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Phage Display is a powerful method for the identification of peptide binding to targets
of variable complexities and tissues, from unique molecules to the internal surfaces of
vessels of living organisms. Particularly for in vivo screenings, the resulting repertoires
can be very complex and difficult to study with traditional approaches. Next Generation
Sequencing (NGS) opened the possibility to acquire high resolution overviews of such
repertoires and thus facilitates the identification of binders of interest. Additionally, the
ever-increasing amount of available genome/proteome information became satisfactory
regarding the identification of putative mimicked proteins, due to the large scale on
which partial sequence homology is assessed. However, the subsequent production
of massive data stresses the need for high-performance computational approaches in
order to perform standardized and insightful molecular network analysis. Systems-level
analysis is essential for efficient resolution of the underlying molecular complexity and
the extraction of actionable interpretation, in terms of systemic biological processes
and pathways that are systematically perturbed. In this work we introduce PepSimili,
an integrated workflow tool, which performs mapping of massive peptide repertoires
on whole proteomes and delivers a streamlined, systems-level biological interpretation.
The tool employs modules for modeling and filtering of background noise due to
random mappings and amplifies the biologically meaningful signal through coupling
with BioInfoMiner, a systems interpretation tool that employs graph-theoretic methods
for prioritization of systemic processes and corresponding driver genes. The current
implementation exploits the Galaxy environment and is available online. A case study
using public data is presented, with and without a control selection.

Keywords: phage display, Galaxy platform, enrichment analysis, network analysis, biological interpretation,
Reactome, Gene Ontology

INTRODUCTION

Phage Display has been widely used to select peptides binding to a variety of targets, in vitro
or in vivo, with complexities ranging from a single macromolecule (Rodi and Makowski, 1999;
Bábíčková et al., 2013) to diffuse pathological lesions (Pasqualini and Ruoslahti, 1996). Peptides
identified using this technique have been successfully used for specific site drug delivery and in vivo
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imaging (Deutscher, 2010). The complexity of the selected
repertoires of peptides is a function of the complexity of the
target. Complex selections were poorly analyzed before the
introduction of Next Generation Sequencing (NGS), which
offered a detailed view of the peptide sequences (Dias-Neto
et al., 2009). Software solutions were developed to compare the
contents of several repertoires to identify common or specific
sequences (Kolonin et al., 2006). In parallel, the hypothesis of
mimicked proteins was advanced, based on the assumption that
some peptides share sequence similarity with protein domains,
and thus mimic the physiological interaction of the protein
domain with its targets. In this scope, sequence comparison was
usually performed using available tools, performing probabilistic
(BLAST) (Altschul et al., 1990) or best-match (Needleman–
Wunsch) (Smith and Waterman, 1981) mappings. A tool more
adapted to analysis of phage display data, named PepTeam
was developed by Hume et al. (2013), based on an algorithm
producing all the ungapped matches of the peptides of a
repertoire, compared against a set of proteins. Here we introduce
PepSimili, a new computational tool significantly extending the
capabilities of PepTeam and suitable for large-scale analysis of
phage display data derived from NGS. PepSimili integrates the
mapping function of PepTeam and extends the analysis with
(a) an evaluation and subtraction of the local noise due to
random mappings, (b) the subtraction of the signals produced
by a control repertoire, and (c) filtering of derived proteins using
a mapping score.

Moreover, PepSimili automatically manages a systems-level
biological interpretation, in terms of underlying biological
processes and master regulator genes. Pathway and functional
analysis is performed by coupling the mapping functions of
PepSimili with BioInfoMiner (Pilalis and Chatziioannou, 2013;
Koutsandreas et al., 2016), an algorithm that performs systemic
functional interpretation of the phenotype interrogated through
the phage-display experiment. The interpretation algorithm
performs by projecting the highest ranked proteins onto
ontological and pathway networks with hierarchical structure.
Highest ranked proteins are those presenting statistically
significant accumulation of non-random peptide sequence
matches. Their mapping on ontological and pathway networks
enables the extraction of ranked lists of putative systemic
processes and/or pathways, reflecting the underlying components
involved in the manifestation of the investigated phenotype.
The master regulatory genes and their respective protein
products are ranked according to their contribution to the
systemic processes.

