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Abstract

Background: Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma
surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating
the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the
cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in
expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional
consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of
tumor invasion.

Principal Findings: Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant
expression of palladin and the myofibroblast marker, alpha smooth muscle actin (a-SMA), occurs early at the dysplastic
stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous
90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as
marked by induction of a-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin
expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels
through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of
invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in
fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells.

Conclusions: Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of
these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can
be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated
fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.
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Introduction

Fibroblasts play a pivotal role in cancer invasion, metastasis,

and chemoresistance [1–7]. Cancer-associated fibroblasts are

myofibroblasts with contractile properties and alpha-smooth

muscle actin (a-SMA) staining is a hallmark of these cells [8].

The mechanism by which myofibroblasts enhance tumorigenesis is

underscored by three key studies that reveal: 1) cancer-associated

fibroblasts chaperone the cancer cells from the primary site into

the metastatic niche 2) blocking the activated fibroblasts before

tumor invasion initiates can prevent cancer; but stopping the

myofibroblasts after invasion has started is too late to prevent

cancer and 3) therapeutic treatment of pancreatic cancer that

reduces the cancer-associated fibroblasts is more effective in

prolonging survival than standard chemotherapy that targets only

the cancer cells [9–11].

The 90 kD isoform of palladin, an embryonic and cytoskeletal

protein vital to cell motility, is overexpressed in the cancer-

associated fibroblasts of a multitude of tumor types including

pancreas, breast, lung, kidney, and ovary but is expressed at lower

levels in normal stromal fibroblasts [12–15]. Palladin-expressing

fibroblasts are also found adjacent to cancer cells in lymph node

and liver metastases [12]. Dysregulation of palladin from cultured

cells results in aberrant actin organization, dysregulated cell

adhesion and motility, and gross disruption of cell morphology

[16–20]. Not surprisingly, palladin has been detected in expression

screens for invasion-specific genes in pancreatic and breast cancer

[21,22].
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An interesting association between cancer-associated fibroblasts

and palladin in the setting of pancreatic cancer has come to light.

We have reported a highly penetrant, rare form of familial

pancreatic cancer (Family X) that is caused by a mutation in a

highly conserved region of 90 kD palladin. This mutation induces

cytoskeletal abnormalities and enhances migration when trans-

fected into cells that normally express minimal amounts of the

90 kD palladin isoform [19]. It was intriguing to find that the

palladin protein is overexpressed preferentially and ubiquitously in

the stromal compartment of pancreatic cancer rather than the

ductal epithelial cells [12,23].

The fundamental role of palladin in cell motility and the rising

awareness that activated fibroblasts can actually partner with

cancer cells to promote invasion and metastasis led to these

investigations. Herein, using pancreatic cancer as a model, we

unravel 1) when in neoplastic progression does palladin activate

fibroblasts, 2) the mechanism underlying the transition of the normal

fibroblast into an activated myofibroblast in the setting of cancer

and 3) how the myofibroblast could aid the cancer cells to escape.

In addition, we also explored the effects of an inherited mutated

90 kD palladin in the fibroblasts of a kindred predisposed to

pancreatic cancer (Family X or FX). Could a palladin-mutated

stromal fibroblast initiate cancer?

Results

Palladin expression in tumor-associated fibroblasts
occurs early in neoplastic progression and co-localizes
with a-SMA in human pancreatic cancer

Immunohistochemical (IHC) staining of myofibroblast marker,

a-SMA, and 90 kD palladin were performed concomitantly on

human tissue microarray blocks containing all histological stages of

human pancreatic cancer including precancerous lesions (Figure 1).

Normal pancreas lacked 90 kD palladin protein expression except

Figure 1. 90 kD palladin and a-SMA staining increase with progression of pancreatic tumorigenesis. A) Expression of palladin and a-
SMA was examined via IHC staining in pancreas specimens. Left: there is little to no staining in normal pancreas. Middle: expression increases in the
peri-tumoral fibroblasts of pancreatic dysplasia or PanIN 2. Right: expression is highest and most widespread in the fibroblasts surrounding pancreatic
cancer. B) Semi-quantitative readings provide IHC scores for tissue microarray staining of normal (NL), low-grade dysplasia (PanIN 2), high-grade
dysplasia (PanIN 3) and cancer (CA) by palladin and a-SMA. Staining of palladin or a-SMA was scored as 0 to 4. See also Table S1.
doi:10.1371/journal.pone.0030219.g001
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in the lining of the endothelial cells. By contrast, 90 kD palladin

expression increased with neoplastic progression in the pre-

cancerous dysplastic lesions and the most striking feature was that

palladin staining was limited to the fibroblasts immediately

adjacent to the dysplastic ductal cells (Figure 1). In pancreatic

cancer, diffuse and strong palladin expression was observed

throughout the stroma, particularly in the area surrounding the

adenocarcinoma cells, in agreement with by previous reports

[12,23]. Expression of a-SMA in the cancer stroma closely

paralleled that of palladin as previously reported in renal cell

carcinoma [15]. Co-expression of a-SMA and palladin in the

fibroblasts surrounding the pre-cancerous lesions suggests that the

myofibroblast phenotype is activated early in neoplastic progres-

sion and becomes more widespread in cancer.

Palladin up-regulates a-SMA and activates fibroblasts to
become myofibroblasts

Based on the protein expression of palladin and a-SMA in peri-

tumoral fibroblasts, we sought to unravel the relationship between

these proteins. Palladin is markedly up-regulated during the

fibroblast-to-myofibroblast transition following treatment with

TGF-b1 [4] as is a-SMA [3]. In vascular smooth muscle cells,

palladin expression is required for a-SMA upregulation [24,25].

We wondered what regulatory effect these two myofibroblast-

associated proteins could have upon each other and the

myofibroblast phenotype (see data below). Transfection of the

90 kD isoform of wild-type (WT) or mutant P239S (FX) palladin

into normal human dermal fibroblasts (HDFs) up-regulates

myofibroblast markers, a-SMA and vimentin, and is sufficient to

trigger a myofibroblast phenotype following palladin induction. By

day 5 post-palladin transfection, a-SMA is significantly elevated

(27.4%62.8%) and even further increased by day 9 (79%615.7%)

(Figure 2). Transfection of palladin also resulted in upregulation of

11 myofibroblast contractile proteins reported by Malstrom et al.

