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Abstract: Physiological polyamines are ubiquitous polycations with pleiotropic biochemical activ-
ities, including regulation of gene expression and cell proliferation as well as modulation of cell
signaling. They can also decrease DNA damage and promote cell survival. In the present study, we
demonstrated that polyamines have cytoprotective effects on normal human CD4+ T lymphocytes
but not on cancer Jurkat or K562 cells. Pretreatment of lymphocytes with polyamines resulted in
a significant reduction in cells with DNA damage induced by doxorubicin, cisplatin, or irinotecan,
leading to an increase in cell survival and viability. The induction of RAD51A expression was in
response to DNA damage in both cancer and normal cells. However, in normal cells, putrescin
pretreatment resulted in alternative splicing of RAD51A and the switch of the predominant expres-
sion from the splice variant with the deletion of exon 4 to the full-length variant. Induction of
RAD51A alternative splicing by splice-switching oligonucleotides resulted in a decrease in DNA
damage and cell protection against cisplatin-induced apoptosis. The results of this study suggest
that the cytoprotective activity of polyamines is associated with the alternative splicing of RAD51A
pre-mRNA in normal human CD4+ T lymphocytes. The difference in the sensitivity of normal and
cancer cells to polyamines may become the basis for the use of these compounds to protect normal
lymphocytes during lymphoblastic chemotherapy.

Keywords: polyamines; alternative splicing; DNA damage; cytoprotection; apoptosis

1. Introduction

Polyamines (PAs) are small polycationic molecules derived from the metabolism
of ornithine by the enzyme ornithine decarboxylase [1]. Spermine (Spm), spermidine
(Spd), and putrescine (Put) are three main PAs found in all types of human cells and
tissues [2]. Due to their positive charge, PAs are able to bind most biological polymers. The
binding of PAs to proteins results in modulation of the activity of different enzymes [3]
and ion channels [4] that support the functions of cell membranes. Due to their ability to
interact with nucleic acids, PAs are able to influence gene transcription [5,6] and mRNA
translation [7,8]. Thus, PAs are essential for different cellular functions, including cell
growth and proliferation [9]. Several works have demonstrated that PAs have antioxidative
effects [10], can promote homology-directed DNA repair [11], and downregulate DNA
damage-associated cell death [12,13]. Almost all cells can produce PAs, but their production
is especially high in rapidly growing cells; therefore, the concentration of PAs as well as
the gene expression and activity of enzymes involved in PA biosynthesis are higher in
cancer tissues than in normal surrounding tissues [14–16]. Therefore, the pathway of PA
metabolism is a promising target for chemotherapy and chemoprevention [17]. PAs have
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roles in normal immune cell function [18] and are responsible for T cell proliferation and
differentiation [19]. Thus, an anti-PA chemotherapeutic strategy may have a negative effect
on normal immune cells. To support this, catabolic products of PA oxidation are toxic and
can induce apoptosis in normal and tumor cells [20–23]. Several works have demonstrated
that the ability of PAs to induce a cellular response to DNA damage is associated with the
RAD51 DNA repair system [11,24]. To date, there are no works comparing the ability of
PAs to influence DNA damage and the survival of cancer and normal cells. In the present
study, we demonstrated that PAs have cytoprotective effects on normal human CD4+ T
lymphocytes but not on Jurkat or K562 cancer cells, and such protection is associated with
the induction of the alternative splicing of RAD51 pre-mRNA.

2. Results
2.1. Polyamines Have Cytoprotective Activity against Normal CD4+ T Cells but Not against
Malignant Cells

It is known that PAs can suppress or induce immune cell growth depending on their
concentration in cell media [25,26]. We tested the ability of Spm, Spd, or Put to affect cell
growth at a concentration of 10 µM using the MTT test. The results are shown in Figure
S1A,B in the Supplementary File. All three PAs at this concentration did not show significant
activity to induce or suppress the growth of either Jurkat or K562 cancer cells or normal
activated CD4+ T lymphocytes (Figure 1A). The results of the MTT test demonstrating the
dose-dependent reduction in cell metabolic activity/growth after incubation with DNA-
damaging agents are shown in Figure S1D–F in the Supplementary File. The incubation of
cancer cells with DNA-damaging agents resulted in significant inhibition of their metabolic
activity/growth up to 32.4–68.3% of control cells, and the addition of each PA did not
protect cells against damage (Figure 1B–G). CD4+ T cells were more sensitive to DNA
damage, and only 3.1–20.9% of cells remained alive after incubation with genotoxic agents
(Figure 1H–J). However, pretreatment of CD4+ T cells with PAs resulted in a significant
induction of cell metabolic activity/cell growth up to 55.3–122.6% of control nontreated cells.
Representative photos of the MTT assay for these experiments are presented in Figure S2 in
the Supplementary File. These results demonstrated that each PA has a cytoprotective effect
on normal but not cancer cells. The simplest PA is Put, which originates from ornithine and
can be successively converted to both Spd and Spm [27]. Thus, all subsequent experiments
were performed with Put as a cytoprotective agent.