Overall, PepSimili derives a systems-level interpretation
of the mechanisms impacted by the cumulative effect of
multiple mimicking peptides on protein networks. Ultimately,
it manages to shortlist and rank candidate target proteins
deriving from Phage Display experiments, according to their
functional impact. The application is implemented on an
instance of the Galaxy platform (Afgan et al., 2018). Through
its user-friendly visual editor, the execution of the workflow
is easily accessible to the basic user without prior experience
in bioinformatics or in command-line oriented analyses.
Additionally, the Galaxy platform already provides the tools

necessary for the manipulation of the raw fastq files including
quality filtering, trimming of the sequences to isolate the variable
part of the recombinant phages and DNA to protein translation.
PepSimili is the first application for the phage display technology
implemented in Galaxy and which provides efficient mapping of
short peptides on whole proteome databases. The tool is available
online at http://pepsimili.e-nios.com:8080.

MATERIALS AND METHODS

Workflow Implementation
The workflow, outlined in Figure 1, is written in Python
language and implemented as a tool in a Galaxy cloud platform
(Afgan et al., 2018).

Inputs
PepSimili is presented as an integrated tool in Galaxy, accepting
as inputs:

• A Test repertoire, containing the sequences of the peptides,
with a length ranging from 5 to 15 residues, covering all
commercially available phage display libraries (the most
common being of 7–12 residues).
• A Control repertoire, if available. If not available, a file with

a single poly-Tyr of the same length as the peptides (e.g.,
“WWWWWWW,” for n = 7) can be used.
• A table with the distribution of the amino acids

(percentages) in the library used for the selections.
• A fasta file of the proteome, or a subset of

proteins of interest.
• The threshold of similitude, h.
• The minimal z-score to be considered as significant for the

selection of the outliers.
• The p-values and corrected p-values for BioInfoMiner.

Workflow Steps
The main steps of the workflow are the following:

Calculation of the Amino Acid Frequencies of the Test
Repertoire
The respective frequency of each amino acid in the library is
calculated as a percentage.

Building of a Mock Repertoire
A Mock repertoire is built, composed of peptides of the same
length and number (unique) as the peptides of the Test repertoire.
Peptide sequences are quasi random, but respecting the amino
acid frequencies of the phage library, as calculated in step 1. The
Mock repertoire is used for the estimation of the noise produced
by random mappings.

Mapping of Test and Control and Mock Repertoires
on the Proteome
The problem of mapping a set of peptides on a set of proteins,
respecting a threshold of similarity h, was previously addressed in
Hume et al. (2013). Similarity between two peptides is evaluated
using the PAM30 substitution matrix (Jones et al., 1992).
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FIGURE 1 | Simplified view of the workflow. (A) Represents the construction
of the Mock repertoire, (B) the mapping and scoring processes, and (C) the
BioInfoMiner analysis of the proteins/genes of interest.

The algorithms, producing all the ungapped matches, of the
peptides of a repertoire, on a set of proteins, were implemented in
C++ and the code of the four modules necessary to produce the

mappings and provide the resulting profiles is available at https:
//github.com/cbib/pepteam.

In total three mappings are performed, respectively for Test
(T), Control (C) and Mock (M) repertoire (built in step 2). In the
resulting files are reported the matching peptides, the similarity
score and the matching position on the corresponding protein.

Signal Extraction
The mappings are used to produce a signal profile of mappings
for each protein and for each of the T, C, and M repertoires.
As signal profile is defined the sum of the hits in each amino
acid position on the protein. The profile of background noise,
as estimated from the Mock repertoire and representing random
mappings, is subtracted from the signal profile of the Test
repertoire, for each protein. If a Control repertoire is available,
corresponding profiles are subtracted too, in order to extract a
final signal profile representing meaningful peptide matches.

Scoring and Ranking of Proteins
After subtraction, the resulting signal profiles are used to generate
a mapping score for each protein, termed m-score, which is the
sum of the mappings from all positions, divided by the portion of
the protein comprising at least one peptide match.

The distribution of the m-scores is calculated and each protein
is annotated as z-score. The z-score cut-off set by the user
(confidence level) is used to extract the list of proteins of interest
for the next step of the analysis, which are thus outliers according
to the calculated m-score distribution.

