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Objective: Squamous cell carcinomas (SCCs) with shared etiology, histological
characteristics, and certain risk factors represent the most common solid cancers. This
study reports the crosstalk between autophagy and ferroptosis at the molecular level in
SCCs, and their roles on the immunological tumor microenvironment (TME) of SCCs.

Methods: In this study, the connections between autophagy and ferroptosis were
characterized in SCCs by analyzing the associations between autophagy- and
ferroptosis-related genes in mRNA expression and prognosis, protein-protein
interactions and shared signaling pathways. Autophagy potential index (API) and
ferroptosis potential index (FPI) of each tumor were quantified for reflecting autophagy
and ferroptosis levels via principal-component analysis algorithm. Their synergistical roles
on TME, immunity, drug resistance and survival were systematically analyzed in SCCs.

Results: There were close connections between autophagy and ferroptosis at the mRNA
and protein levels and prognosis. Both shared cancer-related pathways. The API and FPI
were separately developed based on prognostic autophagy- and ferroptosis-related
genes. A high correlation between API and FPI was found in SCCs. Their interplay was
distinctly associated with favorable prognosis, enhanced sensitivity to chemotherapy
drugs (Sunitinib, Gefitinib, Vinblastine and Vorinostat), an inflamed TME and higher
likelihood of response to immunotherapy in SCCs.

Conclusion: This study is the first to provide a comprehensive analysis of the interplay
between autophagy and ferroptosis and their synergistical roles on manipulating the
immunological TME in SCCs. These findings indicated that the induction of autophagy and
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ferroptosis combined with immunotherapy might produce synergistically enhanced anti-
SCCs activity.
Keywords: squamous cell carcinomas, ferroptosis, autophagy, crosstalk, tumor microenvironment, immunity, drug
resistance, prognosis
INTRODUCTION

Squamous cell carcinomas (SCCs) represent the most common
solid cancers (1). SCCs arise from epithelial tissues of the
aerodigestive or genitourinary tracts, which are commonly
detected in head and neck, esophagus, lung, and cervix (2).
SCCs across different body sites share overlapping etiology,
histopathological characteristics [such as the presence of keratin
pearls, tonofilament bundles, hemidesmosomes and desmosomes
(3)] and specific risk factors (such as smoking, drinking and
human papillomavirus infection) (4). Previous the Cancer
Genome Atlas (TCGA) research has uncovered that SCCs
exhibit similar molecular patterns such as somatic mutations,
copy number variations, abnormal pathways, and tumor
microenvironment (TME) that differ from other cancer types (2,
5, 6). With surgery, radio- and chemotherapy as the standard of
care for most SCCs, the treatment of SCCs is complex and has
undergone considerable advancement in the last decade (7).
Especially, treatment with immune checkpoint inhibitors (ICIs)
such as anti-programmed death-1 (anti-PD-1), anti-programmed
death ligand-1 (anti-PD-L1), and/or anti-cytotoxic T lymphocyte-
associated antigen-4 (anti-CTLA-4) has been applied to SCCs,
which can result in impressive response rates and durable disease
remission in clinical trials (8–10). However, only in a subset of
patients respond to ICI therapy (11).

Autophagy is an evolutionarily conserved cellular process,
which may degrade various biological molecules and organelles
through lysosome-dependent degradation pathway (12).
Ferroptosis is a novel form of programmed cell death, which is
driven by iron accumulation and lipid peroxidation (13). Recent
research has revealed the role of autophagy in driving cells towards
ferroptosis (14). Meanwhile, activation of autophagy is required
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for the induction of ferroptosis (12). The crosstalk between
autophagy and ferroptosis decide cell fate through activating
comprehensive signaling pathways and affecting gene expression
programs (15). Growing evidence suggests that interplay of
autophagy and ferroptosis exerts a key role in antitumor
immunity (16), tumor suppression (17) and drug resistance
(18), etc. However, the mechanism of the crosstalk between
autophagy and ferroptosis in SCCs remains largely ill-defined.
Uncovering when and how to modulate their interplay utilizing
therapeutic strategies against SCCs depends on the in-depth
understanding of the connections between autophagy and
ferroptosis (18). Unraveling the interplay between autophagy
and ferroptosis may not only elucidate fundamental mechanistic
insights into SCCs, but also provide novel therapeutic targets for
the treatment of SCCs. We hypothesize that appropriate
combinations of potent drugs that specifically activate autophagy
and ferroptosis with ICIs might achieve better treatment effects.
Therefore, this study specifically and comprehensively
characterized the interplay between ferroptosis and autophagy in
SCCs and their synergistical roles on immunity, TME, drug
resistance and prognosis of SCCs.
MATERIALS AND METHODS

Patients and Datasets
Figure 1 shows the workflow of this study. RNA sequencing
(RNA-seq) data (fragments per kilobase of transcript per million
mapped reads (FPKM) values) and clinical information of SCCs
including head and neck squamous cell carcinoma (HNSC;
n=500), lung squamous cell carcinoma (LUSC; n=501), cervical
squamous cell carcinoma (CESC; n=241), and esophageal
squamous cell carcinoma (ESCC; n=81) were acquired from
TCGA (http://cancergenome.nih.gov) database via the Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/). Then,
FPKM values were converted into TPM values. Microarray
datasets including gene expression profiling of GSE17710/LUSC
(N=56) (19), GSE44001/CESC (N=300) (20), GSE65858/HNSC
(N=270) (21) were employed from the Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) database. Batch effects
from non-biological technical biases were corrected with the
“ComBat” algorithm of sva package (version 3.42.0) (22).
Ferroptosis- and autophagy-related genes were collected
according to published literature (Supplementary Table 1). The
locations of ferroptosis- and autophagy-related genes on human
chromosomes were separately plotted by employing Rcircos
package (version 1.2.1) (23). Genomic mutation data of SCCs
[somatic mutation and copy number variation (CNV)] were also
obtained from TCGA database. Mutation status was analyzed and
visualized by maftools package (version 2.10.0) (24).
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Computational Models of Ferroptosis
and Autophagy Levels Among SCCs
A ferroptosis and autophagy scoring scheme was developed to
quantify ferroptosis and autophagy levels in each specimen with
principal component analysis (PCA). Survival analysis of
ferroptosis- and autophagy-related genes was separately
performed utilizing univariate Cox regression analysis. The
expression profiles of the genes with p<0.05 were extracted to
carried out PCA, and principal component 1 and 2 were
extracted and acted as the signature score. Like previous
studies (25, 26), the ferroptosis potential index (FPI) and
autophagy potential index (API) were separately defined: API
or FPI = ∑(PC1i+PC2i), where i represents the expression of
ferroptosis- or autophagy-related genes.