[26] (including cofilin, vimentin, profilin, caldesmon, tropomyosin,

alpha enolase, beta actin, tubulin, Rho GTP dissociation inhibitor

1, calponin, and peptidyl-prolyl cis-trans isomerase A). This

proteomics analysis is discussed in greater detail later.

Palladin-activated fibroblasts develop a myofibroblast
phenotype

Introduction of 90 kD palladin (WT or FX) into HDF cells

(subsequently referred to as HDF-WT or HDF-FX) resulted in

alterations to the cellular morphology (Figure 3A). Under normal

growth conditions (with complete media), palladin-expressing

fibroblasts demonstrated a decrease in cell area, and an increase

in thin cellular protrusions with spike-like appendages compared

to the parental control cells. Cytoskeletal changes included both

lengthening and thickening/bundling of actin stress fibers

(Figure 3A). Thin cellular protrusions with spike-like appendages

are visible by electron microscopy in the palladin-expressing

fibroblasts (Figure 3B). Because many cancers form in an

inflammatory setting, and because cancer is considered the wound

that doesn’t heal [27], we also examined the palladin-expressing

fibroblasts after incubation in wounding media (conditioned media

from fibroblasts that were wounded with a pipette tip) to

Figure 2. Palladin expression is sufficient to induce normal human dermal fibroblasts (HDF) cells to become myofibroblasts. A) HDF
cells transfected with 90 kD palladin (WT or FX) or empty vector (EV) were examined for the myofibroblast markers a-SMA and vimentin via IF.
Red =a-SMA or vimentin; Blue = DAPI. B) HDF cells were treated as above in (A) and the expression of a-SMA was analyzed by RT-PCR. RNA was
harvested at the number of days indicated post-transfection. C) Expression of a-SMA was analyzed by RT-PCR. GAPDH was used as an internal loading
control and the relative expression of each sample versus TGF-b1 treated samples were plotted as fold induction 6 SD.
doi:10.1371/journal.pone.0030219.g002
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determine if further changes were notable (Figure 3A). The

morphologic changes were markedly enhanced compared to the

empty-vector control fibroblasts (Figure 3C). The cells developed a

more fusiform or mesenchymal shape with long thin protrusions

compared to the empty-vector control fibroblasts (Figure 3C).

Palladin-expressing fibroblasts plus a stimulatory trigger
enhances invasive and migratory behavior

We next asked whether 90 kD palladin expression would affect

the migration and/or invasive capacity of fibroblasts. Migration

was tested using a transwell system where the cells can traverse

directly through pores from an upper chamber to a lower

chamber. Invasion was tested using a Matrigel-coated transwell.

Assay results were compared for incubation with complete media,

wounding media (conditioned media collected from confluent

HDF cells manually wounded with a pipet tip), or conditioned

media from Panc-1 epithelial cells. Previous studies have shown

that exposure of cells to wounding media, increases the migration

rate of epithelial cells [28]. In agreement with recent studies

showing anti-migratory effects of palladin expression in breast

cancer cells [29], in the absence of a wounding signal, palladin-

activated fibroblasts did not have enhanced migration or

invasion. However, a wounding signal dramatically increased

the migration and the invasive capacity of palladin-activated

fibroblasts (WT and FX) compared to empty vector control

(HDF-EV) (Figures 4A & 4B). While epidermal growth factor

(EGF) had a similar result on the cells as wounded media (data

not shown), incubation with conditioned media from pancreatic

cancer cells (Panc-1) did not enhance the invasiveness of palladin-

expressing cells (Figure 4B).

To verify whether palladin-expressing cells were capable of

degrading extracellular matrix, HDF-EV, HDF-WT, and HDF-

FX were grown on coverslips coated with fluorescently-labeled

gelatin. In the presence of wounding media, gelatin bundling was

observed and the gelatin surface was destroyed by the palladin-

expressing HDF-WT or HDF-FX cells, but not the normal

parental HDF-EV (Figure 4C). These destructive changes are

much more dramatic and widespread than would normally be

expected with invadopodia alone. We wondered if the palladin-

induced myofibroblasts had enhanced contractility that could

cause a ‘‘ripping’’ of the matrix. To answer this, we investigated

whether RhoA, a protein involved in cytoskeletal movement and

remodeling [30], was activated in the palladin-expressing cells and

found that RhoA levels were increased nearly 2-fold (Figure 4D).

This suggests that exogenous palladin expression promotes the

ability of myofibroblasts to both invade and destroy extracellular

matrix (Figure 4C). The invasive effects of wounding media and

EGF on palladin-expressing fibroblasts were not due to a

difference in proliferation rates (Figure 4E).

Previous investigators have suggested that tumor-associated

fibroblasts may lead cancer cells through the extracellular matrix

[31]. We queried whether the palladin-activated fibroblasts could

fit that paradigm. To examine this hypothesis, we performed 3D

invasion assays using slides developed by Bellbrook Labs

(Figure 5A). Two circular wells were connected by a central

straight channel of 1 mm61.8 mm. The channel was filled diluted

Figure 3. Morphological changes in palladin-expressing fibroblasts with and without exposure to wounding media. A) HDF
transfected with WT-palladin (WT) or FX-palladin (FX) were compared to empty vector (EV) using IF analysis of phalloidin stained cells grown in
complete media or wounding media. B) Phalloidin-stained HDF-WT cell protrusion was magnified by electron micrography (inset). C) HDF were
treated as above in (A) and cultured in wounding media. Phalloidin stained cells were analyzed by IF. Plots illustrate the relative surface area of cells
(top) and average length of protrusions (bottom). Data are representative of two independent experiments; values are expressed as the mean 6 SEM.
(t-test, *, p-value,0.05; **, p-value,0.01).
doi:10.1371/journal.pone.0030219.g003
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fluorescent matrigel; EGF was added to the well on one side of the

