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Graphical Abstract

• A comprehensive single-cell transcriptome landscape of human oesophageal
high-grade neoplasia.
• Basal layer cells are heterogeneous by transcriptome and location:
KRT15highSTMN1low and KRT15highSTMN1high cells, which are located mainly
at interpapillary zone and papillary zone, respectively.
• HIN probably originated from slow-cycling KRT15highSTMN1low cells.
• HIN is slightly biased in the transcriptome, which may change dramatically in
tumour invasion stage.
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Abstract
Background: High-grade intraepithelial neoplasia (HIN) is the precursor of
oesophageal squamous cell carcinoma. The molecular and functional properties
of HIN are determined by intrinsic origin cells and the extrinsic microenviron-
ment. Yet, these factors are poorly understood.
Methods: We performed single-cell RNA sequencing of cells from HINs and
adjacent tissues from the human oesophagus. We analysed the heterogeneity
of basal layer cells and confirmed it using immunostaining. Aneuploid cells in
HIN were studied using primary cell culture combined with karyotype analysis.
We reconstructed the lineage relationship between tumour and normal popula-
tions based on transcriptome similarity. Integration analysis was applied to our
epithelial data and published invasive cancer data, and results were confirmed
by immunostaining and 3D organoid functional experiments. We also analysed
the tumour microenvironment of HIN.
Results: The basal layer contained two cell populations: KRT15highSTMN1low

and KRT15highSTMN1high cells, which were located mainly in the interpap-
illary and papillary zones, respectively. The KRT15highSTMN1low population
more closely resembled stem cells and transcriptome similarity revealed that
HIN probably originated from these slow-cycling KRT15highSTMN1low cells. 3D

Abbreviations used in this paper: ABC, active-cycling basal cell; BLC, basal layer cell; DEG, differentially expressed gene; ESCC, oesophageal
squamous cell carcinoma; HIN, high-grade intraepithelial neoplasia; IBL, interpapillary basal layer; PBL, papillae basal layer; SBC, slow-cycling basal
cell; scRNA-seq, single-cell RNA sequencing.
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Organoid experiments and RNA-sequencing showed that basal-cell features and
the differentiation ability of the normal epithelium were largely retained in
HIN, but may change dramatically in tumour invasion stage. Moreover, the
tumour microenvironment of HIN was characterised by both inflammation and
immunosuppression.
Conclusions: Our study provides a comprehensive single-cell transcriptome
landscape of human oesophageal HIN. Our findings on the origin cells and
unique microenvironment of HIN will allow for the development of strategies
to block tumour progression and even prevent cancer initiation.

KEYWORDS
heterogeneity, high-grade intraepithelial neoplasia, single-cell RNA sequencing, tumour origin

1 INTRODUCTION

High-grade intraepithelial neoplasia (HIN) is a precur-
sor to oesophageal squamous cell carcinoma (ESCC). It
harbours mutations and genomic instability similar to
ESCC1 and is associated with a very high risk of ESCC.
In patients with HIN, the cumulative incidence of ESCC is
up to 73.9–75.0% during a median follow-up of 13.5 years.2
Over the past decade, a large number of HINs have been
detected and treated using cutting-edge endoscopic tech-
niques, which is recognised in an effort to reduce ESCC
mortality.3 As a consequence, the demand for early preci-
sion diagnosis and personalised treatments has increased
exponentially. This demand emphasises the urgent need to
investigate the cellular andmolecular characteristics of the
initiation and early development of HIN.
Bulk resolution sequencing and missing single-cell pro-

files reveal that humanHIN and ESCC carry similar muta-
tions and copy number variations (CNVs). Mutations in
TP53 and CNV gains on chromosome 3q may be early
events in such carcinomas.1,4 These studies provide valu-
able insights into oesophageal HIN. Additionally, research
has suggested that mouse oesophageal HIN may origi-
nate from basal layer cells (BLCs).5–8 Yet, there is signifi-
cant heterogeneity between BLCs inmouse9–13 and human
esophagus,11,14–17 and it would be presumptuous to suggest
that human and rodent neoplasias behave similarly. In a
carcinogen-induced murine model, an immune response
transition from TH1 to TH17 may promote the early pro-
gression of HIN.18 Yet, this model cannot be entirely con-
sistent with the chronic nature of human HIN, which has
not been deliberately induced. Hence, due to the substan-
tial species differences between rodents and humans (e.g.
the mouse oesophagus lacks papillae), the cellular and
molecular features of human oesophageal HIN are not
fully understood. This emphasises the importance of high-
resolution research on human oesophageal HIN tissues.

To address these issues, we applied single-cell RNA
sequencing (scRNA-seq) to cells from HIN tissues and
adjacent normal tissues of the human oesophagus and
generated a comprehensive transcriptome atlas. Our data
provided novel and solid evidence for the heterogene-
ity of oesophageal BLCs, by transcriptome and location.
By analysing and comparing the transcriptome profiles
of HIN and normal squamous epithelial cells, we deter-
mined the specific cellular origin of human HIN. More-
over, we found the multistep changes in the transcrip-
tome of tumour early stage,which are important for under-
standing HIN initiation and early progression. We fur-
ther depicted the microenvironment ecosystem of non-
epithelial cells, which was different from that of mouse
HIN and human ESCC. Our study provides orthogonal
lines of evidence for early precision diagnosis and preven-
tion strategies for human oesophageal HIN at the cellular
andmolecular level, which will also have important impli-
cations in the prevention of ESCC.

2 METHODS

2.1 Ethics statement and human
biospecimen collection

Human oesophageal tissues were obtained from Xinqiao
Hospital (Chongqing, China), with written informed con-
sent. The study was approved by the Medical Ethics Com-
mittee of Xinqiao Hospital of the Army Medical Univer-
sity, PLA (NO.2019-100-01), in accordance with the Dec-
laration of Helsinki. Immediately after the samples were
obtained (ten HINs from endoscopic mucosal dissection,
one HIN, and nine adjacent tissues from biopsy), part of
the fresh HIN tissues were dissected for enzymatic diges-
tion into single cells as described below, and the remain-
ing tissues were fixed with 4% paraformaldehyde solution
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and embedded in paraffin. The adjacent normal tissues
were measured to be approximately 3 cm from the tumour
edge usingNarrowBand Imaging combinedwithMagnify-
ingChromoendoscopy. Separately pairedHINand invasive
cancer samples were used for primary cell culture (includ-
ing organoid culture) and subsequent karyotype analysis.
The histological results were independently validated by
two experienced pathologists.

2.2 Preparation of single-cell
suspensions

HIN tissues for scRNA-seq were washed with phosphate-
buffered saline (PBS; Thermo Fisher Scientific), cut into
small pieces (<1 mm3) on ice and digested using a Tumor
Dissociation Kit (Miltenyi Biotec, 130-095-929), according
to the manufacturer’s instructions. After filtration, the cell
pellet was collected by centrifugation at 500 g for 5 min
at 4◦C. The cell pellet was then washed three times in
wash buffer (0.32 M of sucrose; Sigma-Aldrich, and 5 mM
of CaCl2, Sigma-Aldrich, 10043-52-4) and resuspended in
a storage buffer (0.43 M of sucrose; Sigma-Aldrich, and
70 mM of KCl; Ambion, AM9640G). Next, the cells were
counted and assessed for viability using trypan blue stain-
ing with a haemocytometer.