Systemic Biological Interpretation
Biological interpretation is performed for the set of promoted
proteins from the previous step, using adapted algorithms from
Chatziioannou and Moulos (2011), Moutselos et al. (2011), Pilalis
and Chatziioannou (2013). The algorithm performs statistical
and network analysis on controlled biological hierarchical
vocabularies, here Gene Ontology (GO) (Ashburner et al., 2000)
and Reactome pathways (Croft et al., 2014). This step (see
section “Graph-Based Biological Interpretation,” below) derives
significantly impacted biological processes and the respective
driver genes linking these processes. It should be noted here
that, with minimal programming effort, this algorithmic step
can be adapted to exploit additional biological ontologies for
network analysis.

Outputs
The workflow produces as outputs:

• The signal profiles of the mapping of the peptides of
the Test repertoire, showing the largest cluster of similar
peptides, each peptide belongs to (#5).
• The signal profiles of the mappings of the Test, Mock and

Control repertoires (#6, #7, and #8, respectively).
• The signal profiles of the mappings of the Test repertoire,

minus both the Mock random mappings and the
Control mappings (#9).
• Two files corresponding to the Test and Mock repertoires

(#10 and #11, respectively) reporting all the mappings
on each protein, indicating the position of the mapping,
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the homology of the peptide with the underlying protein
segment, the peptide sequence, and three characteristics of
the peptide: the number of occurrences in the repertoire,
the number of peptides in the biggest cluster of similar
peptides in the Test repertoire and the number of proteins
on which the peptide is mapping.
• The list of proteins of interest, with z-scores above the

chosen threshold (#12).
• The list of genes of interest, encoding the proteins of

interest (#13), used as input for BioInfoMiner.
• The enriched GO terms characterizing the genes of

interest (#14).
• The list of driver genes linking the processes pinpointed by

the GO terms enrichment (#15).
• The list of the Reactome pathways, in which the genes of

interest participate (#16).
• The list of the Reactome gene ranking (#17).

Parameters
PepSimili is an integrated tool performing all steps of the analysis
of the available repertoires in a single run. A group of satellite and
intermediate scripts are also available in the platform, for access
to intermediate steps of the workflow (listed in the tool menu as
“PepSimili tools”).

Size of the Experimental Repertoires
The quality of the experimentally obtained peptide repertoires
determines the mappings and thus the m-scoring. PepSimili
uses the unique peptide sequences present in a repertoire to
produce the mappings and calculate the m-scores. It is necessary
to dispose of repertoires large enough to optimize the density of
the mappings. A minimum of 40000 unique peptide sequences
of 7mers is necessary. Usually NGS provides millions of reads
for each repertoire, corresponding at hundreds of thousands of
unique peptide sequences for targets as simple as cell cultures,
thus covering the requirements of PepSimili.

For a visualization of the distribution of the m-score the script
Sat_distri can be used; it produces a table with the distribution of
the scores from any profile file.

Some experimental conditions may produce Test and Control
repertoires of different sizes. If the Control repertoire does not
fulfill the required equal size, it is advisable to complete by an
equal number of unique sequences randomly chosen from the
Test repertoire.

Amino Acids Distribution and Mock Repertoire
The distribution along the proteins of the mappings is sensitive
to the frequencies of the amino acids of each repertoire (aaf),
depending on local distributions. To generate a Mock repertoire
allowing an adapted evaluation of the local random noise, it
is necessary to apply an amino acid distribution as the one
observed in the library being used for the selections. Most
of the libraries are constructed using NNK codons, and the
distribution of codons and amino acids is further distorted
during the amplification of the library. Usually this information
is available for commercially available libraries. For custom
constructs it is necessary to include a sample of the library in

the NGS experiments and calculate the aaf table. The script
Sat_aaf uses as input a peptides occurrences table and produces
the corresponding amino acids frequencies file. At minimum, if
no experimental information is available, it is advised to use the
theoretical amino acids frequencies.

The influence of the amino acids frequencies on the
mapping’s distribution is shown in Supplementary Figures 1, 2.
PepSimili accepts as input aaf tables with frequencies
expressed as percentages.