2.2. Polyamines Decrease DNA Damage Induced by Genotoxic Agents in Normal CD4+ T Cells

We studied whether Put can decrease the level of DNA damage and performed a
TUNEL assay for flow cytometry. Put was not able to significantly reduce the proportion
of cells treated with each DNA-damaging agent (Figure 2A–D). However, a significant
reduction in TUNEL-positive cells was observed for CD4+ T lymphocytes pretreated with
Put: by 61.1% for Dox, 76.6% for Cis, and 64.8% for Irt (Figure 2E,F). The results of this
experiment demonstrated that Put induced significant downregulation of DNA damage
in normal CD4+ T cells but not in cancer cells. Among the studied cytotoxic agents, Cis
demonstrated the strongest activity to induce DNA damage (up to 96.3%), and such an
induction was successfully diminished by Put. Consequently, experiments were performed
with Cis as a DNA-damaging agent.
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Figure 1. Cytoprotective activity of PAs in normal CD4+ T cells. (A) Results of the MTT test for cells 
incubated with 10 µM of each PA for 72 h. The results of the MTT test for cancer (B–D) Jurkat, (E-
G) K562, or (H–J) normal CD4+ T cells incubated with genotoxic agents: 1 µM doxorubicin (Dox), 
0.5 µM cisplatin (Cis), or 1 µM irinotecan (Irt) in the presence or absence of each PA. n = 8. * p ≤ 0.05 
vs. cells not treated with PA. Spd: spermidine; Spm: spermine; Put: putrescine. 

Figure 1. Cytoprotective activity of PAs in normal CD4+ T cells. (A) Results of the MTT test for
cells incubated with 10 µM of each PA for 72 h. The results of the MTT test for cancer (B–D) Jurkat,
(E–G) K562, or (H–J) normal CD4+ T cells incubated with genotoxic agents: 1 µM doxorubicin
(Dox), 0.5 µM cisplatin (Cis), or 1 µM irinotecan (Irt) in the presence or absence of each PA. n = 8.
* p ≤ 0.05 vs. cells not treated with PA. Spd: spermidine; Spm: spermine; Put: putrescine.
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agrams for cancer cell lines (A) Jurkat, (C) K562, or (E) normal CD4+ T lymphocytes pretreated with 
each PA and incubated with genotoxic agents. The results of the TUNEL assay for flow cytometry 
for treated (B) Jurkat, (D) K562, or (F) CD4+ T cells. n = 4. * p ≤ 0.05. Con: control intact cells; Cis: 
cisplatin; Dox: doxorubicin; Irt: irinotecan; Spd: spermidine; Spm: spermine; Put: putrescine. n = 4. 
* p ≤ 0.05. 

2.3. Putrescin Prevents the Progression of Apoptosis Induced by Cisplatin in Normal CD4+ T 
Cells 

The results of the MTT test do not allow us to answer whether Put prevents cell death, 
as this assay determines the metabolic status of cells. We measured the induction of cell 
death by Cis in Put-treated and nontreated cells by labeling phosphatidyl serine on apop-

Figure 2. Decreased DNA damage in normal CD4+ T cells pretreated with PAs. Representative
terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling (TUNEL) flow-cytometry
diagrams for cancer cell lines (A) Jurkat, (C) K562, or (E) normal CD4+ T lymphocytes pretreated with
each PA and incubated with genotoxic agents. The results of the TUNEL assay for flow cytometry
for treated (B) Jurkat, (D) K562, or (F) CD4+ T cells. n = 4. * p ≤ 0.05. Con: control intact cells; Cis:
cisplatin; Dox: doxorubicin; Irt: irinotecan; Spd: spermidine; Spm: spermine; Put: putrescine. n = 4.
* p ≤ 0.05.

2.3. Putrescin Prevents the Progression of Apoptosis Induced by Cisplatin in Normal CD4+ T Cells

The results of the MTT test do not allow us to answer whether Put prevents cell
death, as this assay determines the metabolic status of cells. We measured the induction
of cell death by Cis in Put-treated and nontreated cells by labeling phosphatidyl serine
on apoptotic cell membranes with annexin V-FITC and cell DNA by PI followed by flow
cytometry. The results of the cell death measurement were in good agreement with the
results from the MTT test (Figure 1) and with the induction of DNA damage determined
by the TUNEL assay (Figure 2). A concentration of 0.5 µM Cis could induce apoptotic
cell death. CD4+ T lymphocytes and Jurkat cells were the most sensitive (17.3–21.4% of
them remained alive), while K562 cells were more resistant (34.1–39.6% remained alive)
(Figure 3). Pretreatment of cells with Put led to a small and insignificant decrease in the
proportion of apoptotic and dead Jurkat (Figure 3A,B) and K562 (Figure 3C,D) cell lines.
However, pretreatment of normal CD4+ T cells with Put resulted in significant prevention
of cell death, and more than 80% of cells remained alive after the induction of apoptosis
with Cis (Figure 3E,F). The results of this experiment indicate that PAs can prevent cell
death associated with DNA damage in normal lymphocytes but not in cancer lymphocytes.
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after incubation with cisplatin (Cis). Representative plots for cancer cell lines (A) Jurkat, (C) K562, 
or (E) normal CD4+ T lymphocytes pretreated with Put and incubated with Cis. The proportions of 
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2.4. Cisplatin Induces RAD51A but No Other RAD51 Family Members in Cancer Cell Lines 
and Normal CD4+ T Cells 