Protein-Protein Interaction (PPI) Analysis
Interactions between ferroptosis- and autophagy-related genes
were analyzed through the STRING online database (version:
11.0; https://string-db.org/) (27). A PPI network was generated
and displayed by Cytoscape software (version: 3.7.2) (28).

Survival Analysis
Kaplan–Meier curves for overall survival (OS), disease-free interval
(DFI), disease-free survival (DFS), disease-specific survival (DSS)
and progression-free interval (PFI) were plotted to compare the
Frontiers in Immunology | www.frontiersin.org 3
survival time differences. P-values were calculated with log-rank
tests. Time-dependent receiver-operating characteristic (ROC)
curve analysis was carried out using survivalROC package
(version 1.0.3). The area under the ROC curve (AUC) was
determined to assess the prognostic performance.

Estimation of TumorMicroenvironment (TME)
Estimation of STromal and Immune cells in MAlignant Tumours
usingExpression data (ESTIMATE)may infer the tumor cellularity
and tumor purity based on unique properties of the transcriptional
profiles (29). ThroughESTIMATEalgorithm, immune and stromal
scoreswere determined to estimate the levels of infiltrating immune
and stromal cells as well as tumor purity. Tumor tissues with
abundant immune cell infiltration indicate a higher immune
score and lower level of tumor purity. Through the single-sample
gene-set enrichment analysis (ssGSEA) algorithm, the enrichment
scores of 16 immunecells and13 immune functions for each sample
were estimated based on the expression of marker genes of tumor-
infiltrating immune cells (TIICs) that were obtained from Bindea
et al. utilizing gene set variation analysis (GSVA) package [version
1.42.0 (30)]. The expression of human leukocyte antigen (HLA)
genes, immune checkpoints and immunomodulators (including
major histocompatibility complex (MHC) molecules, receptors,
chemokines, and immunostimulatory factors) (31) was also
quantified in each sample (Supplementary Table 2).
FIGURE 1 | Overview of the study design.
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Quantification of Immune
Response Predictors
T cell dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.
edu/) algorithm was employed to characterize tumor immune
evasion mechanism, including dysfunction of tumor infiltration
cytotoxic T lymphocytes (CTLs) and exclusion of CTLs by
immunosuppressors (32). Tumor mutation burden (TMB) for
each sample was quantified according to mutation frequency
with number of variants/the length of exons (33). The cancer
immunity cycle includes release of cancer cell antigens (step 1),
cancer antigen presentation (step 2), priming and activation
(step 3), trafficking of immune cells to tumors (step 4),
infiltration of immune cells into tumors (step 5), recognition of
cancer cells by T cells (step 6), and killing of cancer cells (step 7)
(Supplementary Table 3) (34). The activities of these steps were
assessed with ssGSEA based on the gene expression of each
sample (35).

Prediction of Chemosensitivity
Sensitivity to chemotherapy drugs for each specimen was predicted
by the Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/) database (36). Drugs including cisplatin,
paclitaxel, gemcitabine, sorafenib, sunitinib, gefitinib, vinblastine
and vorinostat were selected. The half-maximal inhibitory
concentration (IC50) values were determined by ridge regression
analysis using pRRophetic package (37).

Gene Set Variation Analysis (GSVA)
GSVA package was employed for estimating the activity of
pathways with a non-parametric and unsupervised method
(38). The gene sets of “c2.cp.kegg.v7.2.symbols” were acquired
from the Molecular Signatures Database (MSigDB) (39).

Acquirement of mRNA Expression-Based
Stemness Index (mRNAsi)
Cancer stemness of SCCs was quantified as described by Malta
et al. (40). The mRNAsi of SCCs was calculated with one-class
logistic regression machine learning algorithm and expressed
with b values ranging from 0 (no gene expression) to 1 (complete
gene expression).

Identification of Autophagy-
and Ferroptosis-Related Genes
Autophagy- and ferroptosis-related genes between high FPI +
high API group and others group were screened by limma
package (version 3.50.0) (41). Genes with |fold-change| >1.5
and false discovery rate (FDR) <0.05 were considered statistically
significant. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis of the
autophagy- and ferroptosis-related genes were performed using
clusterProfiler package (version 4.2.0) (42). Terms with
FDR <0.05 were significantly enriched.

Connectivity Map (CMap) Analysis
The autophagy- and ferroptosis-related genes were used to query
the CMap database (https://clue.io/) (43). Compounds with
p<0.05 were considered as potential therapeutic drugs for
Frontiers in Immunology | www.frontiersin.org 4
ferroptosis and autophagy based on gene expression signatures.
Furthermore, the mode of action (MoA) of these compounds
was analyzed.

