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Abstract: In this work, the N-confused porphyrin 5,10,15,20-tetraphenyl-2-aza-21-carbaporphyrin
(NCTPP) was immobilized on neutral or cationic supports based on silica and on Merrifield resin.
The new materials were characterized by appropriate techniques (UV-Vis spectroscopy, SEM, and zeta
potential analysis). Piezoelectric quartz crystal gold electrodes were coated with the different hybrids
and their ability to interact with heavy metals was evaluated. The preliminary results obtained
showed that the new materials can be explored for metal cations detection and the modification of
the material surface is a key factor in tuning the metal selectivity.

Keywords: N-confused porphyrins; organic/inorganic hybrids; metal cations; aqueous solution

1. Introduction

The effects associated with overpopulation and pollution is putting at risk an essential element on
earth for living beings—WATER. In particular, wastewaters from industrial, agricultural, and domestic
activities are commonly discharged without adequate treatment into the water bodies, contributing
to an increase in water pollution [1–4]. Among the pollutants commonly found (e.g., dyes, organic
solvents, and chlorine compounds) heavy metals merit special attention [5]. The detection and removal
of trace amounts of heavy metal ions, e.g., Tl(I), Hg(II), and Cd(II) are of particular mindful owing to
their high toxicity for living organisms and due to their non-biodegradability and bioaccumulation
with relevant noisome consequences on the environment and human health. In fact, the heavy metal
ions can accumulate in human internal organs and induce disorders such as renal and central nervous
system dysfunction or even cancer. When in the environment, these pollutants can reach the freshwater
supplies making them unfit for human consumption [6–10]. Also, the detection of metal cations, such as
Zn(II), Cu(II), or Cr(III), with relevant functions on biological and environmental fields merit to be
studied [11–17]. Therefore, the development of new and more efficient probes for detection and
determination of trace amounts of heavy and transition metal ions is a subject of great concern.

Nowadays, several methods are used for monitorization, detection, and removal of toxic
heavy metal cations, such as resin chelation [18], ion exchange [19], membrane filtration [20],
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coprecipitation [21], and liquid-liquid extraction [22]. Nevertheless, these techniques show several
disadvantages, namely, the use of high amounts of solvents, a non-selective elimination of the target
heavy metal ions, and laborious and expensive sample handling. So, it is essential to develop efficient
alternatives able to detect and to remove heavy metal ions with higher sensitivity and selectivity.

The analytical approaches that can be used to detected and quantify heavy metals in water
are flame atomic absorption spectrometry, atomic, visible, and fluorescence spectrometry, cathodic
adsorptive stripping voltammetry, anodic stripping voltammetry, and electrochemical impedance
spectroscopy (EIS) which often requires extensive sample preparation [7,23]. Alternatively, coating the
surface of a piezoelectric quartz crystal with some complexing structures allows detecting heavy metal
ions in aqueous solutions in real time by monitoring the frequency of oscillation [23]. The frequency of
oscillation of a piezoelectric quartz crystal decreases with the mass deposited on its active area [24].

Porphyrins and analogues, well known by their impressive applications in several areas such as
catalysis [25–28], photocatalysis [29,30] electronic materials [31–33], supramolecular chemistry [34,35],
biomimetic models [36,37] , and medicine [25,38–43], are also often used as sensor probes due to their
unique photophysical and photochemical properties [25,35,44–46]. In fact, porphyrins as free-bases or
as metallo complexes have been used to create the so-called artificial noses and tongues for gas, cations,
anions, and neutral species detection [47]. Commonly, porphyrinic macrocycles functionalized in the
meso-positions with hydrogen bond donors (e.g., amine or amide) allow an extensive modulation of
their anionic guest recognition [47–50]. Alternatively, the presence of a Lewis acidic environment in the
porphyrinic core (usually Zn(II)) enables anion binding. In general, metal ion porphyrin-based probes
include meso functionalized porphyrins with crown ether, amines, amides, or pyridines moieties,
showing sensing ability towards metal ions as Zn(II), Hg(II), Cd(II), or Pb(II) [51]. In the last years, our
group is giving also a significant contribution to the development of beta-functionalized porphyrins
for the detection of heavy metal ions [9,52–54].