2.3 scRNA-seq library preparation and
pre-processing

scRNA-seq was performed using the 10× Genomics
Chromium Single-Cell 3′ Kit (v.2) according to the manu-
facturer’s instructions. The sequencing readsweremapped
to the hg38 human reference genome built using Cell
Ranger v.3.1.0 (10× Genomics), and count tables of unique
molecular identifiers (UMIs) were generated for each
gene per cell. We performed principal component analy-
sis (PCA) and uniform manifold approximation and pro-
jection (UMAP) dimensionality reductionwith Seurat. The
Seurat functions ‘FindNeighbors’ and ‘FindClusters’ were
used to identify clusters of cells with similar transcrip-
tomes based on their PCs (resolution = 0.5).

2.4 Quality control and normalisation
of single-cell data

The Seurat R package (v.3.0.2) was used to calculate quality
controlmetrics.19 Cells withmaximum valueUMIs greater
than 90%, and less than 200 genes per cell were removed.
Cells with a mitochondrial expression percentage greater
than 25% were also removed. We normalised using the

NormalizeData function from Seurat with parameters:
‘scale.factor= 1000; normalization.method= LogNormal-
ize’. We removed the batch effect using the canonical cor-
relation cnalysis (CCA) and mutual nearest neighbours
(MNNs) approaches and integrated the batches.

2.5 Identification of the major
populations and their subpopulations

Following normalisation, 2000 highly variable genes were
used as input for PCA. The first 30 principal compo-
nents were estimated using elbow plots. These principal
components were then used to calculate UMAP embed-
dings and cell clusters were identified based on their PCs,
resolution = 0.5. We annotated the major populations
using marker genes in conjunction with canonical cell
type markers.20–22 Especially, different highly proliferat-
ing cell types (MKI67 and TOP2A) were clustered together
for their proliferative activity. After reclustering the main
populations with the same technique described above, we
manually defined the subpopulations according to marker
genes and cell typemarkers from the literature. Subpopula-
tions with unexplained differentially expressed genes were
defined as ‘unknown’ and removed from further analysis.
Their marker genes are not canonical cell-type markers of
major populations. For example, cells with high expres-
sion of DCNandCOL1A2 genes, which are often present in
fibroblasts, appeared in the myeloid subpopulations. The
number of cells in these subpopulations was low and there
was no significant difference between tumour and normal
cells in these subpopulations.

2.6 Differentiation potential evaluation
and transition trajectories analysis

Rpackage cytoTRACE (v.0.3.3)23 was used to assess the dif-
ferentiation potential of cells using scRNA-seq data and
cell populations with high differentiation potential were
selected as the starting point for the trajectory.24 Diffu-
sion map embeddings were calculated using the destiny
R package25 (v.3.4.1). Slingshot R package26 (v.1.8.0) was
used to construct single-cell transition trajectories based
on cell populations identified by Seurat. The monocle2 R
package27 (v.2.18.0) was used to verify the trajectories.

2.7 Transcription factor activity
analysis in single cells

Transcription factor (TF) activity analysis was conducted
as described by Aibar et al.28 We used the pySCENIC
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(version 0.11.2), which including RcisTarget, GRNboost
and AUCell function, to search against the hg38_refseq-
r80_500 bp_up_and_100 bp_down_tss databases (https://
resources.aertslab.org/cistarget/) for predicting TF activ-
ity. The inputmatrix was the normalised expressionmatrix
from Seurat.

2.8 Discrimination between malignant
and non-malignant cells

Weused the R package copyKAT (v.1.0.4) to identifymalig-
nant cells as described by Gao et al.29 Briefly, copyKAT
combines a Bayesian approach with hierarchical cluster-
ing to calculate aneuploid copy number events from single
cells, which is a unique property of solid tumour cancer
cells. We also used the R package inferCNV30 (V1.6.0) to
identify copy number alterations, which were referenced
to fibroblasts. A few cells from normal cells were identified
as malignant by inferCNV.

2.9 Gene set variation analysis (GSVA)

Gene sets were downloaded from the Molecular Signa-
ture Database (MSigDB)31 and Cancer Single-cell State
Atlas (CancerSEA).32 The pathway scores of each cell
were calculated using the GSVA function in the GSVA
package33 (version 1.38.2) anddifferential pathway analysis
was assessed by the limma R software package34 (version
3.46.0).

2.10 Activities of metabolic pathways

Metabolism-related gene sets (from KEGG) were
downloaded from the Molecular Signature Database
(MSigDB).31 Sincemetabolite concentration andmetabolic
flow information were not detected in scRNA-seq data,
we referred to Tao Zhang’s35 method to indirectly evaluate
the metabolic activity of single cells. For this, we evalu-
ated the mean expression level of the metabolic gene to
characterise the metabolic activity of individual cells.

2.11 Hierarchical clustering

To study hierarchical relationships among cell clusters, the
Euclidean distance was calculated based on the average
expression of each cluster. The ward.D2 clustering method
within the hclust function was used to build a dendrogram
of the clusters.

2.12 Tissue preference analysis

To quantify the tissue preference of each cell cluster, we
used the cell number ratio (observed/expected) tomeasure
the enrichment of cells as described by Zhang et al.36 Given
the sample’s contingency table by clusters, we first applied
a chi-square test to assess whether the cell distribution of a
sample across clusters or subclusters deviates significantly
from random expectations. Then, we calculated the Ro/e
values for each sample and cluster/subcluster combination
as follows: Ro/e = observed/expected (where ‘observed’ and
‘expected’ represent the observed and expected cell num-
ber of a given cluster and sample combination, respec-
tively). The Ro/e indicates whether a certain sample of
cells is more abundant in a particular cluster or subcluster,
and removes the technical variations in estimating tissue
preference.36–38

2.13 Cell–cell communication analysis

The python package CellPhoneDB (v.2.1.7) was used
to analyse potential interactions across different cell
clusters.39 Enriched ligand–receptor interactions between
any two cell clusters were determined by evaluating the
normalised expression levels of annotated ligands and
receptors. We defined relevant ligand–receptor interac-
tions only for interactions with values ≥1 with p-values ≤

0.05. Specifically, we used the difference value of interac-
tion means to show the difference between HIN and nor-
mal cells. We also used the R package scMLnet (v.0.1.0)
to predict how the microenvironment regulated FOXP3 in
Tregs (as described by Cheng et al.40).

2.14 Integration analysis of single-cell
data of invasive cancer cells and our data

The expression data of epithelial cells and invasive can-
cer cell data downloaded from GSE160269_(P1T-E, P107T-
E, P16T-E, P128T-E, P130T-E, P126T-E and P127T-E) were
read and merged using Seurat R package. We then anal-
ysed the integrated data according to the steps described
above.