Development of an Autophagy- and
Ferroptosis-Related Prognostic Model
Univariate cox regression analysis was performed to screen
prognostic autophagy- and ferroptosis-related genes with
p <0.05. Least absolute shrinkage and selection operator
(LASSO) regression method was applied for finding out the
optimal candidate variables with glmnet package (version 4.1-3)
(44). The optimal values of the penalty parameter lambda were
determined by ten-fold cross‐validation. The risk score of each
patient was calculated based on the expression and coefficient of
candidate autophagy- and ferroptosis-related genes. The formula
of the risk score was as follows: risk score = Sn

i=1(coefi� Expri),
where Expri indicates the expression of each gene for patient i,
and coefi indicates the coefficient of gene i. The patients were
equally stratified into high‐ and low-risk groups. Kaplan-Meier
curves of OS were performed between two groups. Time‐
dependent ROC curves were plotted to determine the AUCs of
OS using survivalROC package.

Cell Culture and Treatment
Human SCCs cell lines (KYSE410 and KYSE450) were purchased
from ATCC (Manassas, VA, USA). Cells were maintained in
RPMI-1640 (#PM150120; Procell, Wuhan, China) plus 10% fetal
bovine serum (FBS; #SH30084.03; Hyclone, South Logan, UT,
USA), 100 units/mL penicillin, 100 mg/mL streptomycin.
Rapamycin (#ab120224; Abcam, Cambridge, MA, USA), Erastin
(#ab209693; Abcam, Cambridge, MA, USA) and Gefitinib (Iressa,
AstraZeneca, Macclesfield, UK) were dissolved in dimethyl
sulfoxide (DMSO; Sigma, St. Louis, MO, USA) as well as stored
at -20°C. To activate autophagy or ferroptosis, cells were
administrated with 0.1 mM Rapamycin or Erastin for 16 h.

3-[4,5-Dimethylthiazol-2-yl]-2, 5-
Diphenyltetrazoliumbromide (MTT) Assays
Cell viability was conducted with MTT assays. Cells were seeded
onto 96-well plates (1 × 103 cells/well). Following 12 h of culture,
cells were pre-treated with 0.1 mM Rapamycin or 10 mM Erastin
for 16 h. Thereafter, cells were administrated with different
concentrations of gefitinib (0, 0.01, 0.1, 1, 2, 3, 6 and 10 mM)
for another 24 h. Cells were then stained with 20 ml MTT (5 mg/
ml; #M5655-1G; Sigma-Aldrich, St. Louis, MO, USA) for 4 h at
37°C. Then, culture medium was removed as well as 150 ml
DMSO was added. Viable cells were measured at 490 nm
absorbance. Half inhibitory concentration (IC50) values were
calculated with dose-response curves using GraphPad Prism
software (version 8.0.1).

Western Blotting
Cell lysates were prepared with RIPA lysis buffer (#P0013B;
Beyotime, Shanghai, China) plus protease inhibitors. Protein
concentration was measured through BCA kit (#P0009; Beyotime,
Shanghai, China) accordance with the manufacturer’s instructions.
Equal amount of protein was separated via SDS-PAGE
February 2022 | Volume 12 | Article 739039
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electrophoresis and transferred onto PVDF membrane (Millipore,
Billerica, MA). Membrane was incubated with antibodies against
LC3 (1:1000; #14600-1-AP; Proteintech, Wuhan, China), ATG-5
(1:500; #10181-2-AP; Proteintech, Wuhan, China), ATG-7 (1:500;
#10088-2-AP; Proteintech, Wuhan, China), FTH1 (1:1000; #3998S;
Cell Signaling Technology, Danvers, MA, USA), GXP4 (1:1000;
#67763-1-lg; Proteintech, Wuhan, China) and b-actin (1:5000;
#60008-1-lg; Proteintech, Wuhan, China) overnight at 4°C.
Thereafter, horseradish peroxide-conjugated goat anti-rabbit
(1:5000; #SA00001-2; Proteintech, Wuhan, China) or anti-mouse
(1:5000; #SA00001-1; Proteintech, Wuhan, China) secondary
antibodies were utilized for immunostaining for 1 h at room
temperature, followed by exposure to ECL reagent (#K-12043-
D10; Wuhan Juneng Yitong Biological Co., Ltd., Wuhan, China).
Images were acquired through ChemiDoc™XRS+ Gel imaging
system (Bio-Rad, Hercules, CA, USA).

5-Ethynyl-2’-Deoxyuridine (EdU) Staining
Cells were incubated with RPMI-1640 medium plus 50 mM EdU
(#C0078S; Beyotime, Beijing, China) at 37°C for 2 h. After being
washed twice with PBS, cells were fixed with 50 mL 4%
paraformaldehyde (#E672002; Sangon Biotech, Shanghai,
China) for 30 min, neutralized with 50 mL 2 mg/mL glycine
solution as well as permeabilized with 100 mL 0.5% Triton X-
100. Thereafter, cells were incubated with 100 mL 1 × Apollo dye
at room temperature for 30 min, followed by incubation with
100 mL Hoechst 33342 for 30 min. Images were acquired under a
BX53 fluorescence microscope (Olympus, Japan).

Transwell Assays
Invasion assays were conducted in 24-well transwell cell chamber
coated with 30 ml Matrigel (#356234; BD Biocoat, USA). 3 × 105

indicated cells were seeded onto the coated filters while the
bottom chamber was filled with 600 ml complete culture
medium. Following incubation for 48 h at 37°C, invasive cells
were stained with crystal violent (#C0121; Beyotime, Shanghai,
China). The migration assays were performed through a similar
method without coating with Matrigel.

