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KEY POINTS

� Immunotherapy has improved survival and advanced treatment options for metastatic
non–small cell lung cancer, and it is being actively studied in local and regional lung cancer
settings.

� Cancer gene mutations and alterations provide a significant opportunity for the develop-
ment of targeted agents, which have been very successful in cancer control and survival
outcomes.

� Adoptive T-cell therapies are promising new therapeutic options for solid cancers,
including lung cancer, although more research and trials are needed in this space.
INTRODUCTION

Over the past decade there have been dramatic therapeutic advances for non–small
cell lung cancer (NSCLC) that have been based on an improved understanding of bio-
markers, tumor immunology, driver mutations, T-cell receptors (TCRs), and adoptive
immune therapies. As a result of these advances, the overall survival (OS) currently
seen with immunotherapy and targeted biologic regimens is remarkably longer than
with historic cytotoxic chemotherapy. These discoveries have created many new
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possible therapeutic options for lung cancer patients in both local and metastatic set-
tings. This article reviews the current landscape of immunotherapy, targeted therapy,
and adoptive therapy in NSCLC.
IMMUNOTHERAPY IN NON–SMALL CELL LUNG CANCER
Immunotherapy in Metastatic Non–Small Cell Lung Cancer

Arguably, the most important paradigm-changing innovation for NSCLC of the past
decade has been the advent of anti–programmed death cell protein-1 (PD-1) and
anti–programmed death ligand 1 (PD-L1) as well as cytotoxic T-lymphocyte–associ-
ated protein 4 (CTLA-4)–directed immune checkpoint blockade (ICB).1 ICB therapy
is predicated on the recognition that tumors express PD-L1 to evade the immune
system by suppressing T cells by binding the PD-1 transmembrane receptor. In
turn, the utilization of targeted antibodies to perturb PD-1/PD-L1 signaling has
proved to have remarkable antitumor activity in NSCLC. Currently, there are 2
anti–PD-1 and 1 anti–PD-L1 agents that are approved by the Food and Drug Admin-
istration (FDA) for the treatment of metastatic NSCLC and 1 anti–PD-L1 antibody in
the consolidative setting after concurrent chemoradiation for locally advanced
NSCLC. Depending on the tumor PD-L1 expression level, ICBs can be utilized either
as monotherapy or in combination with chemotherapy in the first-line setting for
metastatic NSCLC.2 This article reviews seminal phase III trials utilizing anti–PD-1
agents nivolumab and pembrolizumab and anti–PD-L1 agent atezolizumab in meta-
static NSCLC.2

The initial phase III trials, which demonstrated the benefit of immunotherapy in met-
astatic NSCLCs, tested the anti–PD-1 antibody nivolumab in the second-line setting
after recurrence or progression on cytotoxic chemotherapy. These trials included
CheckMate 0173 in squamous NSCLC and CheckMate 0574 in nonsquamous cell
lung carcinomas. Both trials demonstrated better OS with nivolumab compared with
docetaxel alone and received FDA approval as the second-line therapy. Based on
these encouraging results, nivolumab was added to the platinum-doublet chemo-
therapy in the first-line setting in the CheckMate 0265 trial, in the hope of improving
survival outcomes over standard chemotherapy. This trial did not reach the primary
endpoint, however, of improved progression-free survival (PFS) or OS, suggesting
that nivolumab may not enhance outcomes when combined with platinum-doublet
therapy.
In the CheckMate 2276 trial, nivolumab was combined with anti–CTLA-4 antibody

ipilimumab, and compared in the first-line setting against standard chemotherapy;
dual ICB therapy previously demonstrated encouraging results in metastatic mela-
noma.7 The trial stratified patients based on tumor PD-L1 expression. Results in pa-
tients with PD-L1 greater than 1% demonstrated significantly longer median OS
with ICB combination compared with chemotherapy.6

The efficacy of pembrolizumab was studied in the KEYNOTE-024,8 KEYNOTE-042,9

KEYNOTE-189,10 and KEYNOTE-40711 phase III trials and further corroborated the
benefit of ICB for metastatic NSCLC. Importantly, KEYNOTE-0248 established pem-
brolizumab as the first-line ICB monotherapy in wild-type epidermal growth factor re-
ceptor (EGFR) and anaplastic lymphoma kinase, metastatic NSCLC with PD-L1
expression greater than or equal to 50%. KEYNOTE-0429 expended on pembrolizu-
mab indications by demonstrating benefit even in patients with PD-L1 greater than
1%. KEYNOTE-18910 and KEYNOTE-40711 studied combination of pembrolizumab
and chemotherapy in all-comers in nonsquamous and squamous cell lung carcinoma,
respectively; survival outcomes were favorable with pembrolizumab in both trials.
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These studies secured the indications for pembrolizumab alone or in combination with
chemotherapy in the first-line metastatic NSCLC.
Atezolizumab is a monoclonal antibody directed against PD-L1 and was studied in