Similarity and h Threshold
The degree of similarity of two peptides is calculated using the
PAM30 substitution matrix. Only positive values can be handled
by PepSimili, ranging from 0 to 1. For 7mers we recommend
a threshold h between 0.4 and 0.8, depending on the desirable
degree of similarities. As the evaluation of the random mappings
is made using the same stringency and this background noise is
systematically subtracted from the Test repertoire signals, high
stringencies are not obligatory. On the contrary, when the Test
repertoire contains a low number of unique sequences, it is
advisable to decrease the threshold h, in order to accordingly
increase the density of the mappings and obtain a more suitable
m-score distribution, for the selection of the proteins of interest.
The influence of the choice of the h threshold on the profiles is
shown in Supplementary Figure 3.

Confidence Level Threshold (Z-Score)
The distribution of the m-scores is the function of the number
of peptides in the repertoires and the threshold h chosen for
the analysis. When both the random and the control (non-
specific ones) profiles are subtracted from the test profiles,
theoretically all remaining signal is significant and there is no
need to focus on outliers of the distribution of the m-scores
(Supplementary Figure 4). However, it is advisable to approach
the Y = aah; described system by the selection(s) starting
with proteins presenting the relatively highest m-scores, and
the default z-score threshold of 2.58 usually selects sufficient
numbers of proteins to build a first overview of the system under
study, using BioInfoMiner’s outputs. A threshold as low as 1.5 is
still significant given the distribution of the m-scores.

Limitations
Proteomes and Fasta File Header Format
It is mandatory to use a particular header format for the proteins
fasta file, so the script correctly extract the gene symbols for
biological interpretation: >ENSGXXXXXXXX| ENSTXXXXXX|
Gene Symbol| ENSPXXXXXXXX. Such files can be obtained
from BioMart (Smedley et al., 2015), using a simple query
with, as filters, Gene stable ID, Transcript stable ID, Gene
symbol and Protein stable ID. Two sets of human proteins
are already included, one of general use (proteome 20k) and
one minimal (proteome 10k), more restricted to interaction
molecules, adapted for selections performed in vivo or on cells
accessible via the blood vessels (e.g., endothelial cells such as
HUVEC). These proteins belong in either of the following
three classes: plasma membrane, extracellular matrix, or secreted
proteins, and were selected based on their annotation with
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GO terms Cellular localisation (GO:0051641) and Extracellular
Region Part (GO:0044421), in addition to the proteins of the
human plasma proteome, taken from the Human Plasma Peptide
Atlas (Schwenk et al., 2017). For each protein isoform, the most
complete in terms of exons was included.

However, the user can upload and use any proteome
respecting the above-mentioned header format and perform
manually the biological interpretation, using the BioInfoMiner
module available on the PepSimili server. The functional
analysis currently supports Homo sapiens, Mus Musculus, Rattus
norvegicus, Gallus gallus, Sus scrofa, Danio rerio, Drosophila
melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana.

Test Repertoire Size
We mentioned the necessity of a Test repertoire with more than
40000 unique sequences in order to generate optimal results
from our tool. It is possible to generate partial results for smaller
repertoires, which are often obtained for relatively simple target
systems (assuming fewer binding sites). A satellite script named
Sat_scoring is provided, using as input a profile file, preferably the
T-M-C one, and producing a table of m-scored proteins.

Graph-Based Biological Interpretation
BioInfoMiner algorithm uses protein annotations and ontologies
as a starting point for functional and pathway analysis with
statistical and graph-theoretic methods (Chatziioannou and
Moulos, 2011; Moutselos et al., 2011; Pilalis and Chatziioannou,
2013; Koutsandreas et al., 2016). The algorithm comprises two
main steps:

Ontological Process and Pathway Prioritization
The algorithm employs a combination of a parametric
(Hypergeometric) and a non-parametric statistical test
(bootstrap resampling). Initially the Hypergeometric test is
used to assess the over-representation and initial ranking of
annotation terms in the input gene list. This ranking is corrected
by performing bootstrapping as an alternative to multiple test
correction methods (Bonferroni, FDR), thus avoiding false
assumptions about the distribution of p-values. Instead of
adjusting the p-values, the bootstrapping algorithm reorders the
initial distribution and prioritizes the less frequently observed
enrichments which tend to represent broader pathways or
functions and, thus, are of stronger biological content (Pilalis
and Chatziioannou, 2013; Pilalis et al., 2015).