Statistical Analysis
All the statistical analysis was executed byR software (version 4.0.1)
andGraphPadPrism software (version 8.0.1). Each experimentwas
independently repeated three times. The Kolmogorov-Smirnov
normality test was carried out to confirm if datasets followed a
Gaussian distribution for each comparison. If the data were
Gaussian, parametric test was carried out (unpaired student’s test,
one-way ANOVA or Pearson correlation). If the data were non-
Gaussian, nonparametric test was performed (Wilcoxon rank test
or Spearman correlation). P <0.05 indicated statistical significance.
RESULTS

Landscape of Genetic Variation of Autophagy-
and Ferroptosis-Related Genes in SCCs
Totally, 222 autophagy- and 60 ferroptosis-related genes were
investigated in SCCs that integrated HNSC, LUSC, CESC and
Frontiers in Immunology | www.frontiersin.org 5
ESCC datasets (Supplementary Figure 1). We firstly determined
the prevalence of CNV mutations of autophagy-related genes in
SCCs. CNV mutations were less frequent in CESC while CNV
amplification was prevalent in ESCC (Figure 2A). Particularly,
CDKNA2A showed widespread CNV loss and FADD displayed
widespreadCNVamplification inESCC,LUSCandHNSC.Further
analysis of somatic mutation frequency displayed a prevalent
somatic mutation in autophagy-related genes (Figure 2B). The
incidence of CNV variations and somatic mutations of ferroptosis-
related genes was also summarized in SCCs. The investigation of
CNVmutation revealed a widespread occurrence, especially SQLE
amplification in ESCC and ACSL3 loss in CESC (Figure 2C).
Further analysis revealed a prevalent frequency of somatic
mutations of ferroptosis-related genes in SCCs (Figure 2D). The
somatic mutations of each SCC were summarized in
Supplementary Figure 2. Collectively, we did not investigate any
prominent effect on different kinds of mutations according to
different tissue origins, indicating that SCCs exhibited similar
CNV and somatic mutation patterns of autophagy- and
ferroptosis-related genes. The locations of autophagy- and
ferroptosis-related genes on chromosomes were shown in
Figures 2E, F. The above analysis revealed that autophagy and
ferroptosis were precisely regulated at multiple layers in SCCs.

Crosstalk Between Autophagy and
Ferroptosis in SCCs at the Molecular Level
Univariate Cox regression analysis was applied to ascertain the
relationship between the mRNA expression of autophagy- or
ferroptosis-related genes and the prognosis of SCCs patients
(Figures 3A, B; Supplementary Figures 3–5). Some autophagy-
or ferroptosis-related genes served as protective factors of the
prognosis of SCCs, others were considered risk factors. Pearson
correlation analysis was employed to investigate mutual regulation
between these prognostic genes in SCCs.We found that autophagy-
related genes presented remarkable correlations to the ferroptosis-
related genes in terms of mRNA levels (Figure 3C) and prognosis
(Figure 3D). KEGG enrichment analysis of autophagy- and
ferroptosis-related genes was conducted, respectively. Ferroptosis,
central carbon metabolism in cancer and microRNAs in cancer
were collectively enriched by two sets of genes (Figure 3E). The
close interactions of autophagy- and ferroptosis-related genes were
also illustrated in the PPI network (Figure 3F). The API
(Supplementary Table 4) and FPI (Supplementary Table 5)
were separately calculated to quantify autophagy and ferroptosis
levels in individual tumorsbasedonthe autophagy- and ferroptosis-
related genes that could significantly impact prognosis of SCCs
patients. There was a mutual regulation between FPI and API in
SCCs (Figure 3G). The above results indicated that the crosstalk of
autophagy and ferroptosis may play critical roles in SCCs initiation
and progression.

The Roles of Autophagy on Outcomes,
TME, Response to Immunotherapy and
Chemosensitivity in SCCs
The SCCs patients were stratified into high and low API groups
based on the median value of API. Prognoses analysis for the two
February 2022 | Volume 12 | Article 739039
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groups suggested the remarkably prominent survival advantage
in high API (Figure 4A). Stromal score represents the percentage
of stromal cells in the TME. High API was characterized by
decreased stromal score (Figure 4B). Tumor purity, which
reflects the proportion of cancer cells in the tumor tissue, is
associated with a favorable clinical outcome of SCCs (45). High
Frontiers in Immunology | www.frontiersin.org 6
API showed the significantly increased tumor purity than low
API (Figure 4C). Further analysis aimed at immunological role
of autophagy in SCCs. We found that high API was significantly
associated with low infiltration of immune cells (Figure 4D), low
HLA expression (Figure 4E) and low immune checkpoint
expression (Figure 4F). Based on the spatial distribution of
B C DA

FE

FIGURE 2 | The landscape of genetic alterations of autophagy- and ferroptosis-related genes in SCCs. (A) The CNV frequency of autophagy-related genes across
SCCs. Red: the gain frequency; blue: the loss frequency. (B) The SNP frequency of autophagy-related genes across SCCs. (C) The CNV frequency of ferroptosis-
related genes in SCCs. (D) The SNP frequency of ferroptosis-related genes across SCCs. (E) The location of autophagy-related genes on 23 chromosomes. (F) The
location of ferroptosis-related genes on 23 chromosomes.
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A B C