2.15 Immunohistofluorescence
detection

Formalin-fixed paraffin-embedded sections (3 mm) of
human oesophageal epithelial tissues and organoids were
detected by immunofluorescent staining with antibodies

https://resources.aertslab.org/cistarget/
https://resources.aertslab.org/cistarget/
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(Abcam) shown in Table S2. The sections were incu-
bated with antibodies against KRT15 (1:200, ab80522; 1:50,
ab52816), KRT19 (1:200, ab52625), STMN1 (1:2000, ab52630)
and KRT13 (1:2000, ab16112). The sections were coun-
terstained with DAPI (1:2000, G1012) to visualise the
nuclei.

2.16 Primary cell culture

Fresh tissues from HIN (n = 3, by endoscopic dissection),
adjacent normal tissues (n = 3, by biopsies) and invasive
cancer (n= 3, by biopsies) were obtained from six patients.
The tissues were washed with Sample Diluent (PreceDo
Pharmaceuticals Co. Ltd., #03-0001-D.Rs), cut into small
pieces (1–2 mm3) on ice and digested using enzymes (Pre-
ceDo Pharmaceuticals Co. Ltd., #02-0001-D.Es) according
to the manufacturer’s instructions. After filtration, the cell
pellet was collected by centrifugation at 1500 rpm for 3min
at room temperature. The cell suspension was counted
and assessed for viability using trypan blue staining with
a haemocytometer. Next, the single-cell suspension was
cultured in Esophagus Carcinoma Cell Medium (PreceDo
Pharmaceuticals Co. Ltd., #00-F0006-CM) with 3T3 cells
(irradiated with γ rays [40 Gy]).

2.17 Karyotype analysis

Primary cells (as described above) were cultured at 37◦C in
a humidified atmosphere of 5% CO2. The culture was con-
tinued for 2–4 h after adding colchicine (Sangon Biotech,
A600322-0100), and the final concentration of colchicine
reached 0.1–0.2 μg/mL. Cell division was halted at the
metaphase stage of mitosis and chromosomal slides were
prepared. Videotest–karyo software was used to perform
karyotyping.

2.18 Organoid cultures

We employed the method described by Kijima et al.41 to
generate 3D organoids. To ensure the tumour identity of
HIN cells, we used primary cells with confirmed kary-
otypes (aneuploidy) to generate organoids (as described
above). Cells were suspended in DMEM/F12 medium
(Gibco, 11330-032) and plated inMatrigel (Corning, 356231)
on ice. After solidification at 37◦C, Esophagus Carcinoma
Organoid Medium (PreceDo Pharmaceuticals Co. Ltd.,
#00-F0006-OGM) was added to the culture at 37◦C and
replenished every 5 days.

2.19 Quantification of STMN1high signal
in oesophageal KRT15high basal cells

Slides of normal oesophageal tissue (KRT15/STMN1
double-stained) were recorded using the Pannoramic
MIDI II (3DHISTECH Ltd). We manually distinguished
between the papillary and interpapillary regions on three
slides and obtained cell percentages. Then, a bar chart
was generated by importing the cell percentages into
GraphPad Prism (V 6.07).

2.20 Statistical analysis

Functions t-test from R (V 4.0.3) was used to analyse tissue
preference based on Ro/e values. p < 0.05 was considered
statistically significant. Other statistical methods used are
described in the figure legends.

3 RESULTS

3.1 A single-cell transcriptome
landscape of human oesophageal HIN

To examine the cell populations and molecular features
of HIN, 10× scRNA-seq was performed on 20 endoscopic
resections collected from 11 patients withHIN, including 11
HINs and 9 matched adjacent tissues (Figure 1A). Clinical
and histopathological characteristics are summarised in
the Supporting Information (Figure S1 and Table S1). Fol-
lowing quality filtering, 103 382 cells were retained for sub-
sequent analysis, which detected a median of 1688 genes
and 4963 UMIs per cell, similar to previous studies.20,42
To define the cell population structure, all cells were

first divided into 24 clusters and assigned to ten cell
types based on canonical markers. These included epithe-
lial cells (KRT5, KRT19 and SFN), fibroblasts (COL1A1,
SFRP2, MMP2 and DCN), smooth muscle cells (ACTA2
and MYH11), vascular endothelial cells (PECAM1, ENG
and PLVAP), lymphatic endothelial cells (PECAM1 and
LYVE1), myeloid cells (CD68 and CD14), mast cells (CPA3
and TPSB2), B/plasma cells (CD79A and MS4A1) and
T/NK cells (CD3D, CD3E and NKG7) (Figures S2A and
S2C). Notably, different highly proliferating cell types
(MKI67 andTOP2A)were clustered together. Nohistology-
specific populations were identified (Figure 1B, Figure
S2B).
Compared with normal human tissue from the human

cell landscape (HCL), which is a valuable and well-
annotated scRNA-seq database, immune cells, particularly
T/NK cells, were far more abundant. The proportion of
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F IGURE 1 The features of human oesophageal HIN and adjacent normal tissues by single-cell RNA sequencing. (A) Workflow shows
experimental design and analysis. (B) Integral UMAP plots show all 51 defined clusters (middle), lesion-derived cells (left) and adjacent
normal-derived cells (right). The text on the right panel shows the names of all clusters/subclusters. The major clusters were named after
classical cell types. Subclusters were named after classic function markers or highly expressed genes. In case of multiple subclusters, another
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immune cells in human HIN, about 80%, was notably
higher than in the HIN/ESCC mouse model, where it was
about 45%.18 Moreover, the B/plasma cell proportion in
humanHINwas significantly higher than in humanESCC,
but therewas no statistically significant difference between
HIN and adjacent tissues (Figures 1D–1E, Figure S3).
We next performed unsupervised clustering for each cell

type. Some clusterswere defined based on initial results for
their comparable enrichment (Figure 1E). A few subclus-
ters were defined as ‘unknown’ for unexplained differen-
tially expressed genes (DEGs). Overall, we defined 51 clus-
ters, according to their canonical markers and specific sig-
natures (Figure 1C). The cluster tissue preferencewas illus-
trated based on RO/E36 (Figure 1E). Some clusters, such as
Treg cells (T04 and T05) and monocytes (M07 and M10),
were lesion-enriched; some others, such as dendritic cells
(M04, M05 and M06) (Figure 1E), were normal-enriched.

3.2 Heterogeneity of normal
oesophageal BLCs

Studies in mouse models indicate that HIN originates
from BLCs,5,7,8 but the heterogeneity of BLCs in mouse9–13
and human esophagus11,14–17 is controversial. To investi-
gate the cellular origin of human HIN, we firstly focused
on the cellular hierarchies of normal squamous epithe-
lial cells. We identified six subclusters from the unsu-
pervised clustering of epithelial cells from adjacent nor-
mal tissues (Figure 2A). Further, we defined four types
of squamous epithelial cells, based on TOP DEGs and
known markers. Normal-01 carried high levels of basal
markers, such as KRT15, TP63 and ITGB4, but low lev-
els of proliferation-related genes, indicating that they were
slow-cycling basal cells (SBCs). Normal-02 was marked by
cell-cycle regulatory genes in addition to basal markers,
such as STMN1, MKI67 and BIRC5, representing active-
cycling basal cells (ABCs). Normal-03 and Normal-04 rep-
resent early- and late-differentiated cells, respectively, car-
rying different levels of differentiation-related markers,
such as CD24, KRT13 andHOPX (Figures 2A–2B). Normal-
02 co-expressed the basal marker, KRT15, and mild lev-