PAs are able to facilitate homologous recombination-mediated DNA repair through 
the modulation of RAD51 activity [11,24]. Four genes encoding RAD51 paralogs are 
known in the human genome: RAD51A, RAD51B, RAD51C, and RAD51D [28]. We inves-
tigated the expression levels of each RAD51 family member by real-time RT-PCR in cancer 
and normal lymphocytes pretreated with Put and incubated with Cis. We observed that 
Cis could induce the expression of only RAD51A in cancer and normal cells (Figure 4A–

Figure 3. Prevention of cisplatin-induced apoptosis by putrescin (Put) in normal CD4+ T cells. Cells
were labeled with annexin V-FITC and propidium iodide, and flow cytometry was performed 72 h
after incubation with cisplatin (Cis). Representative plots for cancer cell lines (A) Jurkat, (C) K562,
or (E) normal CD4+ T lymphocytes pretreated with Put and incubated with Cis. The proportions of
live cells (lower left quadrants), apoptotic cells (lower right quadrants), and dead cells (two upper
quadrants) are presented. (B,D,F) Histograms of live, apoptotic, and dead cells measured by flow
cytometry. n = 4. * p ≤ 0.05.

2.4. Cisplatin Induces RAD51A but No Other RAD51 Family Members in Cancer Cell Lines and
Normal CD4+ T Cells

PAs are able to facilitate homologous recombination-mediated DNA repair through
the modulation of RAD51 activity [11,24]. Four genes encoding RAD51 paralogs are known
in the human genome: RAD51A, RAD51B, RAD51C, and RAD51D [28]. We investigated
the expression levels of each RAD51 family member by real-time RT-PCR in cancer and
normal lymphocytes pretreated with Put and incubated with Cis. We observed that Cis
could induce the expression of only RAD51A in cancer and normal cells (Figure 4A–C).
Put did not modulate RAD51A expression. The mRNA levels of other RAD51 members,
RAD51B, RAD51C, or RAD51D, were unchanged in all cell types treated with Cis and/or
Put. Western blotting results of total RAD51 protein were in agreement with the results
from real-time RT-PCR (Figure 4D–G). We observed the induction of RAD51 protein levels
in all types of cells treated with Cis.
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variant) or exon 9 (∆9 splice variant) in mature mRNA transcripts. We measured the pro-
portion of mRNA of each RAD51 splice variant in cells pretreated with Put and incubated 
with Cis by real-time RT-PCR. We observed that neither Put nor Cis was able to signifi-
cantly shift the proportion of spliced mRNA in both cancer cell lines (Figure 5A,B). In both 
of these cells, the ∆9 variant was the predominant variant. The ∆4 splice variant and FL 
variant were minor in Jurkat and K562 cells, respectively. In normal nontreated CD4+ T 
lymphocytes, the predominant variant was ∆4 (approximately 79.6% of total RAD51A 
mRNA), and its proportion did not change after incubation with Cis (Figure 5C) regard-
less of total RAD51A induction in response to Cis (shown in Figure 4C). We observed 

Figure 4. Induced RAD51A expression in cells treated with cisplatin (Cis). mRNA levels of RAD51
members measured by real-time RT-PCR in cancer cell lines (A) Jurkat, (B) K562, or (C) normal
CD4+ T lymphocytes pretreated with putrescin (Put) and incubated with Cis. mRNA levels were
normalized relative to the expression of the reference gene 18S. (D–F) Western blotting for RAD51
protein and the reference protein GAPDH in treated cells. (G) Results of RAD51 protein quantification
relative to GAPDH. n = 4. * p ≤ 0.05 vs. control intact nontreated cells.