Gene/Protein Prioritization
Gene prioritization is performed by a graph-theoretical approach
that exploits an ontological direct acyclic graph structure to
detect and rank genes according to their impact as linkers in
the topology of that graph (Moutselos et al., 2011; Koutsandreas
et al., 2016), using semantic measure techniques. As background
graphs, are used variations of the following ontologies and
hierarchical pathways, corrected for inconsistencies (annotation
bias, information content imbalance, gaps): Gene Ontology,
Reactome, MGI Mammalian Phenotype Ontology (annotation of
Human genes) and Human Phenotype Ontology (HPO).

The extracted ranked list of systemic processes and/or
pathways, reflects the underlying components involved in the
manifestation of the investigated phenotype, and provides a
descriptive snapshot that links and integrates the examined
individual genes into broader functional, indispensable modules
that shape the cellular phenotype. The master regulatory genes
and their respective protein products are ranked according to
their contribution to the systemic processes.

RESULTS

Galaxy-Based Tool for Integrated
Analysis of Phage Display Data
The Galaxy instance of PepSimili is available at http://pepsimili.e-
nios.com:8080. The tool is easily accessible in the left-hand menu
(“Tools”), under the section pepSimili. There are two additional
tool sections, PepSimili tools and PepSimili subworkflows,
which comprise the collection of satellite/intermediary scripts
and partial worklows for mapping repertoires and scoring
proteins, respectively.

PepSimili main input and outputs are shown in Figure 2.
The tool accepts a Test and a Control repertoire, the amino-
acid frequencies of the phage display library, the homology and
confidence cut-offs and the p-values for the enrichment analysis
(see section “Materials and Methods”) (Figure 2A). All steps are
executed automatically, including the biological interpretation.

In Figures 2B,C are shown screenshots of, respectively, the
output proteins with their m-scores, and an example of a
file reporting peptide hits, including their headers, total hit
similarity and the list of peptides matching the protein sequence,
including additional details and metrics for each peptide (see
Materials and Methods).

In Figure 2D is shown a heatmap, depicting the mapping
of prioritized genes to systemic processes. The rank of each
gene depends on the number of processes to which a gene
participates. The more processes a gene is mapped to, the higher
its rank is, highlighting its importance as a regulatory hub on the
ontological network.

Figure 3 shows the peptide mappings on a segment of a
protein (WASF1, see Case Study further below), also illustrating
the calculation of the aah-score at each position, which is defined
as the sum of the total peptide matches.

Case Study
We present a case study using published data of phage display
repertoires (Brinton et al., 2016). We used two of the described
repertoires. Both were selected in vitro, on HUVEC cells
that were cultured either in normal medium (Control) or in
tumor conditioned medium (tcm) by tumoral cells (pancreatic
adenocarcinoma, PDAC), which is serving as Test. The two
samples of cultured cells were separately used for the biopanning
with a combinatorial library of cyclic 7mers on phage display. In
these studies, the recombinant portion of the pIII of the phage
was amplified by PCR and used as template for deep sequencing.
The aim of the study was to identify binders specific of the
tcm-treated endothelial cells, expecting that their targets would
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FIGURE 2 | PepSimili main input and outputs. (A) The input form of the PepSimili automated workflow. Confidence level refers to the z-score cut-off, (B) output
proteins, ranked by m-score, (C) output tabular file reporting the hits, (D) a heatmap visualizing the mapping of prioritized genes (x axis) to systemic
processes (y axis).
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FIGURE 3 | Mappings on a small portion of the WASF1 protein. The profile of the mappings of the HUVEC_tcm peptides (HUVEC under tumor conditioned medium)
on the WASF1 protein is shown here, between residues 246 and 266. The x-axis presents the sequence, the y-axis the amino acid hits. Insert (a) shows the position
of this particular stretch on the complete profile of the protein (red peek). Insert (b) shows in the first row the amino acid sequence, in second row the position of the
amino acids and in third row the total aah per residue. Further below are shown the 13 peptides defining this stretch, positioned in frame with their similar sequence
on the protein.

be also expressed in vivo by cells in the microenvironment of
cancerous tumors. Pepsimili extends the scope of the study to
the identification of proteins with subsequences similar to the
selected peptides. The full run is online available at http://pepsee.
e-nios.com:8080/u/avek/h/example-huvectcm-vs-huvec.