els of the early differentiation marker, KRT13, suggest-
ing that these ABCs were committed to differentiation.
Although Normal-05 showed columnar glandular epithe-
lial features, for example, KRT7, KRT8, KRT18 and so on
(Figures S4A–S4B), it was extremely close to the basal
cells (Figure 2A). Immunostaining showed that submu-
cosal glandular epithelium express KRT19 but no KRT15
(Figures S4C–S4D), validating the glandular cell iden-
tity of Normal-05. Normal-06 was a separate cluster that
possessed the characteristic of an immune population
(Figure 2A, Figures S4A–S4B).
Next, we selected DEGs as markers and investigated

their locations by immunostaining (Figure 2C, Figure
S4E). We noted that KRT15high cells were confined
mainly to the basal layer but were different between the
interpapillary basal layer (IBL) and papillae basal layer
(PBL). IBL was dominated by KRT15highSTMN1low
cells (Normal-01), while PBL was populated with
KRT15highSTMN1high cells (Normal-02) (Figures 2C–
2D). Notably, KRT15highSTMN1high cells were occasionally
observed in the epibasal layer of IBL (Figure 2C), further
supporting the notion that ABCs may commit to early dif-
ferentiation. The data indicate that both the transcriptome
and the location of BLC populations are heterogeneous.
We applied pseudotime analysis to investigate nor-

mal differentiation dynamics; normal differentiation is
commonly blocked in tumours. Prior to this, an analysis
based on differentiation potential (‘stemness’) was used to
objectively determine differentiation origin (Figure 2E).
SBCs showed the highest differentiation potential and
were therefore placed at the root of the differentia-
tion hierarchy24 (Figure 2F). This also indicated that
KRT15highSTMN1low populations may be closer than other
populations to stem or progenitor cells. Pseudotime tra-
jectories showed that SBCs gave rise to early differentiated
cells (Normal-03), and then transitioned to late differ-
entiated cells (Normal-04). Like SBCs, ABCs had lower
differentiation scores (DC1 scores) but bifurcated to attain
their proliferative features. This differentiation trajectory
was also supported by Monocle2 analysis (Figure S5). We
also inferred TF activity (Figure 2G). As expected,
differentiated cells showed high TF activities in

highly expressed gene was added to distinguish them. (C) Gene expression heatmap analysed by 10× scRNA-seq. Subcluster numbers are
indicated at the bottom. Representative TOP marker genes are labelled. Exp, Z-score normalised mean expression. (D) The defined major
cluster compositions in our data. The middle panel shows the defined major clusters (rows) by sample (columns). For each major cluster, the
size and colour of the circle represent the proportion of cells in each individual sample. The magenta and green dashed boxes show HIN
samples and adjacent normal samples, respectively. The histogram at the top shows the cell count for each sample. The samples with the most
and the least cell counts are marked. The right histogram shows, for each specific major cluster, the mean cell proportion in the sample. The
annotation at the bottom shows the corresponding sample IDs. (E) Tissue preference of each cluster/subcluster is measured by Ro/e values.
For each specific cluster/subcluster, the size of the circle represents the mean Ro/e for samples (tumour or normal). p-Values were calculated
by a two-tailed paired Student’s t-test (n = 18). For example, for the T04 subcluster, the mean Ro/e of the tumour samples was greater than that
of the normal samples, and the p ≤ 0.01, indicating that the T04 subcluster was enriched in the tumour
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F IGURE 2 Heterogeneity of basal layer cells and differentiation dynamics of normal squamous epithelial cells. (A) UMAP plots indicate
in different colours the cell types of the adjacent normal epithelial cluster. (B) Violin plots show the expression level of selected marker genes
depicting the distinct epithelial cell types (indicated in different colours). (C) Immunofluorescence staining analysis of KRT15, KRT13 and
STMN1 expression in human adjacent normal tissue and normal oesophageal epithelium. The white, magenta and green arrows indicate
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differentiation-associated genes, for example, SOX6,
EHF and GRLH1. In SBCs, TP63 and the JUN/FOS family
showed high activities.

3.3 Capturing tumour cells from
squamous epithelial cell population

The unsupervised clustering of epithelial cells showed
that cells derived from lesions and normal tissues showed
similar clustering characteristics (Figure 3A, Figure S7A).
Tumour tissue-specific cells are common in invasive can-
cers, but no such population was found here, and tumour
cells could not be identified based on clustering charac-
teristics, as is done in other studies. To address this, we
applied copyKAT,29 a novel unsupervised algorithm based
on the identification of aneuploid copy number profiles, to
our data. It successfully captured aneuploid tumour cells
that showed obvious CNVs. The predicted tumour cells
had frequent chromosome amplifications at 3q, 5p, 8q, 20p
and 20q, which are commonly reported in humanHIN and
ESCC by bulk sequencing1,4 (Figure 3B). No tumour cells
were derived from adjacent normal tissues (Figure 3C),
demonstrating the reliability of the result. Few predicted
tumour cells were derived from late differentiated cells
(Figure S7B), indicating that HIN differentiation had been
blocked.We further applied primary cell culture combined
with karyotype analysis to identify aneuploid cells. Ane-
uploid cells were not found in adjacent tissues but were
ubiquitous in HIN tissues (Figure 3D). We also applied
inferCNV to capture tumour cells and obtained similar
results (Figures S6A–S6B). However, inferCNV defined
more tumour cells and identified a few normal-derived
cells as tumorous (Figures S6B–S6C). Given that copy-
KAT is an unsupervised method that automatically des-
ignates reference cells, and more suitable for the analysis
of data from newly developed high-throughput scRNA-seq
platforms,29 we tended to adopt its result for subsequent
analysis.
Differential analysis showed that proliferation and anti-

gen presentation genes, such as STMN1 and HLA-DRA,
were slightly up-regulated in tumour cells, whereas dif-
ferentiation molecules, such as KRT13, HOPX and CD24,

were highly expressed in normal cells (Figure S7C).
Enrichment analysis showed that tumour cells were
enriched for metabolism-related pathways (Figure 3E).
After a thorough evaluation of metabolic properties,35 we
found that the metabolic activities of tumour cells were
generally more active than normal cells. Glycolysis, a hall-
mark of cancer,43 was enriched, although not significantly,
in tumour cells (Figure 3G). RNA splicing, a dysregulated
process in mouse oesophageal7 and epidermal44 precan-
cerous lesions, was also enriched in tumour cells. In addi-
tion, we applied CancerSEA,32 a rigorously screened and
scRNA based cancer signature, to assess the functional
states of the tumour cells. Tumour cells were more sus-
ceptible to hypoxia, DNA damage, DNA repair, invasion,
metastasis and apoptosis activities (Figure 3F). These data
suggest that there were indeed differences between HIN
and normal cells at the single-cell transcriptome level.