2.5. Putrescin Induces Alternative Splicing of RAD51A Pre-mRNA in Normal CD4+ T Cells but
Not in Malignant Cells

The results of previous experiments did not allow us to answer why Put prevented the
death of normal CD4+ T cells but not cancer Jurkat or K562 cells. The pre-mRNA of RAD51A
is subjected to alternative splicing leading to the induction of three main splice variants:
full-length (FL) and truncated splice variants with deletion of exon 4 (∆4 splice variant) or
exon 9 (∆9 splice variant) in mature mRNA transcripts. We measured the proportion of
mRNA of each RAD51 splice variant in cells pretreated with Put and incubated with Cis by
real-time RT-PCR. We observed that neither Put nor Cis was able to significantly shift the
proportion of spliced mRNA in both cancer cell lines (Figure 5A,B). In both of these cells,
the ∆9 variant was the predominant variant. The ∆4 splice variant and FL variant were
minor in Jurkat and K562 cells, respectively. In normal nontreated CD4+ T lymphocytes,
the predominant variant was ∆4 (approximately 79.6% of total RAD51A mRNA), and its
proportion did not change after incubation with Cis (Figure 5C) regardless of total RAD51A
induction in response to Cis (shown in Figure 4C). We observed significant induction of the
proportion of FL variants in CD4+ T cells treated with Put. The proportion of its mRNA
increased up to 90.1% in Put-treated cells and up to 86.4% in Put-treated Cis-incubated cells.
The ∆9 splice variant was expressed at a minor level and remained almost unchanged in
Put- and/or Cis-treated cells. The results of this experiment indicate that the prevention of
CD4+ T cell death in response to Put is associated with the induction of alternative splicing
of RAD51A pre-mRNA, leading to the dominant expression of FL RAD51.
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Figure 5. Induction of alternative splicing of RAD51A pre-mRNA by Put. mRNA levels of RAD51
splice variants measured by real-time RT-PCR in cancer cell lines (A) Jurkat, (B) K562, or (C) normal
CD4+ T lymphocytes pretreated with Put and incubated with cisplatin (Cis). mRNA levels of splice
variants were normalized relative to the expression of the reference gene 18S. n = 4. FL: full-length
splice variant. ∆4: mRNA splice variant with the deletion of exon 4. ∆9: mRNA splice variant with
the deletion of exon 9.

2.6. Induction of the Full-Length RAD51A Splice Variant with Splice-Switching Oligonucleotides
Leads to the Protection of CD4+ T Cells against Cisplatin

To further examine the involvement of RAD51A alternative splicing in the prevention
of Cis-induced cell death, we modulated it with SSO, which can switch alternative splicing
toward the FL variant (Figure 6). CD4+ T lymphocytes were transfected with a 26-mer
oligonucleotide complementary to RAD51 pre-mRNA and base pairing with the binding
sites located in intron 3 of the splicing regulator protein SF2/ASF [29,30].
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by an increase in the amount of FL splice variant, and the predominance of FL variant is 
saved for Cis-treated cells. Next, we investigated the influence of SSO transfection on cell 
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prevention of apoptotic cell death. A total of 79.2–85.9% of SSO-transfected cells were alive 

Figure 6. Schematic presentation of RAD51A alternative splicing. (A) Deletion of exon 4 as a result of
alternative splicing and maturation of ∆4RAD51A mRNA. (B) Splicing regulator proteins SF2/ASF
(shown as a green ellipse) interact with its binding sites (shown in bold red font) within intron 3
of RAD51A pre-mRNA. (C) Cell transfection with the 26-mer-specific antisense SSO for RAD51A
(presented in red italic font) blocks the SF2/ASF proteins from binding to their binding sites. Exons
are shown as red boxes, and introns are shown as blue boxes.
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Forty-eight hours post-transfection, the transfection efficiency for both SSO and con-
trol nonspecific oligonucleotides was 97.01–98.4% (Figure 7A–D). Transfected cells were
incubated with 0.5 µM of Cis. The mRNA levels of RAD51A and its splice variants were
measured in the transfected cells incubated with Cis. Real-time RT-PCR revealed a more
than fivefold increase in total RAD51 expression in Cis-incubated cells transfected with all
nucleotides (Figure 7E). Western blotting results of total RAD51 protein were in agreement
with the results from real-time RT-PCR (Figure 7F,G). We observed the induction of RAD51
protein levels in transfected cells in response to treatment with Cis. Transfection of cells
with SSO to RAD51A pre-mRNA resulted in significant induction of the FL variant and
downregulation of the ∆4 splice variant in both Cis-treated and nontreated cells (Figure 7H).
Control nonspecific oligonucleotides were not able to modulate alternative splicing or to
induce FL variants. The mRNA level of the ∆9 splice variant remained unchanged in
transfected cells regardless of incubation with Cis. This experiment demonstrated that
the greatest contribution to the increase in total RAD51A in SSO-transfected cells is made
by an increase in the amount of FL splice variant, and the predominance of FL variant is
saved for Cis-treated cells. Next, we investigated the influence of SSO transfection on cell
survival. Induction of RAD51A alternative splicing with SSO significantly decreased the
proportion of cells having DNA damage induced by Cis, which was detected by TUNEL
assay and flow cytometry (Figure 7I,J). Cis-treated cells transfected with control oligonu-
cleotides did not prevent DNA damage in cells. Transfection of cells with SSO led to the
prevention of apoptotic cell death. A total of 79.2–85.9% of SSO-transfected cells were
alive after Cis treatment, while only 16.4–30.6% of cells transfected with control 26-mer
oligonucleotides remained alive (Figure 7K,L). This observation was in accordance with
the results of the MTT test, which showed that SSO-transfected cells were more resistant
to Cis (Figure 7M–O). The viability of cells transfected with SSO and treated with Cis did
not differ from that of nontransfected cells, while Cis treatment of cells transfected with
control oligonucleotides resulted in a decrease in viability up to 24.2–35.6%. The results
of this experiment demonstrated that the induction of the alternative splicing of RAD51A
pre-mRNA toward the FL variant using antisense SSO results in the protection of cells
against DNA damage and cell death.
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Figure 7. Modulation of RAD51A alternative splicing results in CD4+ T cell protection against
cisplatin-induced apoptosis. Transfection efficiency of CD4+ T cells. Representative flow cytometry
plots of cells transfected with Cy5.5-labeled (A) SSO for RAD51A or (B) a control 26-mer oligonu-
cleotide 72 h posttransfection. (C) Efficiency of transfection. (D) Mean fluorescence intensity (MFI) of
Cy5.5-positive cells. (E) mRNA levels of RAD51A measured by real-time RT-PCR in transfected CD4+