D

F G

E

FIGURE 3 | Cross-talk between autophagy and ferroptosis in SCCs at the molecular level. (A) Bubble diagram showing correlations between autophagy-related
genes and prognosis of SCCs using univariate cox regression analysis. Blue bubbles represented positive correlations with favorable survival outcomes and red
bubbles represented positive correlations with unfavorable prognosis. The size of the bubble showed the expression level of each gene. (B) Correlations between
ferroptosis-related genes and prognosis of SCCs. (C) Heatmap showing correlations between autophagy- and ferroptosis-related genes across SCCs at the mRNA
level. Positive correlation was marked with red and negative correlation with blue. *p<0.05; **p<0.01. (D) Alluvial diagram for the shared effects of autophagy- and
ferroptosis-related genes on prognosis of SCCs. (E) Venn diagram showing the common signals enriched by autophagy- and ferroptosis-related genes. (F) The PPI
network of the interactions between autophagy- and ferroptosis-related genes. (G) Correlations between API and FPI in SCCs using Spearman test.
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cytotoxic immune cells in the TME, tumors may be categorized
into immune-inflamed (also described as hot tumors), immune-
excluded, and immune-desert phenotypes (46). Immune-
excluded and immune-desert tumors are also named as “cold
tumors”. These data suggested that SCCs with high API may lack
innate immunity or innate antitumor immune features and
Frontiers in Immunology | www.frontiersin.org 8
autophagy could lead to “cold tumors”. TIDE score exhibits
the high accuracy in predicting cancer immunotherapy response
(32). Our analysis showed that TIDE score was significantly
decreased in high API samples (Figure 4G). These findings
indicated that autophagy might be involved in the
immunosuppression of SCCs. Chemotherapy resistance is the
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FIGURE 4 | The roles of autophagy on outcomes, TME, response to immunotherapy and chemosensitivity in SCCs. (A) Kaplan-Meier curves of overall survival for
SCCs patients with high and low API. P value was determined with log-rank test. (B) Differences in stromal scores between high and low API groups in SCCs
cohort. (C) Differences in tumor purity between high and low API groups. (D) Differences in the enrichment levels of immune cells and immune functions between two
groups. (E) Differences in the expression levels of HLA genes between two groups. (F) Differences in the expression levels of immune checkpoints between two
groups. (G) Differences in TIDE scores between two groups. (H, I) Differences in estimated IC50 values of (H) Gefitinib and (I) Vinblastine between two groups. Ns,
not significant; *p<0.05; **p<0.01; ***p<0.001.
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principal limitation of clinical oncology. High API samples were
more sensitive to Gefitinib (Figure 4H) and Vinblastine
(Figure 4I), indicating that autophagy could mediate resistance
to chemotherapy drugs.

The Roles of Ferroptosis on Prognosis,
TME, Response to Immunotherapy and
Chemosensitivity in SCCs
Wefirst explored the prognostic significance offerroptosis in SCCs.
As anticipated, patients with high FPI exhibited prolonged survival
duration (Figure 5A). High FPI was characterized by increased
immune score (Figure 5B) and lowered tumor purity (Figure 5C).
In Figure 5D, high FPI was significantly correlated to increased T-
cell infiltration, increased IFN-g response and decreased
immunosuppressive cells (such as macrophages), which was
present in immune-inflamed phenotype. Also, high FPI was
characterized by increased HLA expression (Figure 5E) and
increased immune checkpoint expression (Figure 5F). TMB is a
predictive biomarker for identifying patientsmost likely to respond
to immunotherapy (47). Low TMB was found in high FPI samples
(Figure 5G). Further analysis revealed that high FPI patients were
more sensitive to Gemcitabine (Figure 5H), Sunitinib (Figure 5I),
Vinblastine (Figure 5J) and Vorinostat (Figure 5K).

Synergistical Roles of Autophagy and
Ferroptosis on Prognosis and
Chemosensitivity of SCCs
According to FPI and API scores, SCCs patients were stratified
into four molecular patterns: high FPI + high API; high FPI + low
API; low FPI + high API; low FPI + low API. Prognosis analysis
revealed that patients with high FPI in concert with high API
exhibited a prominent survival benefit (Figure 6A), indicating that
autophagy and ferroptosis synergistically contributed to a
favorable prognosis. GSVA was performed to better illustrate
the biological behaviors of autophagy and ferroptosis.
Surprisingly, carcinogenic pathways and immunity were
remarkably enriched in high FPI and high API, indicating that
the crosstalk of autophagy and ferroptosis played a nonnegligible
role in ornamenting tumor immune microenvironment
(Figure 6B; Supplementary Table 6). Further analysis showed
that high FPI in concert with high API was linked to a better DFI,
DFS, DSS and PFI of SCCs (Figure 6C). Moreover, we sought to
determine the performance of the crosstalk of autophagy and
ferroptosis in predicting OS outcomes in HNSC, ESCC, LUSC and
CESC. As expected, patients with high FPI in concert with high
API were remarkably correlated to a better prognosis in each SCC
type (Figure 6D). We also observed that patients with high FPI in
concert with high API were more sensitive to Sunitinib, Gefitinib,
Vinblastine and Vorinostat (Figure 6E). Therefore, the crosstalk
of autophagy and ferroptosis was significantly relevant to SCCs
progression, recurrence, and chemotherapy resistance.

Synergistical Roles of Autophagy and
Ferroptosis Shape an Inflamed TME
High FPI and high API SCCs samples showed increased T-cell
infiltrations (such as CD8+ T cell, Tfh cell, Th2 cell and TIL) and
low immunosuppressive cell populations (such as macrophages;
Frontiers in Immunology | www.frontiersin.org 9
Figure 7A), indicating that crosstalk between autophagy and
ferroptosis might be involved in modulating immune cell
infiltration. Most immune checkpoints (LAG3, IDO1, CTLA4,
PD-1, TIGIT, CD200R1, CEACAM1, BTLA and ADORA2A)
were found to be up-regulated in high FPI and high API
samples (Figure 7B). Furthermore, our findings revealed that
high FPI in concert with high API was positively associated with a
majority of immunomodulators in SCCs (Figure 7C). Thus,
synergistical roles of autophagy and ferroptosis might shape an
inflamed TME of SCCs. Antitumor immunity is mediated to a
large extent by CD8+ T cells. Emerging evidence suggests that
autophagy and ferroptosis changes in CD8+ T cell metabolism
directly modulate anti-tumor immunity (48, 49). Hence, it is of
significance to comprehensively analyze the synergistical roles of
autophagy, ferroptosis and CD8+ T cell infiltration on SCC
prognosis. Combining CD8+ T cells, we found that patients with
low infiltration of CD8+ T cells and “others” experienced the worst
clinical outcomes (Figure 7D). The predictive efficacy of CD8+ T
cell, API, FPI and their combinations was evaluated by ROC
analysis. In Figure 7E, combination of CD8+ T cells, API, FPI
exhibited the best performance on predicting SCCs prognosis
(Supplementary Figure 6).