3.4 HIN originates from slow-cycling
basal cells and shows different degrees of
differentiation

Studies in mouse models indicate that oesophageal HIN
originates from BLCs.5,7,8 To test this hypothesis in
humans, we first examined KRT15 expression (basal
marker) in tumour cells and found that as predicted,
KRT15 was highly expressed in tumour cells (Figures 4A–
4B). Given the heterogeneity of BLCs in humans, we
reconstructed the lineage relationships between tumours
and normal populations. Hierarchical clustering showed
the strongest similarities between tumour cells and SBCs
(Figure 4C). Given the key role of TFs in cell-fate
decisions,45 we found that tumour cells showed the highest
similarity to SBCs in TF expression (Figure 4D). To evalu-
ate the lineage relationships of the potential heterogeneity
of tumour cells, we reclustered tumour cells and obtained
four populations (Figure 4E, Figure S9A). Compared with
normal cell types, each tumour population showed the
strongest similarity to SBCs across a broad set of cancer
functional states32 (Figure 4G). These data suggested that
HIN may arise from SBCs. To further explore their origin,
we projected each tumour population onto pseudotime tra-

KRT15highSTMN1high, KRT15highSTMN1low and KRT15lowSTMN1high cells, respectively. Dashed lines: basement membrane. H&E, staining with
hematoxylin and eosin. Scale bars, 50 and 10 μm for top and bottom panels, respectively. (D) Bar plots showing the proportion of STMN1high

cells in papillae (PBL) and interpapillary zone (IBL). p-Value was calculated by unpaired t-test. n = 3. (E) Differentiation potential of adjacent
normal squamous epithelial cell types based on transcriptional diversity. For each box, the centre line, upper boundaries, lower boundaries
and whiskers represent the median, 75th percentile, 25th percentile and 1.5 × interquartile range (IQR), respectively. (F) Diffusion map of
adjacent normal squamous epithelial cells coloured by cell types (left), by differentiated cells pseudotime trajectory (middle), and by
proliferative cells pseudotime trajectory (right). (G) Heatmap showing AUC scores of expression regulation by transcription factors of the
indicated cell types, estimated by SCENIC
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F IGURE 3 Identification of tumour cells from squamous epithelium. (A) UMAP plots indicate in different colours the subclusters of the
epithelial cluster. The histopathological origin of cells is indicated in different shapes. (B) Clustered heatmap showing single-cell copy
number profiles estimated by CopyKAT from all squamous epithelial cells. CopyKAT classifications of diploid normal cells and aneuploid
tumour cells and cell sources are indicated on the annotation bars to the left. Chromosome numbers are indicated at the top of the CHR bar.
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jectories of normal cells, and found that they mapped pri-
marily to SBCs (Figures 4H–4I). These data demonstrate
the SBC identity of tumour cells from the global transcrip-
tome, TFs, functional status and developmental pseudo-
time perspectives.
We noted that some tumour cells, for example, tumour-

03, carried early differentiation marker KRT13 (Figures
S9A–S9B), which was validated in HIN tissues (Figure 4F,
Figure S8). This indicated that tumour cells may have been
in different differentiation gradients. Although tumour
populations were mapped to SBC, we observed that
tumour-01 mapped closer to the beginning of the SBCs dif-
ferentiation trajectory (Figures 4H–4I). Quantification of
the differentiation and stemness scores confirmed these
differences (Figure 4J). In addition, tumour-01 showed
stronger EMTand invasion,while tumour-03was enriched
in differentiation-related pathways (Figure S9D). Func-
tion analysis revealed that the greatest difference, such
as antigen presentation pathways, was between tumour-
01 and tumour-03 (Figures S9C and S9E). MHC II and
antigen presentation pathways were enriched in tumour-
01 (Figures S9C and S9E). Metabolic assessment indicated
that tumour cells were generally more active than their
origin cells and tumour-01 showed lower metabolic activi-
ties (Figure S9F). This observation was consistent with the
observed differentiation gradients. Thus, the data demon-
strated the differentiation heterogeneity of tumour cells.

3.5 HIN largely retains the
transcriptional and functional features of
the normal epithelium

Although the data suggested that HIN was indeed a
tumour, we noted that its cells had clustering features sim-
ilar to those of normal cells. This raises the question: when
did the marked heterogeneity of invasive cancer emerge?
In carcinogen-induced HIN/ESCC models, pathologically
specific epithelial populations were only present during
the early invasive stage.18 To confirm this in humans, inte-
gration analysiswas applied to ourHINdata and published
ESCC single-cell data.46 Normal and HIN cells did indeed
cluster together, butmost ESCC cellswere significantly far-

ther away from them (Figure 5A). Previous studies sug-
gested that normal epithelial features were absent at the
invasive front of early ESCC invasions in mice.6 We found
that the basal layer marker KRT15 and the differentiation
marker KRT13 were absent in ESCC cells (Figure 5B); this
was also observed in the bulk data (Figure S10). We fur-
ther applied immunostaining to early invasive cancer tis-
sues and found that the number of KRT13+ and KRT15+
cells had decreased (Figure 5C). The data indicate that the
normal epithelial features retained in HIN may change
drastically with tumour progression. To further elucidate
these findings, we used 3D organoids to investigate their
functional relevance. To ensure the tumour identity of
HIN cells, we used the primary cells with confirmed ane-
uploidy to generate organoids. ESCC-derived 3D struc-
tures showed severe cellular-atypia and lacked differentia-
tion. Under the same culture conditions, HIN-derived 3D
structures also lacked typical differentiation gradients, as
described by Kijima et al.,41 indicating that they were neo-
plastic organoids (Figure 5D). Nonetheless, immunostain-
ing showed that the differentiation phenotype (KRT13+)
was present in all cells, except those in the peripheral layer,
suggesting incomplete keratinisation (Figure 5D). These
data indicate that HIN transcriptionally and functionally
resembles normal epithelial cells, butmay experience dras-
tic changes during tumour invasion.

3.6 CD4+ T cells towards an
immunosuppressive Treg phenotype

Up to 50% of the Treg cells in our data were TNK
cells (Figure 1D). We identified six CD4+ T, five CD8+
T and four NK subclusters (Figure 6A). Tissue enrich-
ment of most CD4+ T clusters was significantly different
betweenHINand adjacent tissues, andCD4+ T subclusters
showed the strongest costimulatory signature (Figures 6B
and 6D, Figure S11). T01, T02 and T03 carried naive and
memory signatures, for example, IL7R, CCR7 and TCF7,
whereas T04, T05 and H03 expressed high levels of Tregs
& checkpoints. T02-mTH17 was defined as a memory IL17
helper cell for high expression of CCR6 and KLRB.47
T04-Treg-FOXP3low andT05-Treg-FOXP3high, with varying