The efficacy of N-confused porphyrins (NCP) (a porphyrin isomer in which one of the pyrrole
rings is connected to meso-carbons at α and β′ positions) [55] is also meriting some attention as sensor
probes; these inverted porphyrins show unique binding properties for halide anions via hydrogen
bond formation or deprotonation at the peripheral N-H [56,57]. In addition to outer N-H moiety,
the axial positions of metal centers in N-confused porphyrin complexes could also be used as the
anion-binding site [58]. Although, the interesting features exhibited by NCP, a literature survey shows
that there is a scarce number of studies involving NCPs for heavy metal ion probes [46].

So, in this work, we envisage that the immobilization of 5,10,15,20-tetraphenyl-2-aza-21-
carbaporphyrin (NCTPP) through its peripheral N-H on neutral or cationic supports based on
3-bromopropyl-functionalized silica (Si) and on Merrifield resin (MF) could afford new materials
with excellent features to coat piezoelectric quartz crystal electrodes in order to follow their interaction
with heavy metals in a real-time monitoring. For simplicity and time-saving, as the purpose of
this study was to compare the metal complexation ability of the immobilized NPC with a cationic
non-immobilized NCTPP bearing a propyl group (NCTPP-Pr+), experiments were not followed until
equilibrium but were performed by flow injection methodology under careful flow control.

2. Results and Discussion

2.1. Synthesis and Immobilization of NCTPP

NCTPP was prepared following the Lindsey methodology as reported in the literature [59].
N-confused porphyrins can complex with a wide range of metals, (e.g., Zn(II), Cu(II), Ag(III), Pd(II),
Cd(II), and Hg(II)) into the macrocycle core and in the peripheral inverted nitrogen, leading in some
cases to sandwich type complexes (Figure 1a) [60–62]. However, when the peripheral inverted nitrogen
is protected, e.g., by alkylation, it loses its Lewis acid behaviour and only the nitrogens into the inner
core are able to interact with metal cation ions [63,64].
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Figure 1. (a) Sandwich type complex of N-confused porphyrins and (b) Structures of NCTPP and
NCTPP-Pr+ derivatives.

In this study, in order to avoid the formation of a sandwich type complex, thereby assuring
a similar geometry in immobilized NCTPP and non-immobilized NCTPP and to ensure that the
inner core nitrogens are the unique site able to interact with heavy metal cations, the alkylation of
NCTPP was performed using propyl iodide, according to a literature procedure, affording the expected
NCTPP-Pr+ (Figure 1) [65].

The immobilization of NCTPP in 3-bromopropyl functionalized silica (Si) and in Merrifield
peptide resin (MF) was performed according to the experimental procedure summarized in
Scheme 1 [66]. The reactions were carried out in the presence of NaI, under reflux in the adequate
solvent (o-DCB for Si, and toluene for MF) until the total consumption of the starting N-confused
porphyrin was observed by thin layer chromatography (TLC) [66]. The desired materials NCTPP-Si
and NCTPP-MF were obtained with a load of 2.0% and 8.0% (w/w) of NCTPP, respectively.

To study how the sensing ability of the novel materials would be affected by extra cationization,
NCTPP-Si and NCTPP-MF were treated with pyridine. In a typical experiment, each material was
heated in pyridine and in the presence of NaI. After 24 h the reaction mixtures were filtered, washed
and dried affording the new materials labelled as NCTPP-Si-Py+ and NCTPP-MF-Py+ (Scheme 1).
Also, the solid supports Si and MF were submitted to pyridine treatment using similar experimental
conditions affording Si-Py+ and MF-Py+, respectively (Scheme 2).
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Scheme 1. Immobilization of NCTPP on a functionalized silica gel (Si) and on a Merrifield resin (MF).

Scheme 2. Cationization of the materials Si and MF with pyridine.
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2.2. Photophysical and Morphological Properties

2.2.1. UV-Vis Spectroscopy

The solid-state absorption spectra presented in Figure 2 evidence the success of the NCTPP
immobilization process, as well as the extra functionalization with pyridine moieties.