Table 1 summarizes the genes prioritized by the BioInfoMiner
algorithm using Gene Ontology and Reactome pathways. The
gene prioritization results are shown in Supplementary Table 1
(GO) and Supplementary Table 2 (Reactome). Interestingly,
the highest ranked genes include known markers of PDAC,
such as WASL (Wiskott-Aldrich syndrome like) (Wei et al.,
2012) and other WAS-associated proteins like WASF1, WASF2,
WAS and WIPF1. Wiskott-Aldrich syndrome (WAS) is a
rare X-linked primary immunodeficiency characterized by
microthrombocytopenia, eczema, recurrent infections, and an
increased incidence of autoimmunity and malignancies (Massaad
et al., 2013). FGF10 induces migration and invasion in pancreatic
cancer cells through interaction with FGFR2, resulting in a
poor prognosis, thus FGF10/FGFR2 signaling is a promising
target for new molecular therapy against pancreatic cancer
(Nomura et al., 2008).

The main biological processes derived by BioInfoMiner
(Supplementary Table 3) include Arp2/3 complex-mediated

actin nucleation and actin polymerization, involved in
multigeneration of dendritic protrusions for 3-dimensional
cancer cell migration (Giri et al., 2013).

Prioritized Reactome pathways are shown in Supplementary
Table 4. The results highlight activation of RHO GTPases,
which results in formation of actin stress fibers, lamellipodia
and filopodia through interaction with members of the Wiskott-
Aldrich Syndrome Protein (WASP) (Vega and Ridley, 2008).
In addition, the results indicate increased FGFR signaling, the
inhibition of which achieved significant anti-cancer effects in
pancreatic cancer (Zhang et al., 2014). Fukushima et al. (2015)
showed that loss of free fatty acid receptor FFAR1 in pancreatic
cancer cells promoted migration.

These results constitute an accurate and comprehensive
interpretation of the underlying molecular complexity,
describing the landscape of the molecular interactions captured
by the set of mimicked proteins, derived from the Phage Display
experiment. Supplementary Figures 5, 6 show the extracted
networks, through projection on GO Biological Processes and
Reactome Pathway hierarchical structures, respectively. The
prioritized genes (Table 1 and Supplementary Tables 1, 2)
constitute master regulators based on the topology of these
networks, as they have a pivotal role in mediating the cross

Frontiers in Physiology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 1160

http://pepsee.e-nios.com:8080/u/avek/h/example-huvectcm-vs-huvec
http://pepsee.e-nios.com:8080/u/avek/h/example-huvectcm-vs-huvec
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01160 September 23, 2019 Time: 16:33 # 8

Vekris et al. NGS-Phage Display Data Analysis

TABLE 1 | Summary of the genes prioritized by BioInfoMiner (GO and Reactome).

Gene
symbol

GO
ranking

Reactome
ranking

Description

WASL 1 6 Wiskott-Aldrich syndrome like

FGF10 2 13 fibroblast growth factor 10

WASF2 4 11 WAS protein family member 2

FGF4 8 9 fibroblast growth factor 4

FFAR2 15 4 free fatty acid receptor 2

NKX6-1 3 19 NK6 homeobox 1

WASF1 12 10 WAS protein family member 1

FFAR1 10 17 free fatty acid receptor 1

CLDN17 1 claudin 17

GRSF1 2 G-rich RNA sequence binding factor 1

RPL4 3 ribosomal protein L4

APLN 5 apelin

CD247 5 CD247 molecule

CCL19 6 C-C motif chemokine ligand 19

FBLIM1 7 filamin binding LIM protein 1

HPN 7 hepsin

RPS16 8 ribosomal protein S16

CEBPB 9 CCAAT/enhancer binding protein beta

FMN1 11 formin 1

CLDN2 12 claudin 2

IST1 13 IST1 ESCRT-III associated factor

RPS4Y1 14 ribosomal protein S4 Y-linked 1

VPS4B 14 vacuolar protein sorting 4 homolog B

RPS4X 15 ribosomal protein S4 X-linked

FGF5 16 fibroblast growth factor 5

SOCS7 16 suppressor of cytokine signaling 7

ACVR2A 17 activin A receptor type 2A

EDN1 18 endothelin 1

WAS 18 Wiskott–Aldrich syndrome

FGB 19 fibrinogen beta chain

ANG 20 angiogenin

PDE4D 20 phosphodiesterase 4D

IRS4 21 insulin receptor substrate 4

ZYX 21 zyxin

HOXB2 22 homeobox B2

KRT14 22 keratin 14

WIPF1 23 WAS/WASL interacting protein family
member 1

In columns 2 and 3 the rank of each gene according to the GO terms and the
Reactome pathways, respectively, is presented and color coded using a gradient
from red to yellow. The table is sorted for increasing sum of the two ranks.
Supplementary Tables 1, 2 correspond to the original outputs of BioInfoMiner.