The magenta-coloured boxes indicate chromosome amplification of 3q, 8q, 20p and 20q. (C) UMAP embedding of the inferred CopyKAT
diploid and aneuploid copy number profiles (all squamous epithelial cells). NA: undefined cells. (D) Karyotype ideogram showing diploid
cells in adjacent normal tissues and aneuploid cells in HIN tissues (n = 3). 2n: the number of chromosomes. H&E, staining with hematoxylin
and eosin. Scale bars, 60 μm for top panels. (E) Differential pathway enriched in tumour cells and squamous epithelial cells derived from
normal tissues by GSVA. Two-sided unpaired limma-moderated t-test. (F) Heatmap showing different pathways enriched in adjacent normal
and tumour cells by GSVA analysis, coloured by z-score transformed mean GSVA scores. Different line colours indicate adjusted p-values
compared between two groups: purple, p < 0.05. Two-sided unpaired limma-moderated t-test. (G) Bubble plot showing the enriched
metabolic pathways between adjacent normal and tumour cells. *: the most significant pathway to metabolic heterogeneities
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F IGURE 4 Reconstructing the lineage relations between tumour and normal populations. (A) UMAP plots showing the expression of
basal layer cells marker KRT15 (yellow, high; black, low) in tumour cells. (B) Immunofluorescence staining analysis of KRT15 expression in
human adjacent normal and HIN tumour tissue. Magenta and green square brackets indicate tumour and normal areas, respectively. Blue
arrows indicating tumour boundaries. Dashed lines: basement membrane. H&E, staining with hematoxylin and eosin. Scale bars, 200 and
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expression of FOXP3, were termed resting and activated
Treg cells, respectively.48 H03-Treg-MKI67 represents pro-
liferating Tregs with high expression of FOXP3 andMKI67.
We noted that, in the same Treg cluster, costimulatory

molecules were significantly higher in HINs than in adja-
cent tissues (Figure S13B). Compared with CD8+ T cells,
the fraction of CD4+ T cells co-expressed checkpoints was
higher (Figure S12). This indicates that HIN cells may acti-
vate CD4+ T cells towards the Treg phenotype. Indeed,
Tregs with the strongest Treg signature were also charac-
terised by costimulatory signatures (Figure 6B, Figure S11),
consistent with the role of costimulatory for maintaining
Treg cells.49 Interestingly, we noted that Treg and TH17
signatures were related in Tregs and mTH17 (Figure 6C,
Figure S14B). Given the TH17 response in carcinogen-
induced HIN/ESCC models,18 which may represent an
acute inflammatory state, we investigated whether an
imbalance of mTH17 and Treg cells existed in human
HIN tumorigenesis. Firstly, we investigated the ratio of
mTH17/Treg cells and identified an imbalance between
the tumour and adjacent tissues (Figure 6E). We further
noted that there was a strong negative correlation between
the Ro/e values of mTH17 cells and Tregs (Figure 6F).
T02-mTH17 and T05-Treg-FOXP3high further showed the
highest TF activity similarity and the co-expression of
FOXP3-RORA (Treg- and TH17-specific differentiation-
related TFs50,51) was higher in Tregs (Figures 6G–6I).
While carrying RORA, T02-mTH17 cells did not express
canonical TH17markers and high concentrations of TGFβ-
promoted Treg differentiation without IL6 (Figures 6J–
6K). These results indicate that mTH17, the precursor
of TH17 cells,47 tended to differentiate into Treg rather
than the TH17 phenotype in human oesophageal HIN
(Figure 6L).
Among CD8+ T cells, fully activated T09 cells account

for only about 2% (Figure 6D, Figure S11), suggesting that
cytotoxic immunity was insufficient. The age-associated
and exhausted-like immune ageing hallmark,52 GZMKhigh
CD8+ T population (T07), was the most abundant CD8+
T cell (Figure 6D). This cell was sparse in mouse model18

and human ESCC.20 Given the increasing risk of HIN
with ageing,1 we suspected that CD8+ T cells in HIN
were mainly inactivated due to aging, rather than in an
activation–exhaustion state, like in ESCC.20 Firstly, the
number of proliferating CD8+ T (H04) was negligible,
and naive CD8+ T cells were entirely absent (Figures 6A–
6B), both of which are important features of immune
ageing.53,54
InHIN, themost exhausted populationwas proliferating

CD8+ T cells. Immune populations inHINwere onlymod-
erately exhausted55 and there were no heavily exhausted
CD8+ T cells, which are common in ESCC20 (Figure S11).
Furthermore, the loss of costimulatory molecules was
obvious in CD8+ T cells of HIN, signifying immune aging56
(Figure 6B, Figure S11). In contrast, the immune exhaus-
tion hallmarks, that is, multiple co-expressed check-
points and costimulatory markers56 (e.g. CTLA4-TIGIT
and HAVCR2-PDCD1 co-expression representing severely
exhausted state57) was obvious in CD8+ T cells of ESCC
but inconspicuous in HIN (Figure 6B, Figure S12). More-
over, no significant difference of effector molecules was
observed in CD8+ T cells between HIN and adjacent cells
(Figure S13A). The data indicate that most CD8+ T cells in
HIN are not fully activated, unlike in ESCC where these
cells are activated but exhausted.

3.7 Loss of antigen presenting dendritic
cells and gain of inflammatory monocytes
in HIN

The results stated above indicate that cytotoxic immu-
nity was insufficient in HIN. Antigen-presenting cells
(APCs) involved lymphocyte activation prompted us to
further investigate myeloid subclusters. We identified
12 subclusters: plasmacytoid DCs (GZMB), LAMP3+
DCs (LAMP3high), classical DC2 (CD1C), cDC1 (BATF3),
proliferating cDC1 (MKI67), monocyte-like cells (S100A8,
S100A9, SELL) and macrophages (LYVE1, CD163,
MRC1) (Figure 7A). Overall, cDCs were reduced in HIN

50 μm for top and bottom panels, respectively. (C) Similarity (Euclidean distance) between tumour cells and normal cell types based on all
genes. (D) Bubble plot shows the expression of key TFs (identified in Figure 2) among tumour cells and normal cell types. The fraction of cells
expressing TFs is indicated by the size of the circle, and their scaled expression levels are indicated by the colour of the circle. (E) UMAP plots
show subclusters of tumour cells (indicated in different colours). (F) Immunofluorescence staining analysis of KRT15+KRT13− (magenta box)
and KRT15+KRT13+ (white box) cells in HIN tissue. Scale bars, 200 and 20 μm for top and bottom panels, respectively. Dashed lines:
basement membrane. H&E, staining with hematoxylin and eosin. (G) Heatmap showing different pathways enriched in subclusters of
tumour cells and normal cell types by GSVA analysis, coloured by z-score transformed mean GSVA scores. (H–I) Diffusion maps of normal
cells (coloured dots) with tumour subclusters (grey dots) projected onto the embedding (H) and mean diffusion components for tumour cells,
coloured by tumour subclusters (I). Arrows and dotted lines indicate blocked differentiation of HIN. (J) Box plots show the diffusion
components for all tumour cells by subcluster, DC2 (left); DC1 (right). For each box, the center line, upper boundaries, lower boundaries and
whiskers represent the median, 75th percentile, 25th percentile and 1.5 × interquartile range (IQR), respectively. Two-sided Wilcoxon
rank-sum test with p < 2.22 × 10−16 was considered statistically significant for any pairwise comparison
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F IGURE 5 HIN partially retains the basal layer cell features and differentiation ability of normal epithelial. (A) UMAP plots show the
heterogeneity between HIN cells and invasive cancer cells. (B) Violin plots show the expression of KRT15 (above) and KRT13 (below) among
slow-cycling cells, HIN tumour cells and invasive cancer cells. (C) Immunofluorescence staining analysis shows the expression of KRT15 and
KRT13 in early invasive cancer. H&E, staining with hematoxylin and eosin. Magenta square brackets indicate early invasive cancer areas.
Scale bars, 500 and 50 μm for top and bottom panels, respectively. (D) Immunofluorescence staining of oesophageal organoids for expression
of KRT15 and KRT13. The dashed lines mark the range of differentiation phenotype cells (inner) and the size of organoid structures (outer).
H&E, staining with hematoxylin and eosin. Scale bars, 100 and 50 μm for left and right panels, respectively. (E) Schematic illustration of the
early development of human oesophageal HIN/ESCC. See text for details
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F IGURE 6 Features of TNK cells in human oesophageal HIN. (A) UMAP plots indicate different cell types of TNK cells in different
colours. Embedded UMAP plots show TNK cells among highly proliferating cells. (B) Heatmap shows Z-score normalised expression of
selected T/NK cells function-associated genes in each cell type. (C) Violin plots show the GSVA score of Treg (above) and TH17 (below)
signature among different cell types of TNK cells. Box, median ± interquartile range. Whiskers, 1.5 × interquartile range. p-Values across
different cell types were calculated by a one-way Kruskal–Wallis rank-sum test. (D) Bar plots show the proportion of each cell type to total
TNK cells between HIN (n = 9) and adjacent (n = 9) tissues. Each box represents the mean value, and whiskers indicate the standard error of
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(Figure 7B). Meanwhile, cDCs carried high levels of
HAVCR2 and LGALS1, which inhibit the activation of
CD8+ T cells and induce T cell apoptosis, respectively
(Figure 7C).We also identified the novel LAMP3high DCs58
in HIN, which occurred at a similar rate in both tumour
and adjacent tissue, but were more abundant in ESCC20
(Figure 7B). The data indicate that the proportion of cDC
decreased and the immunosuppression increased in HIN,
supporting the suppression of CD8+ T cells.
Among monocytes/macrophages, M07 and M08 carried