T lymphocytes incubated with cisplatin. mRNA levels were normalized relative to the expression of
the reference gene 18S. (F) Western blotting for RAD51 protein and the reference protein GAPDH
in transfected cells incubated with cisplatin. (G) Results of RAD51 protein quantification relative to
GAPDH. (H) mRNA levels of RAD51A splice variants measured by real-time RT-PCR in CD4+ T cells.
(I) Representative TUNEL flow cytometry diagrams for cells transfected with oligonucleotides and
incubated with cisplatin. (J) Results of TUNEL assay for flow cytometry. (K) Representative flow
cytometry plots for cells labeled with annexin V-FITC and propidium iodide after transfection with
oligonucleotides and incubation with cisplatin. The proportions of live cells (low left quadrants),
apoptotic cells (low right quadrants), and dead cells (two upper quadrants) are presented. (L) His-
tograms of live, apoptotic, and dead cells measured by flow cytometry. (M) Representative photo of
the MTT test for transfected CD4+ T lymphocytes incubated with cisplatin. (N) Results of MTT test
quantification. (O) Bright-field optical images of the MTT test for transfected CD4+ T cells exposed to
Cis. AU: arbitrary units; Cis: cisplatin; CO: control nonspecific oligonucleotide; FL: full-length splice
variant. SSO: splice-switching oligonucleotide. ∆4: mRNA splice variant with the deletion of exon 4.
∆9: mRNA splice variant with the deletion of exon 9. n = 4. * p ≤ 0.05 vs. initial nontransfected cells.
# p ≤ 0.05.

3. Discussion

Most genes of higher eukaryotes have interrupted structures at which coding regions,
exons, alternate with noncoding sequences, introns. Gene transcription leads to the for-
mation of pre-mRNA, a molecule that has both exons and introns. During the maturation
of mRNA, the splicing of exons and excision of introns by spliceosomes occurs [31]. Post-
transcriptional maturation of pre-mRNA plays an essential role in providing biodiversity
of protein products encoded by a single gene due to the process of alternative splicing of
pre-mRNA. In this process, particular exons, or parts of exons, may be included within
or excluded from the final mature mRNA. Consequently, the proteins translated from
alternatively spliced pre-mRNAs will contain differences in their amino acid sequence and,
often, in their biological functions [32]. An exon may be constitutive (always included in
the mRNA) or alternative (may be included or excluded) to generate alternative splice
variants. The usage of a splice site may be enhanced or suppressed by its proximity to
local cis-regulatory sequences such as exonic splicing enhancers or silencers and intronic
splicing enhancers or silencers [33,34]. The cis-regulatory sequences are in turn bound by
trans-acting factors or splicing factors. Most often, they are serine/arginine-rich proteins
(SR proteins). The spliceosome deletes intron and exon ligation during splicing, while the
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functioning of SR proteins is crucial for the determination of the sites that will be deleted
or retained.