talking between distinct biological processes. This feature
is illustrated in Supplementary Figure 7, which shows a
more compact view of the projection of mimicked proteins
on the GO corpus. Systemic processes were derived from
semantic clustering of the enriched terms. The prioritized
genes are regulators of distinct key processes underlying the
PDAC pathology, such as Arp2/3 complex-mediated actin
nucleation, Rho protein signal transduction, endothelial cell
proliferation, endosome organization, fatty acid signaling

and lipopolysaccharide signaling, neutrophil chemotaxis and
microtubule polymerization. The oligopeptides mimicking the
prioritized protein products can be easily retrieved through the
Galaxy interface for further evaluation.

Overall, the present study showcases the capability of the
integrative workflow for derivation and selection of biologically
active peptides from complex Phage Display experiments,
through effective filtering and comprehensive mapping of peptide
repertoires on ontological networks and pathways.

DISCUSSION

Phage display coupled with NGS has been introduced almost
10 years ago, thus changing the way of how selected phage
repertoires are perceived and analyzed. Deep sequencing
techniques provide a global characterization of phage display
libraries and selected repertoires, increasing the resolution depth
and the potential of the phage display technology for the
discovery of target molecules, through the identification of
consensus motifs. Today, even the most complex repertoires of
selected peptides, usually obtained by in vivo selections, can be
sampled to obtain a detailed view of their composition and to
monitor the progress of the enrichment of specific sequences
after each selection/amplification cycle. NGS facilities are easily
accessible by the experimentalist and can cover all the steps from
the amplification of the DNA of the phages to the delivery of the
raw reads in fastq format.

However, the development of analytical tools and strategies is
far less advanced. Most software solutions have been in-house
developed and not made widely available, by using standard,
generic sequence comparison techniques, such as BLAST, or they
had a limited scope such as PhastPep (Brinton et al., 2016) taking
into account only identical sequences to compare repertoires.

Computational tools for Phage Display data analysis include
RELIC (Mandava et al., 2004), PEPTIDE (Pizzi et al., 1995),
SiteLight (Halperin et al., 2003), and SLiMFinder (Edwards
et al., 2007), which enable sequence alignment and motif
detection. However, these tools were designed for small-
scale analyses, whereas deeper characterization emerged as a
necessity with the advent of NGS techniques. For this purpose,
newer methodologies have been developed for high throughput
data processing and detection of consensus sequences (Fowler
et al., 2011; Alam et al., 2015; Reich et al., 2015), although
these techniques did not address the issue of selectivity and
comparison among different physiological conditions. This
particular problem was addressed by PHASTpep (Brinton et al.,
2016), a MATLAB-based tool, which enables differential analysis
and selection of peptides that discriminate among different
cellular states. PepSimili combines selectivity and network-
based functional analysis for prioritization of targets and
derivation of biomarkers.

In addition, little has been done to help identifying the
spectrum of proteins that are potentially mimicked by the
plethora of selected peptides, and to aid in the elucidation of
the biological circuits, on which the selection is made. Such
information is particularly interesting for biopanning performed
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in tissues or in vivo, where the complexity of the obtained
repertoires reflects the complexity of the biological process
under investigation.

In this work, we present a novel strategy based on the
identification of proteins containing regions similar to selected
peptides obtained by phage display screening. Through their
binding to their targets, these peptides are supposed to mimic
functional domains of the identified proteins and protein regions.
Indeed, most phage displayed peptide selections are originally
intended to be used to analyze the repertoires resulting from
screenings in complex systems, at least as complex as cell
cultures. The presented strategy integrates furthermore the
analysis of the retained proteins into a biologically meaningful
signal. In contrast to other approaches, PepSimili does not
take into account, in the first steps of analysis, the abundance
of individual peptides in the repertoires. This is due to the
fact that this metric can be greatly affected by the bias of
preferential replication of a phage during amplification and
the abundance of the target in the system under study, both
factors that minimize the interest of its use. However, the
abundance of each peptide is reported for mere convenience, in
the final results.