channel as an attractant and HDF or palladin-activated HDF were

loaded into the opposite well. Cell invasion into the matrigel-filled

channel was assessed at 12 hour intervals as fibroblasts moved

toward the attractant. In agreement with our transwell invasion

assays, palladin-activated fibroblasts invaded the channels more

quickly and migrated across the channel in significantly greater

numbers than control fibroblasts (Figure 5B). Even with extended

time, none of the HDF cells without palladin were able to cross the

channel. In contrast, the palladin-activated fibroblasts completely

crossed the 1 mm channel by 72 hours, creating tunnels that were

used by other activated fibroblasts that followed behind. The black

tunnels created by the palladin-activated fibroblasts are quite

clearly seen in the fluorescent-red channel of the 3D invasion

chamber (Figure 5C). In addition to the extensive tunneling

created by the palladin-activated fibroblasts toward the attractant,

the palladin-containing cells appeared to have better directional

movement towards the EGF attractant than the control cells

Figure 4. Palladin and a stimulatory trigger enhance HDF cell migration, invasion, and degradation of extracellular matrix. A)
Migration across a transwell was compared for HDF transfected with empty vector (EV), WT-palladin (WT), FX-palladin (FX) when exposed to normal
complete media or wounding media. Data shown is representative average 6 SEM of three independent experiments. (t-test, *, p-value,0.05) B)
Invasion across a matrigel-covered transwell was compared for HDF cells treated as above in (A) when exposed to complete media, wounding media,
or conditioned media from Panc-1 cells. Data shown is representative average 6 SEM of three independent experiments. (t-test, **, p-value,0.01) C)
HDF cells were transfected as above in (A) and plated onto coverslips coated with Texas Red-labeled gelatin. Representative images taken via IF are
shown. DAPI (blue) was used to visualize nuclei. D) Protein lysates from HDF cells transfected as above in (A) were tested for RhoA activity. Each
sample was run in triplicate in two independent experiments. Error bars indicate SD. (t-test, **, p-value,0.01) E) Proliferation assay of HDF cells
transfected as above in (A). Data indicates mean 6 SD for three independent wells.
doi:10.1371/journal.pone.0030219.g004

Palladin Activates Cancer-Associated Stroma

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30219



(Figure 5B); the latter frequently circled back to the home well

where they started.

Panc-1 cells were added one day after the fibroblasts to evaluate

whether these epithelial cells would make use of the tunnels

previously created by the invading fibroblasts. Indeed, we were

able to identify Panc-1 cells following the palladin-activated

fibroblast cells through the tunnels (Figure 5D). Palladin-activated

fibroblasts had a direct influence on the behavior and appearance

of the Panc-1 pancreatic cancer epithelial cells. After co-culture of

Panc-1 and palladin-activated fibroblasts cells in the home well of

the 3D-invasion slides, the Panc-1 cancer cells migrated a much

further distance– some completely crossing the channel– while the

control palladin-free co-cultures revealed the Panc-1 cells barely

leaving the home well. In addition, in the presence of palladin-

activated fibroblasts, the Panc-1 cells developed an elongated

appearance (Figure 5D).

Palladin promotes invasion through the development of
invadopodia filled with matrix-destroying enzymes

To unravel the mechanism underlying the invasive capability

of the palladin-expressing fibroblasts, we examined the ‘‘feet’’ of

the palladin-activated fibroblasts, which had become more

prominent with the transition into myofibroblasts (Figure 3B).

HDF, transfected with and without palladin, were plated on

Figure 5. Palladin-activated fibroblasts lead Panc-1 cells through the extracellular matrix. A) Schematic of 3-D invasion assay showing
Texas Red labeled gelatin/matrigel mixture in the channel with 5 ng/ml EGF as an attractant in the left port and cells (HDF 6 palladin labeled with
QTracker 585 with or without Panc-1 labeled with QTracker655) seeded into the right port. Cell movement was evaluated as cells traversed the
channel (right to left directional movement) using confocal microscopy. B) Palladin-activated fibroblasts (green) invade further into the red matrigel
channel at all time points tested (24 and 72 hours) (Right panels) compared to HDF with EV (Left panels). Representative images taken with confocal
microscopy are shown. Bars indicate 100 mm. C) The yellow boxed region is shown at higher magnification to the right. top, Red matrigel is uniform
in the empty channel prior to invasion. middle, Palladin-activated fibroblasts (green fluorescence emission) created black tunnels (devoid of Texas Red
signal; see arrow) within the matrix. Bottom, Fibroblasts (white phalloidin stain) can move single file through the tunnels. Shown are representative
images taken with confocal microscopy. Bars indicate 50 mm. D) Panc-1 cells (pink; see arrowheads) follow palladin-activated fibroblasts (white)
through the channel while they do not follow the HDF-EV. Shown are representative images taken with confocal microscopy 72 hours after co-
culture. Channels were fixed and stained with DAPI.
doi:10.1371/journal.pone.0030219.g005
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Matrigel-coated transwells. Although the pore size of the

transwell was too small for an entire cell to go through, it could

accommodate the podosomes, which had to first penetrate the

Matrigel layer (Figure 6A). The invadopodia/podosomes that

invaded through the matrix-covered pores were severed from the

cell body with a razor. Labeled quantitative proteomic analysis

was used to compare the proteins in the ‘‘feet’’ from palladin-

expressing fibroblasts relative to the ‘‘feet’’ from the normal

parental fibroblasts. Proteomic analysis revealed that over 200

proteins were dysregulated by $1.5 fold in the ‘‘feet’’ of

palladin-expressing fibroblasts relative to those of labeled control

cells. These dysregulated proteins including invadopodia pro-

teins [30,32,33], ras related and GTP binding proteins, and

proteolytic enzymes, (selected proteins, see Figure 6B; for

complete list, see Table S2). We were particularly interested in

the invadopodia proteins, including cortactin, filamin A, beta-

integrin 1, vinculin, profilin, alpha-actinin, and cofilin [32,33].

Nearly half of the up-regulated proteins identified in our

Figure 6. Palladin-activated fibroblasts use invadopodia to degrade extracellular matrix. A) The underside of a 3 mm transwell shows
podosomes/invadopodia from an HDF-WT fibroblast that has invaded through the matrigel via IF. The ‘‘feet’’ were severed with a razor for proteomic
analysis. B) HDF cells transfected with GFP-empty vector (EV) or GFP-wildtype palladin (WT) were examined with phalloidin staining via IF. Palladin-
expressing fibroblasts have linear protrusions (arrowheads) filled with proteases and lysozymes such as Cathepsin D. Shown are representative
images. C) Proteomic analysis of the ‘‘feet’’ reveals overexpression of proteolytic enzymes, Rho activation proteins, and verifies the presence of
proteins previously identified in invadopodia. Shown are protein ratios from fibroblasts with WT or FX palladin relative to empty vector. See also
Table S2. D) HDF cells transfected with wildtype palladin were grown on matrigel covered coverslips. Erosive degraded tracks were detected via
electron microscopy. Bar indicates 1 mm.
doi:10.1371/journal.pone.0030219.g006
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proteomic analysis were recently reported as novel invadopodia

components [34].