IMpower 110 (NCT02409342), IMpower 150,12 IMpower 130,13 IMpower 131
(NCT02367794), and IMpower 132 (NCT02657434) trials. IMpower 110
(NCT02409342), similarly to KEYNOTE-042,9 demonstrated survival benefit with
monotherapy compared with chemotherapy in patients with PD-L1 greater than or
equal to 1%. In IMpower 15012 trial, atezolizumab, chemotherapy, and bevacizumab
resulted in improved survival, even in EGFR-positive patients. IMpower 13013 showed
benefit of atezolizumab in combination with chemotherapy in the first-line metastatic
nonsquamous lung cancer without EGFR or ALK mutations, whereas IMpower
131(NCT02367794), and IMpower 132 (NCT02657434) studied all-comers with meta-
static squamous and nonsquamous lung cancer, respectively. Survival benefit of ate-
zolizumab added to chemotherapy regimen was evident in both histologies; therefore,
atezolizumab alone or in combination with chemotherapy is indicated in the first-line
metastatic NSCLC setting.
Currently, an area of controversy and active investigation in metastatic NSCLC is

the role of local consolidative therapy (LCT). Although 2 randomized phase II trials
have demonstrated an improvement in PFS with LCT for oligometastatic NSCLC
treated with cytotoxic chemotherapy, this paradigm has yet to be validated in patients
treated with ICB.14,15 Currently, the role of LCT for oligometastatic NSCLC treated with
ICB is being tested in the context of multiple prospective clinical trials, including NRG
Oncology-LU002 (NCT03137771) and the LONESTAR Trial (NCT03391869).
In summary, the advent of anti–PD-1/PD-L1 ICB has yielded major improvements in

metastatic NSCLC outcomes. Current efforts to understand mechanisms of ICB resis-
tance and the role of LCT are anticipated to further refine and improve patient care.

Immunotherapy in Locoregionally Advanced Unresectable Non–Small Cell Lung
Cancer

Stage III NSCLC is a complex and heterogenous disease state, which historically has
been the subject of much controversy regarding the most optimal therapeutic algo-
rithms. Stage III generally includes either large tumors or centrally located tumors
abutting or invading the mediastinum and/or cancer involved mediastinal lymph
nodes, either single or multiple, or above the clavicle, which maybe bulky or nonbulky.
Adding to this heterogeneity, a surgeon’s judgment of what constitutes resectable and
unresectable disease along with options of induction chemotherapy or chemoradia-
tion versus definitive concomitant chemoradiation creates numerous possible treat-
ment algorithms and sequences. For patients deemed to have unresectable
disease, concurrent chemoradiation has been the standard of care for decades
without significant improvements in survival since the 1990s. The PACIFIC trial
changed this paradigm.16 The PACIFIC trial enrolled surgically unresectable patients
and randomized them to chemoradiation with or without 1 year of consolidative dur-
valumab. Initial results from this trial demonstrated improved PFS.16 Subsequent
OS analyses revealed improved OS of 83%, 74%, and 66% at 1 year, 2 years, and
3 years, respectively, all 10% to 20% better than with chemoradiation alone.17 These
results prompted FDA approval of durvalumab for stage III locally advanced NSCLC.
How to further improve on these results and what to do in surgically resectable stage
III NSCLC is an area of continuous study. Adjuvant durvalumab mainly improved rates
of metastatic disease, including brain metastases that occurred at rates of less than
5%, which was dramatically lower than historic brain metastasis rates for stage III dis-
ease. What the rates of locoregional disease control are with this regimen is not totally
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clear; would trimodality therapy with concurrent chemoradiation and surgery further
improve local control, and in turn survival? It also has been postulated that lower
immune-priming doses of radiation might result in neoantigen activation and help pre-
vent distant recurrence with surgical locoregional control to account for lower radia-
tion dose. Would concomitant administration of radiation and durvalumab be even
more effective? These, and many other questions remain unanswered and are tested
in ongoing clinical studies.