This study, for the first time, demonstrated a link between PAs, the alternative splicing
of RAD51A pre-mRNA, and cell protection against cell death due to DNA damage. PAs
were able to protect normal activated CD4+ T lymphocytes but not Jurkat or K562 cancer
cell lines due to the action of Dox, Cis, or Irt (Figure 1). These cytotoxic compounds are
widely used anticancer chemotherapeutics targeting DNA replication and are able to induce
double-strain DNA damage by different mechanisms [35–40]. Normal CD4+ T cells were
more sensitive to cytotoxic compounds than cancer cells, as demonstrated by the MTT test
(Figure 1), TUNEL assay (Figure 2), and the measurement of live, apoptotic, and dead cells
by flow cytometry (Figure 2). However, pretreatment of lymphocytes with each PA resulted
in a significant reduction in cells with DNA damage, which increased their survival and
viability. All three PAs did not show such an effect on Jurkat and K562 cancer cells and
were not able to decrease the rate of DNA damage or increase cell viability. The ability of
PAs to reduce oxidative stress and DNA damage is rather well studied [21,41,42], while
the precise mechanisms of DNA protection by PAs remain to be determined. One of the
early discoveries about PA–DNA interactions was the observation that PAs could stabilize
double-stranded DNA due to charge neutralization [43] and by docking into the major or
minor grooves [44]. Other researchers directly studied the effect of PA–DNA interactions
on double-strand integrity from a structural standpoint [45,46]. Later, the promotion of
homology-directed DNA repair by PAs due to the activation of RAD51 was described [11].
Our current work belongs to the latter type, where we showed the induction of RAD51A
expression in response to DNA damage in cancer and normal cells (Figure 4). However,
unlike the above-mentioned study, we demonstrated that PAs can induce alternative
splicing of RAD51A pre-mRNA only in normal CD4+ T cells (Figure 5), and the shift of the
pool of RAD51A mRNA from the predominant ∆4 splice variant toward the FL variant is
associated with cell protection. The RAD51A gene consists of 10 exons that are subjected
to alternative splicing during mRNA maturation (Figure 6A). The most abundant slice
variants among murine and human cells are FL, ∆4, and ∆9 variants [47,48]. Exon 4 encodes
the helix-turn-helix region of the protein. Its deletion (i.e., ∆4 splice variant) results in the
loss of the ability to interact with BRCA1 and BRCA2, which may be important for the
cellular response to DNA damage. BRCA2 has been shown to regulate both the intracellular
localization and DNA-binding ability of this protein [49]. Exon 9 encodes a part of the so-
called L2 region loop of the RAD51 protein, and its deletion (i.e., ∆9 splice variant) abrogates
the DNA-binding capacity of the protein [50]. Dominant negative mutations in RAD51
protein variants are suggested to be associated with the Fanconi anemia subtype [51].
Pre-mRNAs of different members of RAD51 are subjected to alternative splicing and are
believed to have impacts on cancer progression [52–54]. Our results correspond to the
inability of truncated RAD51A splice variants to promote homological recombination
and reduce DNA damage because Put induced the predominance of the FL variant and
prevented the death of normal CD4+ T cells. Although the questions of why PAs did not
induce RAD51A alternative splicing in cancer cells and the mechanism of its induction by
PAs remain to be investigated, we demonstrated the involvement of alternative splicing of
RAD51A pre-mRNA in cell protection against DNA damage. The modulation of alternative
splicing was performed using SSO targeting pre-mRNA of RAD51A at the cis-regulatory
sequences 5′-GAUCACUG-3′, which is the binding site for trans-regulatory SR protein
SF2/ASF [55] (Figure 6B,C). The steric block of such a powerful splicing factor resulted in
the predominant expression of the FL splice variant in Cis-treated CD4+ T cells (Figure 7).
The shift of the splicing patterns (Figure 7H) was associated with a decrease in DNA
damage (Figure 7I,J) and cell protection against Cis-induced apoptosis (Figure 7K–O). The
results of this work suggest that the cytoprotective properties of PAs are associated with
alternative splicing of RAD51A pre-mRNA in normal human CD4+ T lymphocytes but
not in cancer cells. The difference in the sensitivity between normal and cancer cells for
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PAs may become the basis for the use of these compounds to protect normal lymphocytes
during lymphoblastic chemotherapy.

A number of studies demonstrated the role of RAD51 in cancer progression and the
levels of the RAD51 protein are elevated in many cancer cell lines and in primary tu-
mors [56]. RAD51 overexpression can result in improper and hyper-recombination, namely
contributing to genomic instability and genetic diversity [57–60]. These, in turn, might
drive regular cells towards neoplastic transformation or further contribute to cancer pro-
gression. Considering a central role or RAD51 in homological recombination during DNA,
it is only logical that its activity is regulated by a set of partner proteins and modulators [5].
We believe that AS of RAD51A represents a mechanism of fine-tuning of DNA repair at
the level of modulation of partner protein interaction with RAD51A splice variants. This
conclusion must be supported in additional study and the exact role of RAD51A splice
variants in cancer progression remains to be determined. However, RAD51 involvement in
cell survival in genotoxic conditions and its different abilities for AS in cancer and normal
cells makes it a promising target for anticancer applications.

Although most PA-related anticancer strategies are aimed to decrease PAs concentra-
tion in tumor cells or tumor microenvironment [61,62], some cell types including leukemia
cells remain anergic for PAs at low doses. This promising fact, in case of further study,
makes possible the clinical evaluations of polyamines administration in combination with
standard chemotherapy.

In conclusion, in our work, we demonstrated for the first time that the induction
of alternative splicing of RAD51A pre-mRNA toward FL variant by PAs results in the
protection of normal human CD4+ T cells against DNA damage. Consequently, PAs can
be used for the protection of normal immune cells during DNA-targeting chemotherapy.
Unfortunately, the results of this work do not answer the question about the mechanism
by which PAs induce alternative splicing of RAD51A pre-mRNA and why this process is
abolished in cancer cells. Therefore, future st udies are necessary to resolve these issues.
However, this descriptive study demonstrated the impact of PAs on the alternative splicing
of RAD51A pre-mRNA and demonstrated its role in cell protection against DNA-damage-
associated cell death.

