
the aggregated forms of Aβ, but not the monomeric forms, in 
vitro. An Aβ aggregate bound to C1q was found to be able to 
activate the alternative complement pathway, leading to pro-
cessing and clearance of opsonized Aβ [61,62]. It appears that 
the activation of complement in AD might be effective for Aβ 
clearance; however, it also induces the production of neurotoxic 
materials by concomitant undesirable inflammation. Thus, ad-
ditional studies will be required to provide convincing evidence 
of the function of the complement system in AD development.
 
Cytokines
Cytokines are mainly produced by microglia and astrocytes in 
the CNS and play a crucial role in the development of the CNS. 
Cytokines are involved in numerous inflammatory responses in 
neurodegenerative diseases [13]. Many studies of AD patients 
have revealed increased levels of pro-inflammatory cytokines, 
including TNF and IL [63,64]. In addition, several genetic inves-
tigations in mice showed that an elevated cytokine levels are sig-
nificantly correlated with microglial activation and have effects 
on Aβ generation, neurodegeneration, and cognition [65,66].
  First, TNF-α is one of the most important pro-inflammatory 
cytokines in AD, having beneficial or harmful functions on dif-
ferent neurons. High levels of TNF-α have been reported in the 
brains of AD patients [67]. Aβ directly stimulates TNF-α pro-
duction from microglial cells through activation of the tran-
scription factor NF-κB [68]. TNF-α also increases the expres-
sion of β- and γ-secretase, an enzyme involved in the genera-
tion of Aβ from APP in AD development [69,70]. In addition, 
mice lacking TNF receptor 1 crossed with the AD transgenic 
model showed reduced Aβ aggregation and microglial activa-
tion, along with a recovery of cognitive function [71].
  Second, IL-1 is a major pro-inflammatory cytokine that is ex-
pressed in the early stage of Aβ deposition during AD develop-
ment [72]. IL-1 is produced by microglial cells surrounding Aβ 
plaques and promotes the synthesis of S100, an inflammatory 
mediator, in astrocytes [73]. Within the IL-1 family, IL-1β pro-
duction is strongly observed in the brain tissue of AD patients. 
IL-1β regulates the synthesis of APP, the secretion of APP from 
glial cells, and the amyloidogenic processing of APP [70]. Addi-
tionally, elevated levels of IL-1β in AD patients promote the ac-
tivation of mitogen-activated protein kinase signaling, ultimate-
ly leading to the hyperphosphorylation of tau protein [74,75].

  Finally, IL-6 is important for the normal homeostasis of 
brain tissue. Inhibition of IL-6 signaling promotes the reduc-
tion of microglial activation, while overexpression of IL-6 leads 
to chronic neuroinflammation [76]. In AD mouse models 
(TgCRND8 and Tg2576), overexpression of IL-6 in brain tis-
sues has been observed [26]. Similar to IL-1β, IL-6 is also pro-
duced by microglial cells and results in elevated mRNA levels of 
the APP gene [77]. IL-6 has also been reported to induce the 
hyperphosphorylation of tau protein by increasing the CDK5 
activator p53, resulting in the formation of neurofibrillary tan-
gles, which play an important role in AD pathology [78].
 
Chemokines
Chemokines are a family of chemoattractant small cytokines 
that are mainly produced by astrocytes and microglia to regu-
late their migration to inflamed areas, enhancing neuroinflam-
mation in AD development [79,80]. Significant changes in che-
mokines and their receptors are observed in the blood plasma, 
cerebrospinal fluid (CSF), and brain tissue of AD patients com-
pared with otherwise healthy individuals [81,82]. It has been 
reported that most chemokines and their receptors contribute 
to the neuroinflammation involved in AD by engaging periph-
eral monocytes and promoting the activation of glial cells such 
as microglia and astrocytes [82].
  Evidence of the cooperative role of chemokines in AD has 
been provided by the observation of upregulation of the che-
mokine receptors CCR3 and CCR5 in reactive microglia sur-
rounding senile Aβ plaques [83,84]. A recent investigation of 
the CSF of AD patients revealed upregulation of CCL2, which 
was associated with cognitive decline [85]. Moreover, in vitro 
analyses have shown that Aβ promoted the generation of 
CXCR8, CCL2, CCL3, and CCL4 in astrocytes and microglia 
[86]. In AD mice, the neuronal death and cognition decline in-
duced by Aβ deposition were found to be regulated by CX3CR1 
and CX3CL1 [87-89]. Therefore, it has been suggested that in 
AD, chemokines are able to promote central and peripheral im-
munity, which contributes to disease progression.

Cyclooxygenases
Given that inflammatory mediators are closely associated with 
the pathology of AD [72], epidemiological studies have sug-
gested that nonsteroidal anti-inflammatory drugs (NSAIDs), 
which are major inhibitors of COX, may be promising for AD 
drug development [90]. COX is an enzyme that is responsible 
for converting arachidonic acid in the process of prostaglandin 
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synthesis. There are 2 types of COX: COX-1 and COX-2. 
Whereas COX-1 is expressed in many cell types and is involved 
in the physiological production of prostanoids, COX-2 is pro-
duced during inflammation and results in pro-inflammatory 
prostanoid synthesis [91,92]. COX-1 and COX2 are differently 
expressed in various stages of AD pathology [90]. While COX-
1 is primary expressed in microglia, which are involved in Aβ 
aggregates in the late stage of AD, COX-2 is highly expressed in 
neurons and is colocalized with the expression of cell cycle pro-
teins under conditions of low Aβ deposits and tau tangles in the 
early stage of AD.
  In AD mice models, overexpression of COX-2 in neurons 
contributed to neuronal cell death by the formation of Aβ 
plaques and by the production of free radicals, causing aggravat-
ed cognitive deficits. Furthermore, the appearance of neuronal 
death in AD was inhibited by treatment with NSAIDs [91-95]. 
Thus, many scientists have suggested that drug development us-
ing NSAIDs to target COX-mediated neuronal cell death may 
be a promising potential strategy for the treatment of AD.

CONCLUSIONS

Here, we investigated neuroinflammation and consequent in-
flammatory mediators (cellular and molecular) in the patho-
logical progress of AD. Inflammation is not only found in many 
tissues and lymphoid organs, but is also observed in neurode-
generative diseases such as AD. Many scientists have proposed 
that inflammation occurs in the presence of misfolded Aβ and 
tau proteins, resulting in initiation or acceleration of the devel-
opment of the disease. However, other investigators have ar-
gued that inflammation might be a beneficial defense mecha-
nism against neurotoxicity in brain tissue affected by AD. 
Whether inflammation promotes or alleviates AD, it should be 
acknowledged that neuroinflammation plays a major role in 
the development of AD. Therefore, additional studies should be 
conducted to define the detailed molecular mechanisms and 
crosstalk between neuroinflammation and AD. Therapeutic ap-
proaches targeting and regulating neuroinflammation will be a 
promising frontier in terms of new treatments for AD.
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