Immunotherapy in Local and Locoregionally Advanced Resectable Non–Small Cell
Lung Cancer

Currently, there are no approved immunotherapy regimens as part of the standard of
care in the perioperative setting for surgically resectable NSCLCs. There are, however,
numerous ongoing clinical trials testing the efficacy of mono or dual immunotherapy
regimens as well as the combinations of immunotherapy and chemotherapy in the
neoadjuvant setting.

Neoadjuvant Monoimmunotherapy

The first trial testing neoadjuvant ICB enrolled 21 patients with resectable stages IB–
IIIA NSCLC.18 Patients received 2 doses of neoadjuvant nivolumab followed by sur-
gery. The aims of the trial were safety and feasibility of surgical resection within
4 weeks of the 1st dose of nivolumab, which weremet. The secondary endpoint of ma-
jor pathologic response (MPR) was 45% and downstaging was achieved in 40% of pa-
tients after just 2 therapeutic doses.18 The Lung Cancer Mutation Consortium (LCMC)
3 study19 targeted accrual has been 180 patients; preliminary results showed that 2
doses of neoadjuvant atezolizumab induced 19% MPR rate and 5% of evaluable pa-
tients achieved pathologic complete response. These results overall are similar to the
MPR after 3 cycles of nivolumab in the phase 2 randomized NEOSTAR
(NCT03158129) trial,20 which demonstrated MPR of 17% in 23 treated patients. In
another neoadjuvant study evaluating PD-1 inhibitor sintilimab in resectable NSCLC,
2 doses of neoadjuvant ICB induced 40.5% MPR rate,21 which is similar to the results
of phase I study MK3475-223 (NCT02938624)22 with pembrolizumab (MPR 40%).
Although there is a clear intertrial variability in terms of MPR rates after ICB monother-
apy, which may be driven by several variables, including the type of immunotherapy,
tumor histology, oncogenic drivers, and perhaps number of doses prior to surgery, it
appears that neoadjuvant anti–PD-1/PD-L1 therapy is overall safe and feasible and its
efficacy appears to be very similar or slightly better than platinum doublet
chemotherapy.

Neoadjuvant Dual Immunotherapy

The combination of nivolumab and ipilimumab in the neoadjuvant setting has been
studied in 2 phase II trials (NEOSTAR [NCT03158129 and NCT02259621]). Recently
reported results from the NEOSTAR trial20 investigating nivolumab given with 1
dose of ipilimumab suggested that the combination is overall well tolerated and
induced 33% MPR rate. The results of NCT02259621 have not yet been presented;
the trial plans to accrue 30 patients. Whether dual immunotherapy will be tested
further in larger studies is currently unclear and likely depends on translational ana-
lyses from these trials, which may help identify sounds of patients responding to
this therapy. Although MPR rates with dual ICB appear to be improved compared
with MPRwith neoadjuvant chemotherapy (15%–19%), the unprecedentedMPR rates
achieved after combination of immunotherapy and chemotherapy most likely will play
the leading role in advancing the neoadjuvant NSCLC field forward.
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Combined Neoadjuvant Immunotherapy and Chemotherapy

Several ongoing trials are investigating the paradigm of neoadjuvant combined anti–
PD-1/PD-L1 inhibitors with chemotherapy for resectable NSCLC patients. The NADIM
trial23 is a single-arm phase II trial, which administered 3 doses of chemotherapy along
with nivolumab prior to resection of clinically staged IIIA NSCLC. The trial enrolled 46
patients, and 89% had clinical N2 disease, majority (75%) multistation. Resectability
was 89% (41/46). Importantly, the trial reported an unprecedented MPR response
rates of 83% (in resected 41 patients, or 73% (34/46) if analyzed by the intention to
treat). Complete pathologic response was reported in 24 patients; OS at 18-month
follow-up was 91%. These results are remarkable, but require validation in currently
ongoing phase III trials in order to definitively change practice paradigm for neoadju-
vant therapy in NSCLC. Notable ongoing phase III trials include CheckMate 816
(NCT02998528)24 utilizing nivolumab with chemotherapy, and randomized phase III
trials: KEYNOTE-671 (NCT03425643, pembrolizumab), IMpower 03025