4. Materials and Methods
4.1. Cell Purification and Cultivation

The study was approved by the Ethical Committee of the Institute of Biomedical
Chemistry; written informed consent was obtained from all participants. Blood from
healthy 18–25-year-old donors (n = 4) was collected in Vacuette K3EDTA tubes (Greiner Bio-
One, Kremsmünster, Austria). Peripheral blood mononuclear cells (PBMCs) were isolated
using Lympholite-H (Cedarlane, Burlington, ON, Canada) density gradient centrifugation.
CD4+ T cells were purified from PBMCs using a CD4+ Human Isolation Kit (Miltenyi Biotec,
Bergisch Gladbach, Germany) according to the manufacturer’s instructions. The purified
cells were cultured according to a previously described protocol [63,64]. Briefly, CD4+

T cells were seeded at 5 × 105 cell/mL and cultured in 25 cm2 flasks in RPMI 1640 cell
medium (Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented with 10% FBS
(fetal serum bovine, Capricorn Scientific, Ebsdorfergrund, Germany), with 5 µg/mL anti-
CD28 (eBioscience Inc., San Diego, CA, USA), 5 µg/mL anti-CD3 mAbs (MedBioSpectr,
Moscow, Russia), and 100 U/mL rHu IL-2 (R&D Systems, Minneapolis, MN, USA). Cells
were cultivated in 5% CO2/95% air in a humidified atmosphere at 37 ◦C and restimulated
every three days with complete medium supplemented with IL-2 and anti-CD3 and anti-
CD28 antibodies.

Acute T cell leukemia Jurkat cells and chronic myeloid leukemia K562 cells (both from
ATCC, Manassas, VA, USA) were grown in RPMI-1640 supplemented with 5% fetal bovine
serum (Capricorn Scientific, Ebsdorfergrund, Germany) and 1% sodium pyruvate (Paneco,
Moscow, Russia), and cells were grown in 5% CO2/95% air in a humidified atmosphere at



Int. J. Mol. Sci. 2022, 23, 1863 12 of 17

37 ◦C. Cell lines were tested for mycoplasma contamination before the experiment using
the Mycoplasma Detection Kit PlasmoTest™ (InvivoGen, San Diego, CA, USA).

4.2. A. Poptosis Induction and Toxicity Assays

To induce genotoxicity, Jurkat, K562 or normal CD4+ T lymphocytes were incubated
for 72 h in 96-well plates (TPP, Trasadingen, Switzerland) with 1 µM doxorubicin (Dox,
Veropharm, Moscow, Russia), 0.5 µM cisplatin (Cis, cis-diamminine-dichloroplatinum(II),
Sigma–Aldrich, St. Louis, MO, USA), or 1 µM irinotecan (Irt, Veropharm, Moscow, Russia)
in the presence of 10 µM of each of three PAs: Spm (spermine tetrahydrochloride), Spd
(spermidine trihydrochloride), or Put (putrescine dihydrochloride, all from Sigma–Aldrich,
St. Louis, MO, USA). The concentrations of PAs and genotoxic drugs were established
in preliminary experiments (Figure S1A–C in the Supplementary File). Cell viability was
tested by measuring the conversion of the tetrazolium salt 3-(4,5-dimethyl-thiazol-2-yl)-2,5-
diphenyltetrazolium bromide (Serva, Heidelberg, Germany) to formazan (MTT test). IC50
and IC90 values (the concentration of the enzyme where the response is reduced by 50%
and 90%, respectively) were calculated from curve-fitting equations [65]. Bright-field optical
images were acquired using a Leica DMI300 inverted microscope (Leica Microsystems,
Wetzlar, Germany).

To measure apoptosis, incubated cells were resuspended in PBS (Paneco, Moscow,
Russia) and incubated with annexin V-FITC and propidium iodide (PI) from a FITC Annexin
V/Dead Cell Apoptosis Kit (Life Technologies, Carlsbad, CA, USA) according to the
manufacturer’s protocol. The counting of 5× 104 cells at each point was performed by flow
cytometry with a MACS Quant Analyzer 10 (Miltenyi Biotec, Bergisch Gladbach, Germany)
as we previously described [66].

The proportion of cells with DNA damage was estimated by the terminal deoxynu-
cleotidyl transferase-mediated d-UTP nick end labeling (TUNEL) assay [67,68] using the
FlowTACS Apoptosis Detection Kit (R&D Systems, Minneapolis, MN, USA) according to
the manufacturer’s protocol and flow cytometry.