high levels of SELL and ITGAX, which were likely mono-
cytes recently recruitment.59,60 M10was strongly inflamed;
it carried high levels of inflammatory molecules and
received the highest inflammation scores (Figures 7C–7D).
M07 and M10 were abundant in tumour (Figure 7B), sug-
gesting that HINmay continuously recruit monocytes and
promote inflammation. Two macrophage clusters (M11
andM12), which showed comparable enrichment between
tumour and adjacent tissues, were denoted as resident tis-
sue macrophages. They carried high levels of MRC1, C1Q
and IL10, a population similar to M2 cells. Unlike tumour-
associated macrophages in ESCC, in which M1 and M2
signatures were ambiguous, macrophages in HIN showed
obvious M2 polarisation (Figures 7D–7E). Previous stud-
ies indicated that C1Q+ macrophages were connected to
monocyte-like cells21,61 and our pseudotime analysis indi-
cated same (Figure 7F).
In addition, we investigated the contribution of fibrob-

lasts and cell–cell communications to the microenviron-
ment. The major subclusters (F01–F06) of fibroblasts
secreted large amounts of chemokines, cytokines and
growth factors such as CCL-chemokine ligand 19 (CCL19),
CXCL-chemokine ligand 12 (CXCL12) and insulin-like
growth factor binding proteins (IGFBPs) (Figure S15). The
tumour-enriched cluster F01 highly expresses PI16 which
enhances the transendothelial migration of monocytes.62
To investigate potential cell–cell communications, we
focused on subclusters that are significantly varied in HIN
and are strongly correlated with each other (Figure S16A).
Compared between HINs and SBCs, several significantly
altered ligand–receptor pairs were identified. The interac-
tion of CD58-CD2 and LTBR-LTBwith HIN cells and Tregs
had a higher interaction score, and HIN cells expressed
high levels of CD58 and LTBR (Figures S16B–S16C). Pre-

vious studies have reported that the CD58-CD2 interaction
plays a key role in activating and maintaining Tregs.63,64
Considering the direct role of FOXP3 in Tregs, we used
scMLnet40 to predict how the microenvironment regu-
lated FOXP3 in Tregs. The Multilayer Signaling Network
revealed that, in addition to HIN, fibroblasts enriched in
tumours also regulate FOXP3 expression (Figure S16D).
This suggests that HIN cells and stromal cells may work
together to promote and maintain the inflammatory and
immunosuppressive microenvironment.

4 DISCUSSION

The molecular and functional properties of tumours are
determined by intrinsic origin cells and the extrinsic
micro-environment. In this study, we present a compre-
hensive depiction of the single-cell transcriptome land-
scape of human oesophageal HIN. We identify the het-
erogeneity of oesophageal BLCs, by transcriptome and
location in humans. Further, we present evidence indi-
cating that human HIN may originate from slow-cycling
KRT15highSTMN1low BLCs. We also show that HIN gener-
ally retains the BLC features and differentiation ability of
the normal epithelium, which may change dramatically in
the tumour invasion stage. These multistep changes in the
transcriptome are helpful in understanding HIN initiation
and early development. Immunosuppressed CD4+ T sub-
sets, inactivated CD8+ T subsets and inflammatory mono-
cyte and fibroblast subsets are the predominant features
of the unique micro-environment of human HIN. This is
the first comprehensive and in-depth genomic investiga-
tion of humanoesophagealHINand these findings provide
insight into the cellular and molecular aspects of tumour
origination and early development.
Previous studies on the origin of oesophageal HIN were

mainly conducted in transgenicmice. In Krt5-CreERmice,
Sox2 overexpression resulted in hyperplasia or ESCC in
the forestomach.8 Similar results were observed in another
Krt5-CreER/Krt15-CrePR mouse model.5 These studies
reveal that HIN or ESCC originate from Krt5+/Krt15+
BLCs in mice. In our analysis of human oesophageal
squamous epithelial cells, scRNA-Seq also sorted out
human BLCs marked with KRT15 but clustered them