(NCT03456063, atezolizumab), AEGEAN26 (NCT03800134, durvalumab), and Check-
Mate 077 (NCT04025879, nivolumab); these randomized trials will compare combined
immune-chemotherapy to standard neoadjuvant chemotherapy. All are either
excluding or carefully stratifying patients with targetable somatic oncogenic drivers.
Randomized phase III trials will potentially bring the combined neoadjuvant

immune-chemotherapy into the realm of standard of care if they will achieve results
close to the NADIM trial.
TYROSINE KINASE INHIBITORS AND TARGETED THERAPY
Targeted Therapy in Metastatic Lung Cancers

The stratification of NSCLC with molecular oncogene alterations has changed the
treatment paradigm and meaningfully improved patients’ survival and the quality of
life.27 A driver oncogene can be detected in two-thirds of adenocarcinomas. There
are 5 oncogenes in NSCLC with FDA-approved targeted therapies for metastatic dis-
eases, and many others are anticipated to be added to the clinical armamentarium.
The first actionable mutations in NSCLC have been EGFR mutations. In 2004, 3

groups identified tumors harboring EGFR exon19 deletion or exon21 L858Rmutations
that were exquisitely responsive to EGFR tyrosine kinase inhibitors (TKIs).28–30 In met-
astatic setting, it was shown that the treatment with EGFR inhibitor can improve pa-
tients’ PFS and quality of life compared with chemotherapy.31–33 Although EGFR
mutations are more prevalent in Asian female never-smoker patients (up to 65%), it
also occurs in patients with other demographic features. Therefore, it has been recom-
mended that all newly diagnosed metastatic NSCLC be tested for mutations in this
gene. With erlotinib or gefitinib (first-generation EGFR TKIs), approximately half of
the EGFR-mutant tumors acquire a new EGFRmutation T790M to displace drug bind-
ing out of the EGFR adenosine triphosphate pocket and render clinical resistance to
treatment.34 To overcome this type of resistance, newer EGFR inhibitors were
designed, such as osimertinib.35 In AURA trials, osimertinib was able to confer
response in T790M tumors after progression on erlotinib or gefitinib.36 Furthermore,
in newly diagnosed metastatic patients, osimertinib was associated with better
PFS37 and OS.38 Osimertinib currently is the preferred first-line choice for metastatic
NSCLC with EGFR sensitizing mutations, with other 4 EGFR TKIs serving as alterna-
tive options.
ALK-rearranged NSCLC is another prime example of targeted therapy. It took only

3 years from discovering that ALK fusion with ELM4 is a driver fusion for NSCLC,39 to
showing that crizotinib induces response in 57% of ALK-rearranged NSCLC.40 Similar
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to EGFR TKIs, newer-generation ALK TKIs, such as ceritinib,41 alectinib,42,43 brigati-
nib,44 and lorlatinib,45–47 demonstrated better efficacy and the ability to overcome ac-
quired ALKmutations. Currently, the OS for patients on ALK inhibitors extends beyond
5 years (6.8 years).48

ROS1 is another kinase structurally very close to ALK. The fusion of ROS1 occurs in
1% to 3% of NSCLC. Not surprisingly, crizotinib,49 certinib,50 and lorlatinib51 all are
active in ROS1-fusion NSCLC.
BRAF V600E mutation initially was recognized in melanoma and dual inhibition of

MEK and RAF was established in melanoma as an effective therapeutic strategy. In
a phase II study using dabrafenib plus trametinib in BRAF V600E NSCLC patients,
response rate was 68%, with almost all patients experiencing tumor reduction.52

The FDA approved this combination based on this single-arm pivotal trial.
Most recently, NTRK inhibitors have demonstrated outstanding efficacy in tumors

harboring NTRK1/2/3 fusions, regardless of the tumor type.53 In this study, in the
lung cancer subgroup, 75% patients responded well to therapy. Thus, NTRK inhibitors
became the newest addition to the therapeutic options for treating lung cancers with
an oncogene driver.
In addition to the FDA-approved medications for the 5 different oncogenic alter-

ations, new targets and therapies continue to emerge and some have shown promise
in their early efficacy.
RET fusion as a target for NSCLC has been recognized since 2012.54,55 Several TKIs

targeting ALK and ROS1, for example, alectinib,56 were found to have activities for
RET-fusion.
METex14 skipping was identified as a potential oncogenic driver in 2015 to