4.3. Cell Transfection with Splice-Switching Oligonucleotide

The transfection of CD4+ T lymphocytes with 26-mer splice-switching oligonucleotide
(SSO) base pairing with RAD51A pre-mRNA or control 26-mer oligonucleotide was per-
formed using Lipofectamine 2000 (Invitrogen, Grand Island, NY, USA) according to the
manufacturer’s protocol. The nucleotides (custom synthesized by Evrogen, Moscow,
Russia) were uniformly modified with 2′-O-(2-methoxy) ethyl sugars (2′MOE), a phos-
phorothioate backbone, and 5′-methyl cytosine as described in [69] and conjugated with
Cy5.5 dye. The SSO sequence is provided in Table 1 and Figure 6B. A BLAST search for SSO
target sequences revealed no other perfect sequence matches within the human genome. To
determine the efficiency of transfection, the cells were labeled with CD4-phycoerythrin (PE)
antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s
protocol, and Cy5.5-positive cells were counted by flow cytometry with a MACS Quant
Analyzer 10 (Miltenyi Biotec, Bergisch Gladbach, Germany). The cellular load of the SSO
or control oligonucleotide was determined by the mean fluorescence intensity (MFI) of
Cy5.5-positive cells.

Table 1. Oligonucleotides used for CD4+ T cell transfection.

Target Sequence (5′-3′)

SSO for RAD51A pre-mRNA ATTCCTTACCACAGTGATCTTGATGG
Control 26-mer oligonucleotide AUGUGCCGUAGGUGAGGCCUCACGUU

4.4. RNA Isolation and Real-Time RT-PCR

A previously described protocol was followed [70]. Briefly, total RNA from cells were
extracted using a PureLink RNA Mini Kit (Life Technologies, Carlsbad, CA, USA). Five mi-
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crograms of total RNA was reverse-transcribed using the MMLV RT Kit (Evrogen, Moscow,
Russia) in a 25 mL reaction mixture, followed by real-time RT-PCR using DTprime5 (DNA
Technology, Protvino, Russia). The reaction mix was prepared using qPCR mix-HS SYBR
(Evrogen, Moscow, Russia) according to manufacturer recommendations using the primers
listed in Table S1 in the Supplementary File. Two-temperature annealing/extension cycles
were used. The fluorescence was measured at the end of the annealing step. Melting curve
analyses were performed at the end of the reaction (after the 35th cycle) between 60 ◦C and
95 ◦C to assess the quality of the final PCR products. The threshold cycles and C(t) values
were calculated by fixing the basal fluorescence at 300 units. The standard curve of the
reaction effectiveness was performed using serially diluted mixtures (1:40, 1:80, 1:160, 1:320,
and 1:640) of all experimental cDNA samples in duplicate for each gene and 18S RNA
separately. Calculation of the relative RNA concentration was performed using DTPrime5
software. Data were presented as ratios of mRNA/18S mRNA.

4.5. Western Blotting

Cells were lysed in 1 mL of TBE buffer (89 mM Tris, 89 mM H3BO3, 2 mM EDTA,
pH = 8.0) by ultrasonic disruption (50 W, 2 min) using a Sonic Dismembrator (Thermo
Fisher Scientific Inc., Waltham, MA, USA). Cell lysates were centrifuged for 10 min at
12,000× g to remove cell debris. Protein in samples was measured using the Bradford
protein assay (Pierce Biotechnology, Rockford, IL, USA). Bovine serum albumin was used
for serial dilutions for the calibration curve. The total protein extracted from cells (50 µg
of total protein) was dissolved in 50 mM Tris-HCl at a pH of 6.8, 1% sodium dodecyl
sulfate, 2 mM EDTA, 1% 2-mercaptoethanol, and 7.5% glycerol and denatured by heating
at 100 ◦C for 10 min. Proteins were separated in gradient PAAG [71] (100 V; 2 h) using
NuPAGE® Novex® 4–12% Bis-Tris Protein Gels (Life Technologies, Carlsbad, CA, USA).
Proteins were transferred onto the nitrocellulose membrane in Novex transferring buffer
(Invitrogen, Grand Island, NY, USA) at 40 V for 3 h. The membranes were stained with
Ponceau S (Sigma–Aldrich, St. Louis, MO, USA) [72]. After soaking in the blocking solution
Blotting-Grade Blocker (Bio–Rad, Hercules, CA, USA), the membranes were incubated
with monoclonal antibodies to glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH)
or anti-RAD51 (both from Abcam, Cambridge, MA, USA) diluted to 1:1000. Membranes
were washed in Tris-buffered saline at a pH of 7.6, with 0.1% Tween-20 (Invitrogen, Grand
Island, NY, USA) and incubated with secondary antibodies conjugated with horseradish
peroxidase (Cell Signaling, Danvers, MA, USA). Membranes were visualized using a Super
Signal chemiluminescent kit (Pierce Biotechnology) and documented in a ChemiDocTM

XRS imaging system (Bio–Rad, Hercules, CA, USA). Relative amounts of proteins were
determined by densitometry in GelAnalyzer 19.1 (www.gelanalyzer.com, accessed on 17
January 2022).

4.6. Statistics

Statistical analysis was performed with 2-way ANOVA and Student’s t-test using SPSS
25 software (IBM SPSS Statistics, Armonk, NY, USA). Bonferroni modification of Student’s
t-test was applied as appropriate. The results are expressed as the mean ± standard error
of the mean (SEM). p ≤ 0.05 was considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23031863/s1.
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