The solid-state absorption spectrum of NCTPP evidences the typical feature of a free base
meso-tetraaryl N-confused porphyrin due to π–π* transitions, with a Soret band centred at 449 nm and
three Q bands between 550 and 739 nm (Figure 2). Considering the absorption spectra of the materials
based on silica, NCTPP-Si and NCTPP-Si-Py+, in both cases the Soret band suffered a red-shift of ca.
8 nm. In the case of the NCTPP-Si, the last Q band suffered also a red-shift of ca. 70 nm, while the
correspondent band of NCTPP-Si-Py+ is blue-shifted 25 nm (Figure 2A). The bathochromic shift
observed for NCTPP-Si and NCTPP-Si-Py+ can be attributed to the porphyrinic core distortion.

Figure 2. Top: Solid state UV-Vis spectra of (A) NCTPP, Si, and organic/inorganic-hybrids and
(B) NCTPP, MF, and organic/inorganic hybrids. Bottom: visual appearance of Si and MF materials
before and after NCTPP immobilization.

The absorption spectra of NCTPP-MF and NCTPP-MF-Py+ do not show well-defined absorptions
bands from the N-confused porphyrinic moiety. However, it is clearly observed the presence of a
hyperchromic effect in the absorbance region from 400 to 800 nm of both derivatives, due to the
presence of the tetrapyrrolic macrocycle (Figure 2B). The broadening observed in these spectra seem to
indicate that during the immobilization process a significant distortion in porphyrin conformation
occurred, which can be related with alterations in the aromatic arrangement, affecting the porphyrin
ring symmetry.

As expected the Si and MF supports do not show absorption in the UV-Vis region, however
after being submitted to cationization with pyridine, the spectra of Si-Py+ and MF-Py+ presents an
absorption enhancement in the ultraviolet region with a new band at ca. 350 nm; this feature is due to
the presence of the pyridinium moieties.

2.2.2. SEM

The morphological characteristics of the solid support Si, MF and of the respective porphyrinic
hybrids were analysed by scanning electron microscopy (SEM). The Si support appeared as particles
with irregular shape and dimensions between 20 and 75 µm. The particle size decreased to below
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18 µm either after the immobilization of the NCTPP or after being submitted to pyridine treatment.
The hybrid NCTPP-Si-Py+ comprised irregular shaped particles with polydisperse size distribution
from 500 nm to 6 µm and larger particles with dimensions nearly 12 µm (Figure 3). The beads of MF
were spherical and uniform and presented irregular shape after the immobilization of NCTPP and
pyridine treatment. Likewise, hybrid NCTPP-MF-Py+ particles were irregular in shape, with particle
size ranging from 3 to 12 µm (Figure 4).

Figure 3. SEM images of (A) Si, (B) Si-Py+, (C) NCTPP-Si and (D) NCTPP-Si-Py+.

Figure 4. SEM images of (A) MF, (B) MF-Py+, (C) NCTPP-MF, and (D) NCTPP-MF-Py+.
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2.3. Zeta Potential

The surface charge of the materials was assessed by zeta potential measurements in aqueous
suspensions at a pH ranging from 5.2 to 5.6 (Figure 5A,B). At this pH the surface of 3-bromopropyl
functionalized silica (Si) and Merrifield resin (MF) are highly negatively charged (ζ = −35.9 ± 1.1 mV
and ζ = −33.7 ± 5.1 mV, respectively) and no significant changes of the zeta potential were observed
after the immobilization of the NCTPP on its surface (NCTPP-Si: ζ = −31.1 ± 0.5 mV and NCTPP-MF:
ζ = −36.7 ± 0.3 mV). The Br- anions in Si and the Cl- anions in MF are electronegative elements which
confers a negative density and charge to the surface of the materials. The amount of NCTPP which
was immobilized was not enough to change the superficial charge of the materials. As expected,
the treatment with pyridine of the silica-based hybrid resulted in the reverse of the surface charge
of the material to positive values (NCTPP-Si-Py+: ζ = 18.5 ± 0.3 mV, Figure 5A). Identical behaviour
was found in the silica submitted to similar pyridine treatment (Si-Py+, Figure 5A). In the Merrifield
-based materials, the cationization with pyridine yielded materials also with positively charged surface
NCTPP-MF-Py+ (ζ = 26.5 ± 2.0 mV) and MF-Py+ (ζ = 9.1 ± 1.6 mV) (Figure 5B).