2016.57,58 By splicing interruption with exon14, c-MET signaling is constitutively active
due to the lack of degradation. Small molecule inhibitors, such as crizotinib, tepotinib,
capmatinib, and savolitinib, all demonstrated efficacy in NSCLC patients with
METex14 skipping mutation. Two drugs, tepotinib and capmatinib, currently are under
fast-track review with regulatory agencies around the globe for approval.
Other than classic mEGFR sensitizing mutations at exon 19 and exon 21 L858R,

EGFR and HER2 exon20 insertions also are known oncogenic drivers. Many novel
small molecule inhibitors are under development to target this population.
In 2019, the most exciting development in targeted therapy for NSCLC has been the

observation of clinical efficacies with inhibitors targeting KRAS G12C. Many agents
targeting KRAS and its pathways are under clinical evaluation now.
In summary, targeted therapies with precision medicine approach have revolution-

ized the treatment of metastatic NSCLC. The field is moving rapidly in several different
directions. Aside from the continued effort in identifying new oncogenic drivers and
the development of highly potent selective therapeutics, combination therapy with
other classes of medications is being explored. Combination of targeted therapy
with radiation or surgical LCT consolidation (NORTHSTAR [NCT03410043] and
BRIGHTSTAR [NCT03707938] trials) also have shown initial success. Combinations
with chemotherapy, antiangiogenics, ICB, and immune modulation agents all are un-
der active investigation.

Targeted Therapy in Resectable Stages I to III Non–Small Cell Lung Cancer

Building on the success in metastatic NSCLC, clinical trials are evaluating targeted
therapeutics in earlier stages, as adjuvant or neoadjuvant therapies. As adjuvant ther-
apy, several trials evaluated EGFR inhibitors as adjuvant therapy after surgical resec-
tion of stages IB–IIIA NSCLC. The initial phase III RADIANT trial showed no disease-
free survival (DFS) benefit for adjuvant erlotinib in patients with EGFR amplification,
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but the subgroup of EGFR-mutant NSCLC favored erlotinib (median DFS, 46.4 months
vs 28.5 months, respectively, with erlotinib vs without; P 5 .039).59 In another ran-
domized phase III Chinese study ADJUVANT-CTONG1104, 222 patients with N1-
N2 disease (stages IIA–IIIA) were randomized to gefitinib for 2 years versus
cisplatin/vinorelbine.60 The DFS was 28.7 months for gefitinib versus 18 months for
chemotherapy; hazard ratio 0.60; P 5 .0054). The gefitinib group had more brain
recurrence than chemotherapy group.60 In the United States, a similar adjuvant trial,
Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial
(ALCHEMIST) is a National Cancer Institute–sponsored National Clinical Trials
Network initiative aiming at addressing the same question.61 ALCHEMIST screens
patients with operable lung adenocarcinoma to determine if their tumors contain
EGFR or ALK. Once the presence of EGFR or ALK is confirmed, patients are random-
ized to monitoring versus erlotinib or crizotinib, respectively, after completion of their
standard adjuvant chemotherapy. Because osimertinib has an excellent anticancer
activity for brain metastases, the field has been anxiously waiting for the results of
the ADUARA trial, which administered osimertinib for 3-year after lung cancer resec-
tion.62 The data from this trial were announced via virtual 2020 American Society of
Clinical Oncology meeting (due to COVID-19 pandemic). This phase III randomized
trial of 682 patients was unblinded 2 years early after recommendations from an inde-
pendent data monitoring committee due to 79% reduction in disease-free survival
(DFS), defined as either recurrence or death, and 89% versus 53% 2-year DFS
compared with placebo. This is a remarkable benefit of adjuvant osimertinib versus
placebo in surgically resected patients with stages IB–IIIA EGFR positive
adenocarcinoma.63

In the neoadjuvant setting, data on targeted therapy are sparse, partially due to the
challenge of obtaining mutational status prior to surgery. A coordinated effort with
multiple large academic centers through LCMC is ongoing to address the question
of whether neoadjuvant targeted therapy can improve patients’ outcome after surgical
therapy.63 The current study, titled, “LCMC4: Screening Patients with Suspected
Early-Stage Lung Cancers for Actionable Oncogene Targets,” is the fourth study con-
ducted through the LCMC with the support of industrial and academic partners. The
aim is to screen 1000 surgical patients for 10 actionable driver mutations (including
EGFR, ALK, ROS1, and others). Patients with actionable mutations then will be
enrolled on a mutation or alteration-specific neoadjuvant trials.
Although targeted therapy is not yet part of the standard of care in stages I–III