ESTIMATE algorithm was employed to quantify the overall
infiltration of immune cells and stromal cells in SCCs tissue. Our
results showed high FPI and high API samples were characterized
by increased immune score (Figure 8A) and low stromal score
(Figure 8B), which also confirmed that the crosstalk of autophagy
and ferroptosis was linked to immune cell infiltrations.
Furthermore, we found that tumors with high FPI in concert with
high API exhibited low TIDE scores (Figure 8C). This indicated
that the crosstalk of autophagy and ferroptosis might influence
response to immune checkpoint blockade for SCCs patients. High
expression of HLAs (HLA-DMA, HLA-DPB2, HLA-DPB1, HLA-
DQB2 andHLA-DOB)was found in SCCswith high FPI in concert
with high API (Figure 8D). The activities of the cancer immunity
cycle are the direct comprehensive performance of the functions of
the chemokine system and other immunomodulators (Figure 8E).
For specimens with high FPI in concert with high API, activities of
most of the steps in the cycle were found to be up-regulated,
including priming and activation (step 3), B cell recruiting (step
4), CD4+ T cell recruiting (step 4), CD8+ T cell recruiting (step 4),
dendritic cell recruiting (step 4), NK cell recruiting (step 4), T cell
recruiting (step 4), Th1 cell recruiting (step 4), Th2 cell recruiting
(step 4), Treg cell recruiting (step 4) and killing of cancer cells (step
7; Figures 8F, G). These data indicated that synergistical roles of
autophagy and ferroptosis might shape an inflamed TME in SCCs.

Bioactive Compounds for SCCs Treatment
Based on Autophagy- and Ferroptosis-
Related Genes
Mismatch repair deficiency (dMMR) leads to microsatellite
instability (MSI), which is in relation to response to immune- and
chemotherapies (50). We found that there was a distinct difference
in MSI status between high FPI + high API group and “others”
group (Figure 9A). Cancer stem cells (CSCs) are characterized by
differentiation, self-renewal, and homeostatic control, which
allowing tumor maintenance and spread. Increasing evidence has
February 2022 | Volume 12 | Article 739039
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demonstrated that recurrence and therapeutic resistance of SCCs
are attributed to CSCs (51). Here, this study quantified cancer
stemness by mRNAsi in SCCs. Increased mRNAsi was found in
SCCs specimens with high FPI in concert with high API
(Figure 9B). To further observe the potential biological behaviors
of the crosstalk between autophagy and ferroptosis, we identified
154 down- and 538 up-regulated genes in high FPI + high API
Frontiers in Immunology | www.frontiersin.org 10
group compared to “others” group (Figure 9C; Supplementary
Table 7). Potential drugs for SCCs treatment were predicted by
CMap based on these up and down-regulated tags, respectively.
Following the signature query, arecoline, ketotifen and viomycin
with the highest positive enrichment score were determined as
potential bioactive compounds for specifically activating autophagy
and ferroptosis (Supplementary Table 8). MoA analysis of
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FIGURE 5 | The roles of ferroptosis on prognosis, TME, response to immunotherapy and chemosensitivity in SCCs. (A) Kaplan-Meier curves of overall survival
for SCCs patients with high and low FPI. P value was determined with log-rank test. (B) Differences in immune scores between high and low FPI groups. (C) Differences
in tumor purity between high and low API groups. (D) Differences in the enrichment levels of immune cells and immune functions between two groups. (E) Differences in
the expression levels of HLA genes between two groups. (F) Differences in the expression levels of immune checkpoints between two groups. (G) Differences in TMB
scores between two groups. (H–K) Differences in estimated IC50 values of (H) Gemcitabine, (I) Sunitinib, (J) vinblastine and (K) vorinostat between two groups. Ns, not
significant; *p<0.05; **p<0.01; ***p<0.001.
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predicted compounds demonstrated mechanisms of action shared
by the compounds (Figure 9D). Three compounds (orciprenaline,
oxymetazoline and terbutaline) shared the MoA of adrenergic
receptor agonist and three compounds (oxprenolol, labetalol and
tolazoline) shared adrenergic receptor antagonist.
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Generation of a Prognostic Model
Combining Autophagy
and Ferroptosis
Our functional enrichment analysis showed that autophagy- and
ferroptosis-related genes were significantly enriched in
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FIGURE 6 | Synergistical roles of autophagy and ferroptosis on prognosis and chemosensitivity of SCCs. (A) Overall survival analysis for SCCs patients stratified by
both API and FPI using Kaplan-Meier curves. P value was calculated with log-rank test. (B) Differences in signaling pathways between high FPI + high API group and
“others” group in SCCs cohort. The “others” indicated the remaining patients with SCCs except for those with high FPI + high API. (C) Kaplan-Meier curves of DFI,
DFS, DSS and PFI in patients with high FPI + high API and “others”. (D) Overall survival analysis for HNSC, ESCC, LUSC and CESC patients with high FPI + high
API and “others”. (E) Differences in estimated IC50 values of Sunitinib, Gefitinib, Vinblastine and Vorinostat between two groups.
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extracellular matrix (ECM), cancer-related pathways (PI3K-Akt
signaling pathway, MAPK signaling pathway, EGFR tyrosine
kinase inhibitor resistance, transcriptional misregulation in
cancer and estrogen signaling pathway) and ferroptosis
(Figure 10A), indicating the potential clinical implications of
these genes. Among all autophagy- and ferroptosis-related genes,
138 were significantly associated with prognosis of SCCs patients
using univariate Cox regression analysis (Supplementary
Table 9). With the LASSO Cox regression method, 22 optimal
candidate genes were selected with the minimum lambda
Frontiers in Immunology | www.frontiersin.org 12
(Figures 10B, C). A risk score model was created based on the
expression and coefficients of the candidate genes
(Supplementary Table 10). In TCGA cohort, SCCs patients
were stratified into high-risk group (n=657) and low-risk group
(n=657) with the median risk score as the cutoff value. In
Figure 10D, patients with high risk indicated worse OS time
compared to those with low risk. The AUC of the risk score was
0.677 (Figure 10E). We further investigated the prognostic value
of the risk score in each SCC type. High risk scores were
distinctly correlated to poorer prognosis for HNSC
A
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D E