Quantitative proteomic analysis revealed up-regulation of the

palladin-binding protein, alpha-actinin which is another invado-

podia-related protein that has been associated with poor prognosis

in ovarian and pancreas [35,36]. The marked increase of alpha-

actinin in the stroma of the pancreatic cancer and pre-cancer was

validated by IHC (Figure S1). Validation of the increased

expression of selected invadopodia proteins –cofilin, cortactin,

and profilin–detected by the proteomics analysis was performed by

immunofluorescence and/or Western blot analysis (Figure S2).

In addition to invadopodia proteins, proteolytic enzymes were

also up-regulated in the ‘‘feet’’ of palladin-expressing fibroblasts

including ADAM22, aminopeptidases, and cathepsin D and B

(Figure 6C). Immunofluorescent staining of the cathepsin D,

confirmed that the protein is selectively overexpressed in the HDF-

FX and WT cells, but not in the parental fibroblasts with empty

vector (Figure 6C). Interestingly, cathepsin D has been shown to

stimulate fibroblast invasion and outgrowth and is reportedly

involved in paracrine interactions between tumor epithelium and

fibroblasts [37]. In addition to the expression of proteolytic and

matrix-remodeling proteins, destruction of matrigel by the

palladin-expressing HDF-WT cells is evident by electron micros-

copy (Figure 6D).

Palladin is up-regulated in fibroblasts by the adjacent k-
ras activated epithelial cells

Palladin is generally not mutated in sporadic pancreatic cancer

(data not shown) or in familial pancreatic cancers, other than

Family X [38–41]. Yet expression of 90 kD palladin has been

reported in the fibroblasts that surrounded pancreatic dysplastic or

cancerous ductal cells in 96% of pancreatic cancers, while the

fibroblasts that surround normal ductal cells do not [12,23]

(Figure 1). We hypothesized that paracrine signaling between the

cancerous epithelial cells and fibroblasts was likely responsible for

the up-regulation of palladin expression in the fibroblasts,

eventually turning them into tumor-associated myofibroblasts.

To test this hypothesis, normal human fibroblasts were co-cultured

in a transwell with immortalized normal pancreatic ductal cells

(HPDE cells) and with pancreatic ductal cancer cell lines which

have k-ras mutations (MiaPaCa and Panc-1). By day 5 of co-

culture, palladin was up-regulated in the fibroblasts adjacent to

both of the pancreatic cancer ductal cell lines (Figure 7A). By

comparison, normal fibroblasts that were adjacent to normal

pancreatic ductal cells did not express palladin (Figure 7B).

Next we wondered what the signal was from the cancer cells

that would up-regulate palladin in adjacent fibroblasts? In light of

our data showing the earliest time course for the up-regulation of

palladin in the peri-tumoral fibroblasts occurs at low-grade

dysplasia (known as PanIN 2 in the pancreas), we hypothesized

that palladin regulation must occur relatively early in tumorigen-

esis. K-ras mutations are ubiquitous in pancreatic cancer: present

in both the cancerous and pre-cancerous ductal cells [42]. Because

palladin over-expression is noted in the myofibroblasts immedi-

ately adjacent to the pre-cancerous ductal cells (Figure 1), we

speculated whether k-ras activation alone in ductal cells was

sufficient to cause up-regulation of 90 kD palladin in neighboring

normal fibroblasts. A similar co-culture experiment using the

transwells was devised with the normal fibroblasts in the lower

chamber; the upper chamber contained normal pancreatic ductal

epithelial cells (HPDE) transfected with wild-type k-ras, mutated k-

ras, or an empty-vector. Expression of either constituently

activated wild-type or mutated k-ras in HPDE cells was sufficient

to cause the up-regulation of palladin and a-SMA in the adjacent

normal fibroblasts (Figure 7B). Neither palladin nor a-SMA

Figure 7. Palladin is up-regulated in normal fibroblasts co-cultured with pancreatic cancer or normal epithelial cells containing K-
ras. A) HDF cells were examined for palladin expression via IF following co-culture with pancreatic cancer cell lines, MiaPaCa or Panc-1, for 7 days.
TGFb1 is shown as a positive control for up-regulating palladin in normal fibroblasts, no epithelial cells is the negative control. Scale bars indicate
20 mm. B) HDF cells were examined for a-SMA or palladin expression via IF following co-culture with normal pancreatic duct epithelial cells (HPDE)
that were mock transfected or transfected with wild-type or mutant K-ras. Scale bars indicate 20 mm.
doi:10.1371/journal.pone.0030219.g007
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expression were increased upon co-culture with parental pancre-

atic ductal cells (HPDE) transfected with an empty vector.

Upregulation of a-SMA and palladin in fibroblasts by the
adjacent cancer cells is prevented by silencing of 90 kD
palladin

To determine whether the ras-induced transformation of

fibroblasts into myofibroblasts relied on a palladin dependent

pathway, we utilized shRNA to generate stable clones of HDF

with palladin knockdown and then measured palladin and a-SMA

production after 9 days of co-culture of the normal fibroblasts with

the pancreatic cancer cell line, Panc-1. We failed to detect a-SMA

expression by RT-PCR following co-culture of HDF cells stably

transfected with any of three distinct shRNA constructs targeting

90 kD palladin (Figure 8A; data not shown). However, upregula-

tion of a-SMA was observed upon co-culture with Panc-1 cells if

HDF cells were transfected with a control shRNA plasmid or in

untreated HDF cells. There was also a functional consequence to

silencing palladin in fibroblasts, as demonstrated by migration and

invasion assays (Figures 8B & 8C). Palladin silencing diminished

the functions previously associated with the myofibroblast

phenotype. Together these findings indicate that ductal cells

containing activated k-ras are sufficient to up-regulate palladin

expression in adjacent fibroblasts through paracrine signaling.