NSCLC, the authors anticipate continued evolution of this field and incorporation of
targeted therapy into future practice guidelines. The authors envision that rapid molec-
ular testing and sequential or combination use of targeted therapy will help improve
long-term outcomes in stages I–III NSCLC.
ADOPTIVE T-CELL THERAPIES, INCLUDING TUMOR-INFILTRATING LYMPHOCYTES
THERAPY, CHIMERIC ANTIGEN RECEPTOR T CELLS, AND T-CELL RECEPTOR

The goal of cancer immunotherapy is to direct the immune system against tumor cells,
leveraging its exquisite specificity and capacity for memory to achieve rapid and du-
rable tumor clearance.64 Although clinical success of ICB in cancer has embraced this
concept, these therapies benefit a fraction of all patients. Themajor barriers to efficacy
include lack of preexisting tumor-specific T-cell response and exclusion of T cells from
the tumor microenvironment.64 Adoptive T-cell therapies provide an opportunity to
overcome these resistance mechanisms by infusion of large number of tumor
antigen–specific cells into the host.
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Tumor-Infiltrating Lymphocytes

In tumor-infiltrating lymphocytes (TILs) therapy, TILs are isolated from the tumor
stroma, expanded ex vivo and reinfused peripherally after conditioning therapy.65

Nonmyeloablative lymphodepleting preparative regimen generally is given prior to
lymphocyte infusion. This preconditioning therapy consists of cyclophosphamide
and fludarabine, which enables dramatic increase and persistence of transferred
cells in vivo, along with enhanced TILs antitumor activity.66,67 Lymphodepletion de-
creases regulatory T cells and myeloid-derived suppressor cells and provides ho-
meostatic growth stimulus to adoptively transferred lymphocytes.65 TILs therapy
application first was used in melanoma patients68 and induced responses in multiple
melanoma studies.66,68–70 In other solid tumors, the identification and ex vivo
culturing of TILs has been difficult.71 Although the diversity of T cells that provide
broad nature of the T-cell recognition against both defined and undefined tumor an-
tigens with this platform makes a strong argument for the utility of TIL therapies, chal-
lenges with quality and quantity of TILs remains its limitation.72,73 Efforts on
optimizing the collection, expansion and preparation for TILs are ongoing to over-
come some of these challenges.74 Number of studies in melanoma,70,75 including
in patients with advanced melanoma who progressed on multiple prior therapies,
including anti–PD-1 therapy, has shown promising clinical responses with this modal-
ity and led to subsequent registration studies.76 Experience in lung cancer with TILs
therapies have been limited and currently pilot studies are ongoing to assess the util-
ity of this approach.77
Chimeric Antigen Receptors

Chimeric antigen receptors (CARs) are synthetic receptors that redirect the specificity,
function and metabolism of T cells.78 CARs consist of T-cell activating domain and
extracellular immunoglobulin derived heavy and light chains to direct specificity.
These antibody fragments bind to specific antigens on the surface of cancer cells.
Newer generations of CARs are engineered to express costimulatory receptors that
can enhance proliferation and activation. CAR-based adoptive cellular therapies
depend on an antibody like-mediated binding to the antigen and is independent
from major histocompatibility complex (MHC) presentation.79,80

Advantages of CARs include the recognition of surface antigens independently from
MHC restriction and antibody-like–mediated antigen recognition that allows targeting
not only the cell surface proteins but also carbohydrates and glycolipids. Engineering
of CARmolecules to obtain conditional activation or remote control of CAR T cells also
provides additional advantages.81,82 In hematologic cancers, these applications pro-
vided significant therapeutic success in patient subsets, which led to the FDA
approval of 2 CAR-engineered T-cell (CAR-T) therapeutic medicines. Tisagenlecleu-
cel, the anti–cluster of differentiation 19 (CD19) CAR-T therapy, has been approved
for the treatment of pediatric patients and young adults with refractory or relapsed
B-cell precursor acute lymphoblastic leukemia.83 Another anti-CD19 CAR-T therapy,
axicabtagene ciloleucel, was approved to treat adult patients with relapsed and re-
fractory large B-cell lymphoma.84

In solid tumors, the development of CAR-T therapy has been more challenging.
CARs recognize only antigens expressed on the cell surface of tumor cells. These
antigens are limited due to the overall tumor heterogeneity and nonuniformity of
the antigen expression. Furthermore, potential target antigens often are shared be-
tween tumors and healthy normal tissue, which makes toxicity the main limitation.79