FIGURE 7 | Synergistical roles of autophagy and ferroptosis on immunity and survival outcomes of SCCs. (A) Heatmap showing the differences in immune cell
infiltrations and immune functions in patients with high FPI + high API group and “others” group. The “others” indicated the remaining patients with SCCs except for
those with high FPI + high API. (B) Heatmap of the expression levels of immune checkpoints in patients with high FPI + high API group and “others”. (C) Differences
in the expression levels of 122 immunomodulators (chemokines, receptors, MHC, and immunostimulatory factors) between high FPI + high API and “others” groups
in SCCs. (D) Overall survival analysis for SCCs patients stratified by API, FPI and CD8+ T cells using Kaplan-Meier curves. P value was determined with log-rank test.
(E) Predictive accuracy of API, FPI, CD8+ T cells or combinations according to the area under the ROC curves.
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(Figure 10F), ESCC (Figure 10G), LUSC (Figure 10H) and
CESC (Figure 10I). The well predictive performance was also
observed in each SCC type (Figures 10J–M). After removing
batch effects (Figure 11A), three external datasets (GSE17710,
GSE44001 and GSE65858) were employed to confirm the
excellent predictive accuracy of the risk score in SCCs
prognosis (Figures 11B, C). Furthermore, we found that the
risk score was a promising prognostic panel for each SCC type
(Figures 11D–I).
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Synergistical Roles of Autophagy and
Ferroptosis on Gefitinib Sensitivity and
Tumor Progression in SCCs
We further validated the synergistical roles of autophagy and
ferroptosis on gefitinib resistance and tumor progression in SCCs
through in vitro experiments. Two SCC cell lines KYSE410 and
KYSE450 were exposed to ferroptosis agonist Erastin and
autophagy agonist Rapamycin to confirm the crosstalk between
autophagy and ferroptosis in SCCs. Our western blotting results
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FIGURE 8 | Synergistical roles of autophagy and ferroptosis shape an inflamed TME of SCCs. (A–C) Differences in (A) immune score, (B) stromal score and (C)
tumor purity between high FPI + high API and “others” groups in SCCs. The “others” indicated the remaining patients with SCCs except for those with high FPI
+ high API. (D) Differences in the expression of HLA genes between patients with high FPI + high API and “others”. (E) Schematic diagram of the cancer
immunity cycle. (F, G) Differences in the activity of the steps of the cancer immunity cycle between high FPI + high API and “others” groups in SCCs. Ns, not
significant; *p<0.05; **p<0.01; ***p<0.001.
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showed that both Erastin and Rapamycin significantly enhanced
the expression of autophagy-related proteins including LC3II/I
(Figures 12A–C), ATG-3 (Figures 12D, E) and ATG-3
(Figures 12F, G). Additionally, both Erastin and Rapamycin
Frontiers in Immunology | www.frontiersin.org 14
significantly increased the expression of ferroptosis-related
protein FTG1 (Figures 12H, I) but reduced the expression of
ferroptosis inhibitor GPX4 (Figures 12J, K). As expected, co-
treatment of Erastin and Rapamycin synergistically prominently
A C
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D

FIGURE 9 | Synergistical roles of autophagy and ferroptosis on MSI status and cancer stemness and prediction of potential bioactive compounds for SCCs treatment. (A)
Differences in MSI status between high FPI + high API and “others” groups in SCCs. (B) Differences in mRNAsi between groups in SCCs. (C) Heatmap of the expression of
DEGs between high FPI + high API and “others” groups. Red indicated high expression and blue indicated low expression. The gender, age, grade, stage, T, N, M and
SCCs type were used as patient annotations. (D) Heatmap for each compound (perturbagen) from the CMap that shared a MoA (rows) based on autophagy- and
ferroptosis-related genes, ranked by descending number of compounds with a shared MoA.
February 2022 | Volume 12 | Article 739039

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Autophagy and Ferroptosis on TME
A

B C D E

F G H I

J K L M

FIGURE 10 | Biological functions of autophagy- and ferroptosis-related genes and development of a prognostic model for SCCs. (A) Functional annotation analysis
showing the biological functions and pathways involving autophagy- and ferroptosis-related genes. (B) Cross-validation for turning parameter selection by the
minimum criteria in the LASSO regression model. Two dotted vertical lines were depicted at the optimal values based on the minimum criteria. Totally, 22 optimal
DEGs with the best discriminative ability were selected for establishing the model. (C) LASSO coefficient profiles of 138 prognostic DEGs in SCCs. The coefficient
profiles were plotted according to the log (Lambda) values. (D) Kaplan-Meier curves of overall survival for patients with high and low risk. P value was determined
with log-rank test. (E) Assessment of the predictive accuracy of the model for survival of SCCs patients from TCGA cohort according to the area under ROC curves.
(F–I) Survival analysis for the two groups in (F) HNSC, (G) ESCC, (H) LUSC and (I) CESC patients from TCGA cohort. (J–M) Predictive accuracy of the model for
survival of (J) HNSC, (K) ESCC, (L) LUSC and (M) CESC patients.
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enhanced autophagy and ferroptosis in KYSE410 and KYSE450
cells. Our cell viability assays demonstrated that both Erastin and
Rapamycin reduced the gefitinib IC50 values than control cells
(Figures 12L, M). Additionally, we observed the synergistical
roles of Erastin in concert with Rapamycin on gefitinib
sensitivity. EdU staining (Figures 12N–P) and transwell
(Figures 12Q–U) assays demonstrated that proliferation,
migration and invasion were remarkedly suppressed by Erastin
or Rapamycin in KYSE410 and KYSE450 cells. Also, there were
synergistical roles of Erastin and Rapamycin on inhibiting
Frontiers in Immunology | www.frontiersin.org 16
proliferation, migration and invasion of KYSE410 and
KYSE450 cells. Above evidence confirmed the synergistical
roles of autophagy and ferroptosis on gefitinib sensitivity and
tumor progression in SCCs.
DISCUSSION