This in turn causes the fibroblast to transform into a myofibro-

blast. Complete silencing of palladin abrogates the process.

Mutated palladin (FX) confers some differences in protein
expression and behavior in fibroblasts compared to wild-
type palladin (WT)

For several reasons, we included in these experiments the study

of the P239S mutation in a highly conserved region of 90 kD

palladin that causes a rare form of autosomal dominant familial

pancreatic cancer. How could dysregulation of a cytoskeletal

protein in peri-tumoral fibroblasts predispose to such a lethal,

highly penetrant cancer? In these studies, we found that the FX

palladin expressing fibroblasts were significantly more invasive

than fibroblasts containing wild-type palladin. In addition,

quantitative proteome analysis detected expression of 88 proteins

that were unique to the HDF-FX (Table S2) and not detected in

HDF-WT. IHC of Family X pancreas reveals that low levels of

palladin are overexpressed in some of the normal appearing

fibroblasts adjacent to normal ducts, while this is not the case in

normal pancreas of donor controls (unpublished observations). Of

note, the Family X cancers all had k-ras mutations (data not

shown), as is seen in the sporadic form of the disease. Collectively,

these findings suggest that the FX palladin mutation confers a

distinct advantage from the myofibroblast side of the neoplastic

equation but that the fundamental genetic alterations, such as k-

ras mutation, are still required from the ductal cells for neoplastic

progression.

Discussion

Who would have thought that when looking at a pathology slide

of pancreatic or breast cancer, the vast field of fibroblasts

surrounding the cancer cells was anything but a scarring response

to the damaging cancer cells? The importance of stroma was

suggested decades ago, but only recently have biologists delved

deep into the role that cancer-associated fibroblasts play in all

stages of cancer including initiation, progression and metastasis

[1–4,6,7,43–45].

Physically, how can fibroblasts assist a cancer cell? Elegant

studies by Gaggioli have demonstrated that the myofibroblasts

create tunnels through the matrix– clearing a path that allows the

cancer cells to follow behind, much as cars could follow a

snowplow [31,46]. Through the work presented here, the

mechanism underlying myofibroblast-led tumor invasion becomes

clearer. Palladin activates fibroblasts inducing them to become

Figure 8. Silencing of Palladin abrogates the myofibroblast phenotype and function. A) HDF cells were stably transfected with control
shRNA (C) or shRNA against 90 kD palladin (Pal shRNA). a-SMA expression following co-culture with Panc-1 cells was analyzed via RT-PCR. Analysis of
untreated HDF (U) is shown for comparison. The first lane is a non-template negative control; GAPDH is shown as an internal loading control. Shown
is data from one representative shRNA stable clone (of three independent shRNA constructs tested). B) Invasion across a matrigel coated transwell
was compared for HDF transfected as in (A). Shown is the mean 6SD. Shown is data from one representative shRNA stable clone (of three shRNA
constructs tested). C) HDF cells as in (A) were grown to confluence on coverslips and wounded with scratch test. Migration was assessed via IF
24 hours after wounding. At least 3 observations for each condition were analyzed. Blue = DAPI. Shown is data from one representative shRNA stable
clone (of three shRNA constructs tested).
doi:10.1371/journal.pone.0030219.g008
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myofibroblasts. These palladin-expressing cells develop a different

phenotype and proteomic profile compared to normal fibroblasts.

The cells develop streamlined body shapes and innumerable

invadopodia filled with destructive enzymes. With a wounding

signal, the activated fibroblasts become invasive; their increased

contractility allows them to literally rip through tissue while at the

same time, the developed invadopodia destroy the matrix. While

we have not identified which factor(s) in the wounding media

contributes to the enhanced migration and invasive capacities

observed here, this would be an area for future investigation.

From our invasion assays, we observed that palladin-activated

fibroblasts could invade through matrigel a distance approximately

600 mm within a 24 hour period (Figure 5). If the average human

pancreas is 15 cm in length, this data would suggest that these

activated cells could potentially migrate the entire length of the

pancreas within 250 days, and could travel to the lymphatic or blood

vessels in significantly less time. These tunnels could then also be

utilized by tumorigenic epithelium or other cell types. Interestingly,

without a wounding signal, the myofibroblasts are less motile than a

normal fibroblast. Recent studies in mice have demonstrated that

PDAC induction is dependent upon both the k-ras oncogene and a

STAT3-dependent inflammatory component, such as chronic

pancreatitis [47,48]. These collective observations might allude to

why a cancer could remain dormant versus invasive over time:

without a trigger/signal propelling forth the activated and invasive

fibroblasts, the cancer cells are significantly less invasive. Concep-

tually, such a trigger-signal could be a growth factor or chemokines,

such as EGF, or wounding media, as we show in our studies.

Activation of palladin early in tumorigenesis
Using pancreatic cancer as a model, we determined that tumor-

associated fibroblasts express palladin very early in tumorigenesis,

when ductal cells have low-grade dysplasia, as demonstrated

previously in a mouse model of pancreatic cancer [12]. Moreover,

the number of palladin-expressing fibroblasts expands with

neoplastic progression to involve all of the stromal fibroblasts by

the time that cancer forms. We demonstrate that k-ras activation

or mutation in the epithelial cells is sufficient to induce up-

regulation of palladin in the adjacent normal fibroblasts and

transform them into myofibroblasts within 5 days. Studies by

Logsdon have shown that the degree of k-ras expression in an

epithelial cell positively correlates with the level of dysplasia of that

epithelial cell [49]. One could hypothesize that as k-ras signaling is

amplified with neoplastic progression of the epithelial cell; palladin

expression is augmented in fibroblasts to reach an exuberant level

by the time that cancer develops. One drives the other. Our IHC

studies demonstrating that palladin expression in the stroma

increases with advancing tumorigenesis would certainly fit with

this hypothesis. Future studies could help unravel the biochemistry

that underlies the ras/palladin relationship.