Few studies in thoracic malignancies showed feasibility of this platform. For
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example, in mesothelin-associated malignant pleural solid tumors, primarily in malig-
nant mesothelioma, intrapleural administration of mesothelin-targeted CAR T cells in
combination with anti–PD-1 therapy after a preconditioning therapy with cyclophos-
phamide, showed evidence of CAR T-cell antitumor activity without therapy-related
major toxicity. In this study, with a minimum of 3 months’ follow-up, the best overall
response for a subset of 11 patients with malignant pleural mesothelioma was 72%,
including 2 durable complete metabolic responses and 6 partial responses. Nine of
these patients had PD-L1 less than or equal to 10%, and 6 of 8 responses were
seen in PD-L1–low patients.85 In another study, EGFR targeted CAR-T cells reported
2 partial responses and 5 stable disease for 2 months to 8 months in 11 evaluable
patients.86 CAR-T therapies have unique toxicities, such as cytokine release syn-
drome and neurotoxicity, which can be life threatening. Predictive algorithms have
been developed for the identification of these toxicities and supportive therapies.80

T-Cell Receptor

The basic principle of T cell receptor gene therapy is to provide mature T lymphocytes
with a high affinity TCR; both alfa and beta chains. This approach is restricted to intra-
cellular peptides derived from tumor antigens and requires major histocompatibility
complex loading and surface presentation to allow immune synapse formation. Efforts
to confer durable, high-level T-cell modification largely have relied on genetic transfer
of TCR genes by integrating retroviral or lentiviral vectors.79,87,88

The TCR-based gene therapy has certain advantages over some of the limitations
that have been faced with CAR-T therapies. TCRs can recognize not only cell surface
proteins but also any intracellular proteins.64 This allows TCRs to recognize low con-
centrations intracellular cognate antigens. In addition, the TCR approach mimics the
natural function of the T cell by recruiting the endogenous signaling molecules and
adhering to correct spatial orientation between the T cell and its target.64,79

In this application, cancer testis antigens (CTAs) generally are selected as targets.
While selecting the targets, unexpected cross-reactivity can result in potential off
target effects. For example, in clinical trials evaluating the safety of engineered
T cells expressing an affinity-enhanced TCR against HLA-A*01–restricted MAGE-A3
in patients with myeloma and melanoma, administration of T cells resulted in cardio-
genic shock and death of the first 2 patients within a few days of T-cell infusion; these
events were not predicted by preclinical studies of the high-affinity TCRs. Gross find-
ings at autopsy revealed severe myocardial damage, and histopathologic analysis
revealed T-cell infiltration. No MAGE-A3 expression was detected in heart autopsy tis-
sues. Translational studies revealed that the recognition of an unrelated peptide
derived from the striated muscle-specific protein titin by engineered TCRs caused car-
diac toxicity, which led to the fatal cardiac complications.89 Another study with MAGE-
3 resulted in neurologic complications, which were attributed to reactivity to previously
unrecognized expression of MAGE-A12 in the brain.90 Subsequent studies showed
safety of certain targets and currently a majority of ongoing studies in solid tumors
are targeting well studied CTAs, such as NY-ESO1, LAGE 1A, MAGE-A4, and
MAGE-A10. Studies in sarcoma and melanoma have been promising.91–93 In NSCLC,
although experience has been limited so far, no additional safety concerns have been
raised and assessment of safety and clinical efficacy is ongoing in several studies.94,95

Adoptive cellular therapies are holding a great promise for the treatment of solid ma-
lignancies including lung cancer. Identification of the right patient populations and tu-
mor subsets for these therapies, improvements in the duration of time required from
the production to infusion, the optimization of conditioning regimens, genetic manip-
ulations to overcome challenges related with T-cell trafficking, and further
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understanding of the tumor and tumor microenvironment are some of the ongoing ef-
forts that provide strong hope for the future.

SUMMARY

Immunotherapy, targeted therapy, and adoptive T-cell therapy have revolutionized
cancer research, added to the clinical therapeutic armamentarium, and created novel
options for single, combined, or salvage modality therapies in solid organ malig-
nancies. These tremendous advancements are most encouraging for lung cancer,
which remains the leading cause of cancer related mortality. As these therapies
continue to be studied and refined, it is the authors’ hope that they eventually will
safely enter the algorithms of standard therapeutic regimens.
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