the mean. Significant distribution differences are marked with asterisks based on p-values of RO/E (Figure 1). Embedded radar plots show the
mean proportion of CD4+ T, CD8+ T and NK cells to total TNK cells between HIN and adjacent tissues. (E) The ratio of mTH17/Treg in HIN
(n = 9) and adjacent (n = 9) tissues. p-Values were calculated by two-tailed paired Student’s t-test. (F) Correlation of tissue distribution (based
on Ro/e values) between mTH17 and Treg (n = 18). Pearson correlation and linear regression. The p- and r-values represent Pearson’s
correlation and its coefficient of determination. (G) Similarity among subclusters of CD4+ T cells based on TF activity (estimated by
SCENIC). (H) Violin plots show the expression of FOXP3 and RORA in mTH17 cells and activated Treg cells. (I) Scatter plots show the
frequency of mTH17 cells (left) or activated Treg cells (right) co-expressing FOXP3 and RORA TFs. (J–K) Violin plots show the expression of
selected genes in mTH17 cells and activated Treg cells. (L) The developmental trajectory of CD4+ T cells is inferred by Monocle2
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F IGURE 7 Characteristics of myeloid cells in human oesophageal HIN. (A) UMAP plots indicate the different types of myeloid cells in
different colours. Unannotated cells are shown in grey. (B) Bar plots show the proportion of each cell type to total myeloid cells between HIN
(n = 9) and adjacent (n = 9) tissues. Each box representes the mean value, and whiskers indicate the standard error of the mean. Significant
distribution differences are marked with asterisks based on p-values of RO/E (Figure 1). Embedded radar plots show the mean proportion of
dendritic cells, monocytes and macrophages to total myeloid cells between HIN and adjacent tissues. (C) Heatmap shows Z-score normalised
expression of function-associated genes in each cell type among selected myeloid cells. (D) Violin plots show the GSVA score of selected
signature gene sets among different cell types of monocytes/macrophages. Box, median ± interquartile range. Whiskers, 1.5 × interquartile
range. p-Values across different cell types were calculated by a one-way Kruskal–Wallis rank-sum test. (E) Scatter plots show the correlation
between M1 and M2 signature per cell in macrophages; cells assigned to macrophages were coloured by cluster type. The r- and p-values
representing Pearson’s correlation and its coefficient of determination. (F) The developmental trajectory of monocytes and macrophages
inferred by Monocle2
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into two subpopulations according to the expression
level of the proliferation-related gene STMN1: the slow-
cycling KRT15highSTMN1low subset and the active-cycling
KRT15highSTMN1high subset. This indicates that there
are significant differences in the proliferative activity of
human oesophageal BLCs. This has also been observed
in single-cell data from normal human oesophagus, but
the distribution heterogeneity of BLCs has not been fully
verified in this research.14 Compared with other studies,
which are divided on whether cycling BLCs are present in
the IBL15 or the PBL,17 our data show that active-cycling
BLCs are mainly located in PBL. As the first experimental
evidence to demonstrate bioinformatics predictions, our
research is not only indispensable for exploring tumorige-
nesis but also helpful in exploring normal epithelial home-
ostasis and wound healing.
Although HIN tumour cells were heterogeneous (with

different differentiation degrees), transcriptional sim-
ilarity strongly suggested that they originated from
KRT15highSTMN1low BLCs. Earlier studies have shown that
BLCs in PBL contain more IdU label-retaining cells,16 but
the retention seems shorter than that in IBL.16 This indi-
cates thatABCsmay beweaker than SBCs in terms of stem-
ness or quiescence, and may commit to early differenti-
ation. This finding has also been supported by our data.
As a result, tumorigenic mutations and genetic alterations
are less likely to persist in ABCs. In addition, our cohort
lacked HIN tissues dominated by the differentiation phe-
notype of tumour cells. These findings suggest that ABCs
are unlikely to be the cellular origin of human oesophageal
HIN.
Contrary to our expectations, unsupervised clustering

did not cluster tumour cells separately from squamous
epithelial cells. This raises the question: when did the
marked heterogeneity of invasive cancer emerge? While
this studywasnot designed to address this question, reveal-
ing it during tumour early development would strengthen
the evidence of tumour origin. Our evidence suggests
that the drastic transcriptome changes may occur during
the tumour invasion but not during the HIN stage. A 4-
nitroquinoline 1-oxide induced mouse HIN/ESCC model
shows that loss of normal epithelial characteristics appears
at the tumour invasive front in early oesophageal invasive
cancer.6 Another sorafenib induced mouse model found
that the cell behaviour of neoplastic and surrounding cells
was convergent but changed dramatically during tumour
invasion.7 This has also been observed in themultistep pro-
cesses of ESCC development induced by carcinogens,18 in
which pathology-specific epithelial populations are only
present in the early invasive stage.18 Thus, the existing lit-
erature and our data suggest that the drastic changes in
the transcriptome may emerge during tumour invasion,
and not during the HIN stage. Based on this, we define

two leaps during early ESCC development in humans
(Figure 5E): ‘Tumorigenesis’ and ‘Drastic transcriptome
changes’.
During the HIN stage, although the tumour identity of

HIN is clear, cellsmay establish a new steady state tomain-
tain epitheliumhomeostasis.7 This could be also supported
by the rapid turnover of normal and HIN cells (one to
two times per week7,13) and the fact that HIN takes years
to develop into ESCC. The second leap may emerge dur-
ing tumour invasion. The definition of two leaps implies
that there are many opportunities for intervention in the
HIN stage. In addition, it suggests to us that what we
know about invasive cancer may not be fully applicable to
HIN, for example, caution is warranted where markers of
oesophageal invasive cancer are applied for early diagno-
sis.
The inflammation induced by acid stress5 and Stat3

activation8 promoted tumorigenesis in the mouse
forestomach, demonstrating the role of the microenvi-
ronment in HIN initiation and progression. In human
HIN, activated CD4+ Tregs and not fully activated CD8+
T cells help form immunosuppressive surroundings. We
did not find effector CD4+ clusters in human HIN, but the
presence of mTH17 cells suggested that the TH17 response
may occur during the acute first-leap stage of, which was
observed in the carcinogen-induced HIN model.18 Com-
pared with CD4+ T cells, the most abundant CD8+ T cells
were GZMK+ CD8+ T cells, which is an immune aging
hallmark.52 Unlike in HIN, heavily exhausted CD8+ T
clusters in ESCC co-express high levels of multiple check-
points, effector molecules and costimulatory markers.20
This indicates that they have fought or are fighting cancer
cells. It also suggests that the second leap of HIN may be
accompanied by the reactivation of cytotoxic CD8+ T cells,
but it may be already too late. Therefore, the reactivation
of cytotoxic CD8+ T cells during the HIN stage may be a
strategy to inhibit HIN initiation and progression. Previous
studies have shown that immunosuppressive Tregs may
downregulate lymphocyte activation and immune evasion
in cancer65 and substantial change of cDCs may also
lead to insufficient cytotoxic CD8+ T cells.66 Accordingly,
our findings suggest that a variety of cellular treatment
approaches to enhance functions of cytotoxic T cells
during the HIN stage.
However, it should be noted that an immune active

monocyte subset promoting immune protection and
exhibiting pro-inflammatory effects was also enriched in
the HIN micro-environment. For HIN, this microenviron-
ment may be a paradox: Tregs may be indispensable for
excessive inflammation, but sustained immunosuppres-
sion may promote the immune escape of HIN cells, lead-
ing to the second leap. This highlights the complexity of
immune regulation and the importance of the fine bal-
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ance between stimulatory and inhibitory immune signals
to determine the outcome of HIN.
There are certain limitations to our study. Due to a

significant increase in immune cells, our data for HIN
cells were based on a relatively small number of epithelial
cells. Although cell sorting may increase the proportion of
epithelial cells, to ensure the accuracy of clinicopatholog-
ical diagnosis, we could only obtain limited human HIN
tissues, which were not adequate for such sorting and
sequencing. This may have resulted in some loss of cellu-
lar andmolecular information during scRNA-Seq. In addi-
tion, transcriptional similarity is not the same as causality.
Although lineage tracing is a gold standard in tracking cell
fate and has been successfully applied in model animals to
investigate tumour origin, it is not feasible in humans.
In summary, our study provided a comprehensive

single-cell transcriptome landscape of human oesophageal
HIN, identifying which population of cells can give rise
to HIN and the unique microenvironment characteristics
of HIN. These findings pave the way for cancer prevention
strategies that would be able to block tumour progression
and even prevent cancer initiation.
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