Initiation of cancer
Can a fibroblast initiate a cancer? Some data suggests this is

possible. Cancer-associated fibroblasts that are mixed with non-

tumorigenic prostate epithelial cells can induce tumorigenesis in

mouse models [50]. Carcinogen-treated mammary gland stroma,

when mixed with unexposed, normal mammary epithelial cells,

results in adenocarcinomas in mice [51]. Endometrial stromal cells

mutated with APC acquire a myofibroblast phenotype and the

stromal cells alone are sufficient to induce endometrial cancer in

an engineered mouse model [52]. Conversely, ‘‘good’’ fibroblasts

can help prevent tumorigenesis in mouse mammary tumor and

liver cancer models [51,53]; cancer cells that are placed in a

normal embryonic microenvironment can be reprogrammed to

behave normally [54]. As the tumor-modulating role of stromal

cells has been uncovered, investigators have looked for mutational

defects in the cancer-associated fibroblasts to account for fibroblast

cancer-promoting behavior [55]. Our data suggests at least one

simple process to change the behavior of a stromal fibroblast: the

paracrine signaling between an epithelial cell and its adjacent

fibroblast. Activation of k-ras in an epithelial cell is sufficient to

transform a fibroblast into a myofibroblast through palladin

expression. One could posit that a mutation of k-ras in an epithelial

cell would insure that k-ras is in an activated state long-term,

providing a continuous signal to the adjacent fibroblast. However,

in order to initiate invasion, it appears that the equation requires

an activated palladin-expressing fibroblast plus injury, as discussed

above. Perhaps this could explain why chronic injury in an organ,

such as inflammation, leads to an increased risk of cancer—in such

a setting, activated fibroblasts could more easily become deadly

partners of cancer cells because the injury is ever-present.

What can Family X, who inherited a mutation in the highly

conserved region of 90 kD palladin, tell us about this paradigm of

cancer initiation? It appears that the palladin mutation confers a

super-invasive behavior of the fibroblasts, but a k-ras mutation is

still required. This might explain why family members don’t

acquire cancer in childhood but rather in mid-adulthood at ages

30–50. It may take decades of time to acquire k-ras mutations in

the pancreas and to generate an injury signal such as could be

caused by smoking, excess alcohol, or fatty oxidation. The

susceptibility of the family members to pancreatic cancer thus

would require all 3 elements for pancreatic cancer: k-ras mutation,

injury, and palladin-activated fibroblasts; but in the case of Family

X, it takes less to initiate or promote a cancer as they already

possess one of the required elements: the easily primed, palladin-

mutated fibroblasts. In this setting, it seems unlikely that any

dysplasia could remain dormant. Without the ‘‘good’’ fibroblast

for protection, any spark could ignite the cancer. Future studies

could help determine whether an activated fibroblast can confer

mutational susceptibility to an adjacent epithelial cell.

The tumor stroma is an ominous partner of the tumor cells: a field

of activated myofibroblasts enhances invasiveness and metastases of

the surrounded cancer cells. In this study, we demonstrate that

introduction of wild-type or mutated (FX) palladin in a normal

fibroblast cell line is sufficient to transform the cell into

myofibroblasts as evidenced by up-regulation of a-SMA and

vimentin. Palladin alters the cell shape into spindle-shaped cells

with numerous invadopodia, and alters cell function by enhancing

the capacity for migration and invasion. In pancreatic cancer,

palladin expression occurs early in neoplastic progression and

expands from peri-ductal fibroblasts adjacent to dysplasia to

ubiquitous expression throughout the cancer stroma. Fibroblast

expression of palladin is induced by k-ras activation in the adjacent

ductal cells and the transition of the fibroblast to myofibroblast is

palladin-dependent. While palladin expression is sufficient and

necessary to induce phenotypic myofibroblast changes, a wounding

signal is required to launch the primed cell into an invasive, leading

partner for cancer cells. Thus, the large number of myofibroblasts

that make up what appears to be static ‘‘scar tissue’’ in some cancers

may be, on the contrary, in an active state of movement that extends

beyond the organ of origin. Palladin appears to play a central role in

the arousal of the fibroblasts in tumorigenesis.

Methods

Specimens
Pancreatic tissue specimens were collected in accordance with

approved Human Subject’s guidelines at the University of
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Washington and Virginia Mason Hospital in Seattle, and the

Cleveland Clinic Foundation in Cleveland. All of the specimens

were obtained from surgical resections intra-operatively, immedi-

ately processed for paraffin embedding.

Cell culture and SILAC labeling
Human dermal fibroblasts (HDF), Panc-1 and MiaPaCa cells

were maintained in complete DMEM supplemented with 10%

fetal bovine serum and 0.01% penecillin-streptomycin in a

humidified incubator at 37uC with 5% CO2. The normal human

pancreatic ductal epithelial cell line (HPDE) was obtained from

Dr. Ming-Sound Tsao (University of Toronto, Ontario, Canada).

WT and FX palladin (90 kD isoform) constructs were described

[19]. Wounding conditioned media was prepared by manually

wounding confluent HDF cells and incubating with fresh complete

media for 16–18 hours. HDF cells were grown in modified

DMEM with 13C6-lysine and 13C6-arginine (Thermo Scientific) for

SILAC labeling. Cells were transfected as previously described

[56]. 24 hours post-transfection, cells were flow sorted for GFP

signal on a Cytopeia Influx Flow Cytometer or a BD FACS Aria

II. Brightfield images were taken using the 106 objective on a

Leica DMLB microscope equipped with a Spot Insight camera

using Spot Advanced software.

Co-culture and palladin knockdown
HDFs were grown in 6 well dishes and transwells (Corning)

containing HPDE, Panc-1, or MiaPaCa cells were placed atop

HDF cells (day 1). Cells were fed every 2–3 days with complete

DMEM and passaged as needed. shRNA plasmids were purchased

from Qiagen and transfected into competent JM109 cells

(Promega). Transformants were selected with ampicillin and

DNA isolated using the Qiagen Endo-Free Plasmid Kit as per

manufacturer’s instructions. DNA was digested with ScaI (New

England Biolabs) overnight at 37uC and cleaned up using the

MinElute Clean Up Kit (Qiagen) as per manufacturer’s instruc-

tions. HDF cells were transfected with linearized ScaI plasmids

using the Attractene Reagent (Qiagen). Cells were selected with

10 mg/ml puromycin (Invitrogen) for one week; media was

changed every 2–3 days. Stable transfectants were then selected

with 100 mg/ml puromycin treatment for 6 weeks with media

change every 2–3 days.