Computational derivation of a set of proteins, with domains
mimicked by the peptides, can also be helpful for the
identification of the targets against which the peptides were
selected, while studying their natural binders, as described
in interactome databases. In complex systems, for which the
peptides or protein domains were identified by our analysis, with
the intention to be used as targeting tools for the homing of
either therapeutic molecules or imaging agents, it is important
to exclude those reacting with targets on healthy tissues. Usually,
experimental strategies include the selection of peptides in a
system as close as possible to the Test system, to produce a
Control repertoire. In the example presented here, the Test
system being endothelial cells cultured in tumor conditioned
medium, is compared to the Control system being the same cells
cultured in fresh medium. Such experimental design favors the
identification of targeting molecules that would be specific of
the Test system and absent from the Control. Obviously in vivo
selections are preferable, in order to take into account all potential
binding sites of the target molecules, being however far from
trivial to be performed, in many cases.

Any set of random peptides presents similarities with the
peptides of a set of proteins. It is, therefore, important to
be able to evaluate this background noise, which sets an
important informational bias confounding the interpretation,
and subtract it from the signals obtained by a set of selected
peptides, as shown in Supplementary Figure 4. In PepSimili,
this background noise is systematically subtracted from the
signal obtained by the Test repertoire. The approach is
general enough and applicable to other high-throughput systems
that generate massive peptide repertoires and thus necessitate
systematic evaluation and elimination of the background noise.
For instance, recently was reported an integrated bacterial
system for the discovery of chemical rescuers of disease-
associated protein misfolding, which enables massive screening
of cyclic oligopeptides with potential pharmacological action

against neurodegenerative diseases (Matis et al., 2017). In
this system, large combinatorial libraries are biosynthesized in
E. coli cells and simultaneously screened for their ability to
rescue pathogenic protein misfolding and aggregation, using
an ultrahigh-throughput fluorescence-based genetic assay. The
high-throughput assay can generate combinatorial libraries of
up to 108 random peptide sequences. Eventually, coupled with
deep sequencing for acquisition of the expressed sequences
and in vitro validation (Matis et al., 2017), the system derives
repertoires of potentially bioactive peptides orders of magnitude
smaller (102–104). However, further in silico screening of the
oligopeptide repertoires using PepSimili may, on one hand,
dramatically reduce the number of candidate oligopeptides, and
on the other hand provide a rational basis for peptide selection
based on their functional interpretation in terms of impacted
biological mechanisms.

Importantly, our methodology enables a systems-level
interpretation, through streamlined mapping of the selected
mimicked proteins to ontological and pathway networks,
providing actionable insights. The BioInfoMiner module derives
a small set of orthogonal, systemic processes, accompanied by
the respective master regulatory genes linked with a significant
part of them, altogether constituting a biomarker signature
with actionable potential for clinical, therapeutic or diagnostic
processes. Our study demonstrates the efficacy of this integrative
workflow using public Phage Display data. Indeed, the tool
automatically derived and prioritized key regulators and
systemic processes underlying the PDAC pathology. Another
potential application area of our approach is the field of
Metagenomics, where computational platforms are being
constantly developed for analysis, management and annotation
of large-scale sequence data (Kunin et al., 2008; Lugli et al.,
2016; Koutsandreas et al., 2019). Metagenomic analyses generate
massive sequence data, including large amounts of partial or
incomplete peptide sequences, stressing the necessity for more
efficient annotation methodologies. Our approach that combines
massive mapping of peptides to functional networks may enable
a more efficient interpretation of the genomic information in the
metagenomics content.

Finally, PepSimili is presented in a user-friendly environment,
Galaxy, as an integrated tool that performs a complete analysis at
a push of a button. A collection of satellite scripts and workflows
is also provided, to propose tentative discovery paths that can
be followed to complement the actual results, intending to
encourage power users to develop, and share with the community
new tools/scripts, adding to our work. This implementation
facilitates the development of future extensions of the workflow
and, importantly, the adaptation of the methodology to other
high-throughput technologies, as mentioned above.
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