Autophagy, a lysosome-dependent catabolic process, promotes cell
survival and accelerates cellular demise (12). Ferroptosis, an iron-
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FIGURE 11 | Validation of the autophagy- and ferroptosis-related prognostic model for SCCs in external cohorts. (A) Principal component analysis showing the
batch effects removed for three external cohorts: GSE17710, GSE44001 and GSE65858. (B, C) Validation of the predictive accuracy of the model for SCCs
prognosis using integrated three datasets. (D–F) Validation of the overall survival of (D) HNSC, (E) LUSC and (F) CESC patients with high and low risk using Kaplan-
Meier curves. (G–I) Validation of the predictive efficacy of the model for (G) HNSC, (H) LUSC and (I) CESC patients based on the area under ROC curves.
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FIGURE 12 | Synergistical roles of autophagy and ferroptosis on gefitinib sensitivity and tumor progression in SCCs. (A–K) Detection of the expression of
autophagy-related proteins including LC3II/I, ATG-5 and ATG-7 as well as ferroptosis-related proteins including FTH1 and GPX4 in KYSE410 and KYSE450 SCC
cells exposed to Erastin and/or Rapamycin through western blotting. (L, M) Cell viability of KYSE410 and KYSE450 cells under treatment with Erastin and/or
Rapamycin by MTT assay. (N–P) Measurement of proliferation of KYSE410 and KYSE450 cells treated with Erastin and/or Rapamycin by EdU staining. Scale bar, 50
mm and magnification, 200×. (Q–U) Detection of migration and invasion of KYSE410 and KYSE450 cells following administration with Erastin and/or Rapamycin
using transwell assay. Scale bar, 50 mm and magnification, 200×. Ns, not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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dependent cell death type, is in relation to the accumulationof lethal
reactive lipid species (52). Recent experiment findings indicate that
ferroptosis could occur while sharing common pathways or
regulators with autophagy (15). Consistent with published
research, this study comprehensively uncovered the close
crosstalk between autophagy and ferroptosis at the molecular
level (18). Moreover, their interplay was closely related to TME,
immunity, chemotherapy resistance and survival outcomes
of SCCs.

Herein, we quantified FPI andAPI for reflecting ferroptosis and
autophagy levels in SCCs viaPCAmethod. Their synergistical roles
contributed to favorable survival outcomes of SCCs. The TME that
is mainly composed of cancer cells, immune cells, and other
components may mediate SCCs development and therapeutic
response (53). Novel anticancer therapeutic strategies are
required to target the pathways and molecular communications
between cancer cells and the surrounding immune cells in the TME
(54). Although previous experiment findings have reported the
interplay between autophagy, ferroptosis and anti-tumor
immunity, there is still lack of evidence from human SCCs
specimens that may hinder the clinical translation (16). We found
that autophagy in concert with ferroptosis participated in shaping
an inflamed TME in human SCCs. Immune cells such as CD8+ T
cells are related to favorable prognosis of patients and increased
curative effects of immunotherapy (55). Herein, we found that high
CD8+ T cell infiltration in concert with high FPI and high API
indicated undesirable survival outcomes of SCCs and their
combination displayed the well predictive efficacy in SCCs
prognosis. Recent experiments have reported that CD8+ T cells
may inhibit tumor growth through inducing ferroptosis and
autophagy (48). ICI therapy may be combined with other
strategies that transform “cold tumors” to “hot tumors”, which
may increase sensitivity to ICI therapy. Tumors usually induce
immune checkpoint expression for avoid being detected and killed
by the host immune system (56). Therapies with anti-PD-1, anti-
PD-L1, or anti-CTLA-4 reinvigorate T cells as well as allow the
adaptive immune system thereby targeting cancer cells. Our data
indicated that the induction offerroptosis and autophagy combined
with ICIs might produce synergistically enhanced antitumor
activity for SCCs. Resistance to chemotherapy and molecular
targeted therapies is a major problem facing current cancer
research, which severely limits the effectiveness of cancer
therapies. We found that synergistical roles of autophagy and
ferroptosis may improve the sensitivity to sunitinib, gefitinib,
vinblastine and vorinostat for SCCs patients. Taken together, the
induction of autophagy and ferroptosis combinedwith immune- or
chemotherapiesmight produce synergistically enhanced anti-SCCs
activity. ByCMapdatabase, this study predicted arecoline, ketotifen
and viomycin with the highest positive enrichment score as
potential small molecule compounds for specifically activating
autophagy and ferroptosis. Our in vitro experiments showed that
ferroptosis agonist Erastin and autophagy agonist Rapamycin
synergistically enhanced the sensitivity to gefitinib and
suppressed cell proliferation, migration and invasion in SCCs
cells, indicating the synergistical roles of autophagy and
ferroptosis on gefitinib sensitivity and tumor progression in SCCs.
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To facilitate personalized prediction of the prognosis of SCCs
patients, we established a prognostic model based on 22
autophagy- and ferroptosis-related genes utilizing the LASSO
algorithm to improve predictive accuracy for SCCs. Following
external verification, this prognostic model possessed the well
performance in predicting patients’ prognosis. Nevertheless, this
model will be validated in a prospective cohort.
CONCLUSION

Collectively, our bioinformatic analysis uncovered the interplay
between autophagy and ferroptosis and their synergistical roles
on prognosis, TME, immunity, and chemotherapy resistance in
SCCs. The concomitant induction of autophagy and ferroptosis
may be a promising strategy for treating SCCs. Although we
predicted several bioactive compounds, potent drugs that
function in activating autophagy and ferroptosis should be
designed in future studies. Furthermore, clinical trials that treat
patients with approved drugs that specifically activate autophagy
and ferroptosis with the concomitant utilization of ICIs will be
carried out in the future.
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