RT-PCR
Total RNA was isolated from cell pellets using the RNeasy Mini

kit (Qiagen) as per manufacturer’s instructions. 50 ng RNA was

used for first strand cDNA synthesis using the SuperScript III First

Strand Synthesis System (Invitrogen). 2 ng of cDNA was used for

RT-PCR using the FastStart Taq Kit (Roche). Primer sequences

and conditions were as described for a-SMA [57]. Palladin was

amplified using the following primers: forward, ctgcccaagggtgtcac;

reverse, ctttggctttggatttccag. Gels were analyzed using ImageJ to

determine relative band intensities.

Tissue microarray construction
Tissue microarrays were constructed from representative

pathologic or normal tissues from paraffin-embedded formalin

or Hollande’s-fixed samples. Histology of cores was independently

verified by pathologists (MPB and JC). For palladin, sections

included 47 different cases of sporadic pancreatic ductal

adenocarcinoma 20 PanINs, and 91 different cases of normal

pancreas (including sections from normal, pancreatitis, and

normal sections adjacent to adenocarcinoma). Triplicate 1.5 mm

diameter cores of each tissue type were embedded into a

systematic grid using a tissue arrayer (Beecher Instruments) as

previously described [58].

IHC
Immunohistochemical staining for smooth muscle actin was

performed on 4 mm paraffin-fixed sections with the Benchmark

XT, an automated immunostainer from Ventana Medical Systems

(VMS), Tucson, AZ, USA. Briefly, the slides were processed for

antigen retrieval using microwave heating in a citrate buffer,

followed by primary antibody incubation using the 1E6 monoclo-

nal palladin antibody [19] at a titer of 1:5000 or a mouse

monoclonal antibody for smooth muscle actin (Dako) at a dilution

of 1:50. The specific protein-antibody complexes were located

using a biotin/streptavidin-HRP/(DAB) detection kit (iView DAB

Detection). Scoring guidelines are outlined in Table S1.

Fluorescence microscopy
For cell morphology experiments, cells were grown on

coverslips and stained with Texas Red phalloidin (Invitrogen)

diluted 1:1000. For immunofluorescence, HDF cells were grown

on coverslips, fixed with4% paraformaldehyde, and permeabo-

lized briefly with 0.2% Triton X-100. Antibodies against the

following proteins were used at the indicated dilutions: Texas Red

phalloidin (Invitrogen) 1:1000; a-SMA rabbit 1A4 (Abcam) 1:400;

palladin (Proteintech) 1:1000; palladin (Novus Biologicals) 1:1000;

cortactin (Abcam) 1:500; nestin (Millipore) 1:200;profilin (BD

Biosciences) 1:400; cofilin (Sigma) 1:500 AlexaFluor 488 chicken

anti-rabbit IgG (Invitrogen) 1:1000 or Rhodamine Red IgG

(Jackson ImmunoResearch) 1:100. Coverslips were mounted onto

glass slides using Prolong Gold+DAPI (Invitrogen) and sealed with

nail polish. Images were taken with 636 or 1006 objectives on a

Leica DMLB microscope equipped with a Diagnostic Instruments

Color Mosaic camera and software and analyzed using ImageJ

(NIH) or using the 406 or 636 objective and sequential scans of

the 405 nm, 488 nm, and 543 nm lasers as appropriate on a Zeiss

LSM 510 Meta confocal microscope at the Keck Center for

Microscopy at the University of Washington.

Migration and Invasion assays
The lower sides of the transwell inserts (Corning; 8 mm pores)

were coated with 100 mg/ml fibronectin overnight at 37uC.

Invasion assays were performed using a modified migration assay

[59]; for invasion assays, the upper chambers of the transwells

were coated with diluted matrigel (BD Biosciences). For both

migration and invasion assays, 46104 cells were plated in the

upper chamber in serum-free media atop wounded HDF in the

lower chamber and incubated for 20 hours. Invasion assays were

also performed using conditioned media from Panc-1 cells in the

lower chamber. For migration assays, cells in the upper chamber

were removed and inserts were fixed in ice cold methanol.

Transwells stained with crystal violet, and absorbance was

measured at 590 nm. For invasion assays, transwells were fixed

in ethanol, and mounted onto slides with Prolong Gold plus DAPI

(Invitrogen). The number of migrating cells was counted per field

and results were calculated as number of cells relative to empty

vector control. Each sample was run in triplicate and in multiple

experiments. Shown are representative images; graphs indicate

average of five random fields 6 SEM.

Three Dimensional Invasion Assays
Invasion assays were also performed using iuvo 3D-ICC slides

(Bellbrook Labs). On day 21, channels were filled with diluted

phenol red free matrigel (BD Biosciences) mixed with Texas Red
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labeled gelatin. Matrigel was polymerized at 37uC for 90 minutes;

complete media was added to the right side port and media with

5 ng/ml EGF was added to the left port. Slide was incubated at

37uC overnight. Flow sorted HDF cells transfected with GFP-

empty vector or WT palladin-GFP were labeled with

QTracker585 (Invitrogen) as per manufacturer’s instructions,

trypsinized, and counted with a hemacytometer. 3,250 cells were

loaded into the right side port and fresh media+EGF added to the

left side port. Slide was incubated at ,30u angle to allow for

attachment of cells to the channel. 24 hours later, Panc1 cells were

labeled with QTracker655 (Invitrogen) and 650 cells were added

to the right side port. Cells were grown for 3 days and media

changed daily. Images were taken using the Zeiss LSM 510 Meta

confocal microscope using the 106 or 206 objectives and

sequential scans with the 568 nm and 405 nm lasers. Images

were exported from LSM Browser and analyzed with ImageJ.

Invadopodia Assay
Coverslips were prepared as described previously [60] with

modifications. In brief, coverslips were coated with Texas Red

labeled gelatin prepared with FluoReporter kit (Molecular Probes)

as per manufacturer’s instructions. Gelatin was heated to 37uC,

filtered through a 0.45 mm filter and spread onto coverslips. Excess

gelatin was removed and coverslips were let stand at $60u angle

for 30 minutes. Coverslips were incubated with cold glutaralde-

hyde, quenched with sodium borohydride, washed with PBS,

sterilized with 70% ethanol, and incubated with serum-free media

and then wounding conditioned media prior to cell plating. 105

cells were plated onto coverslips and returned to 37uC for

18 hours. Coverslips were fixed and mounted onto slides as

described above. Each transfection was tested multiple times.

Shown are representative images.

RhoA activation assay
Flow sorted GFP-empty vector or GFP-palladin expressing

HDF cells were grown overnight on gelatin coated coverslips in

wounding media as described above. RhoA G-LISA assay

(Cytoskeleton) was performed as reported [61]. Shown is the

average of six wells 6 SD.

Scanning electron microscopy
Samples were grown on coverslips and fixed at 37uC in fresh

half strength Karnovsky’s fixative and then overnight at 4uC.

Specimens were rinsed with cacodylate buffer and post fixed with

osmium tetroxide. Specimens were rinsed with distilled water, en

bloc stained with 2% uranyl acetate for 45 minutes and

dehydrated through a graded series of ethanols. Samples were

critical point dried with a Samdri-PVT-3B CPD (Tousimis

Research), mounted on aluminum stubs, sputter coated with

gold-palladium (Polaron SEM Coating Unit, E 5100, Polaron

Instruments Inc) and examined with a JEOL JSM 6300F field

emission scanning electron microscope (JEOL, Tokyo, Japan) at

an accelerating voltage of 15 kV. Shown are representative

images.

Proteomics Sample preparation
26106 cells were plated atop a transwell filter (Corning; 3 mm

pores) over wounded HDF cells. Sixteen hours after plating,

protein lysates were prepared as described in cold RIPA buffer

[62]. Lysates from equivalent numbers of cells expressing empty

vector (SILAC labeled), or unlabeled WT or FX palladin were

combined, acetone precipitated, and resuspended in 50 mM

ammonium bicarbonate. The proteins were reduced with DTT,

blocked with iodoacetimide, and digested with trypsin overnight.

Samples were purified over a C18 column (Nest Group, Inc.),

dried in a speed vacuum and stored at 220uC until mass

spectrometric analysis.

Western blot analysis
Protein lysates from equivalent numbers of cells were separated

by SDS-PAGE and transferred to HybondP membrane using

semi-dry transfer. Blots were blocked with 16 Superblock for

1 hour at RT, and then incubated with primary antibody diluted

1:2000 in 0.56 Superblock overnight at 4uC. Blots were washed

and incubated with HRP-conjugated goat anti-mouse or donkey

anti-rabbit (Thermo) diluted 1:2000 in 0.56 Superblock for

1 hour at RT. Blots were washed and protein bands visualized

using the Storm Phosphoimager following incubation with ECL

Plus (GE Life Sciences).

Mass spectrometric analysis
The samples were analyzed using an LTQ-Orbitrap hybrid

mass spectrometer (Thermo Fisher Scientific) coupled with nano-

flow HPLC, which consists of a trap column (100 mm61.5 cm)

packed with Magic C18AQ resin (5 mm, 200 Å particles;

Michrom Bioresources), followed by an analytical column

(75 mm627 cm) packed with Magic C18AQ resin (5 mm, 100 Å

particles; Michrom Bioresources). The peptide samples were

analyzed using a 90-minute non-linear gradient, starting at 5%

acetonitrile with 0.1% formic acid (against water with 0.1% formic

acid), changing to 7% over 2 minutes, then to 35% over

90 minutes with a flow rate at 300 nL/min. The mass spectrom-

etry experiment consisted of a full MS scan in the Orbitrap

followed by up to 5 MS/MS spectra acquisitions in the linear ion

trap using collision induced dissociation. An exclusion time of

45 sec was used to enhance the interrogation of low abundance

peptides.

Proteomics data processing
The MS/MS data was searched against IPI human protein

database using X!tandem algorithm. The assignment of peptide

sequence was validated using PeptideProphet. Peptides with a

probability score of 0.9 or above were selected for protein

identification using ProteinProphet. The quantitative ratio of

peptide/protein was calculated using Xpress software.

Supporting Information

Figure S1 Alpha actinin staining increases with pancre-
atic cancer progression. A) Strong alpha-actinin staining was

observed within the stromal compartment of pancreatic cancer

(right panel) sections but dramatically reduced in normal tissue (left

panel). Alpha-actinin is a binding partner of 90 kD palladin and is a

known invadopodia protein. B) Plot indicates the mean IHC score

6 SEM for normal pancreas (n = 20) or cancer (n = 21). Scoring

guidelines are outlined in Table S1.

(TIF)

Figure S2 Validation of up-regulated proteins identified
by proteomics of ‘‘feet’’ from palladin-activated fibro-
blasts. A) Invadopodia proteins: cofilin, cortactin, and profilin,

are confirmed to be up-regulated by immunofluorescence (IF) (top

left panel, top right panel and bottom right panel, respectively). Stem cell

marker, nestin, is also up-regulated (bottom left panel). Green = -

palladin or empty vector; red = antibody (cofilin, cortactin, nestin,

or profilin); blue = DAPI. B) Up-regulation of cortactin, profilin,

and cathepsin D in lysates prepared from ‘‘feet’’ of palladin-
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activated fibroblasts compared to control fibroblasts with empty

vector are demonstrated in the Western blot.

(TIF)

Table S1 Semi-quantitative scoring guidelines for im-
munohistochemical staining of pancreas tissue sections.
Shown are semi-quantitative scoring guidelines for immunohisto-

chemical staining of pancreas tissue sections. Results were scored

as diffuse or focal and were graded semi-quantitatively for intensity

of staining from 0 = no staining to 4+ = the most intense staining.

The tissues that were stained included pre-cancerous low and

high-grade dysplasia, cancer and normal pancreas. Scoring

systems for periductal or lesional stroma and parenchymal stroma

are presented. Parenchymal stroma designates stroma which is not

solely associated with a duct or lesion and includes intralobular

stroma between acini, as well as interlobular stroma and confluent

areas of fibrosis.

(DOC)

Table S2 Proteomics analysis of ‘‘feet’’ from palladin-
activated fibroblasts. Shown are the results of proteomics

analysis of pseudopodia. The IPI protein identifier, gene symbol,

description and ratios for fibroblasts transfected with wildtype

(WT) or Family X mutant (FX) palladin relative to empty vector

(EV). The total spectral counts reflect the number of peptides

identified. Samples with no ratio shown but one spectral count

reflect that the protein was present in the sample but could not be

quantified. If no spectral counts were shown, the protein was

absent or undetectable.

(DOC)
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