Figure 5. Zeta potential values of Si (A) and MF (B) and the corresponding organic-inorganic hybrids.

2.4. Metal-Receptor Interaction

In order to test the ability of NCTPP-Pr+, NCTPP-Si, NCTPP-Si-Py+, NCTPP-MF,
and NCTPP-MF-Py+ to interact with the heavy metals Tl(I) and Cr(III) in aqueous solutions,
piezoelectric quartz crystal gold electrodes were coated with the different compounds and its frequency
shifts were recorded after interaction with chosen metals. Quartz crystals were coated by depositing
a drop of a solution of the selected porphyrin on the surface and allowing it to dry. NCTPP-Pr+

was dissolved in THF, while the NCTPP immobilized in silica or in the Merrifield resin were mixed
with polyvinyl chloride (PVC) and a plasticizer 2-nitrophenyl octyl ether (NPOE), in 1:33:69 (w/w)
proportion and suspended in THF. The piezoelectric quartz crystal used in the present work possessed
gold electrodes, which do not interact with the target metals. Therefore, coating the piezoelectric
crystal with a sensitive layer with affinity to those metals is essential to detect them, and it is a main
task in sensor preparation.

Tests for the recognition capability and sensitivity were done by injecting solutions of the two
different metals (Tl(I) and Cr(III)) into a water stream. This water stream was continuously flowing
through the sensor cell at a rate of 0.75 mL min−1. When the metal, carried by the water flow, reached
the sensor, its interaction with the coating induced a decrease in the frequency of oscillation of the
piezoelectric quartz crystal. As water continues to flow, it sweeps the metal away, and frequency
recovers its baseline value in less than 2 min, showing the reversibility of the metal-coating interaction,
compatible with a weak attachment, very far from the establishment of a covalent bonding.
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The linearity of the frequency versus the concentration was checked far from the coating
saturation [67]. Figures 6–8 show the responses of the sensors to the metal solutions. Based on
the obtained responses, sensitivity was calculated relatively to each metal for each material and the
results are displayed in Table 1.

Figure 6. Response of the sensor based on NCTPP-Pr+ to: Tl+ (blue) and Cr3+ (green).

Figure 7. Response of the sensor to Tl+ (blue) and Cr3+ (green) based on: (a) NCTPP-Si and
(b) NCTPP-Si-Py+.

Figure 8. Response of the sensor to Tl+ (blue) and Cr3+ (green) based on: (a) NCTPP-MF and
(b) NCTPP-MF-Py+.
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Table 1. Summary of all the sensors sensitivity for each metal.

Material Metal Sensitivity (103 Hz L mol−1)

NCTPP-Pr+ Tl (I) 28.3
Cr(III) 99.7

NCTPP-Si
Tl (I) 35.4

Cr(III) 98.9

NCTPP-Si-Py+ Tl (I) 21.9
Cr(III) 15.0

NCTPP-MF
Tl (I) 21.9

Cr(III) 96.1

NCTPP-MF-Py+ Tl (I) 26.3
Cr(III) 60.1

According to the results, all sensors, independently of the porphyrin being free or immobilized on
Si or on MF, responded to thallium and chromium (Figures 6–8). Four of the five materials show higher
sensitivity to chromium regarding thallium which was not expected, attaining to the gravimetric
response of the sensors. The atomic weight of thallium is around four times the atomic weight of
chromium. Therefore, according to mass, it is expected, to have a higher response for thallium ions
comparing with an equal number of chromium ions. The response of the sensor for solutions with the
same ionic concentration was surprisingly higher for chromium. Cr3+ ionic radius is smaller than Tl+

ionic radius, which can contribute to enhancing the density of ions able to interact with the porphyrin
molecules. For the sensor coated with NCTPP-Pr+ the slope of the calibration line for Cr3+ is 3.52 times
the slope of the calibration line for Tl+, but this ratio increases to 4.39 for the sensor of the porphyrin
supported on MF resin. This increase may be related to the negative zeta potential of the material,
and the oxidation number of chromium, which is +3, therefore higher than the oxidation number of
thallium, which is +1. This significant advantage on the sensitivity to Cr3+ over Tl+ of the porphyrin
supported on the MF membrane is lost (slope for Cr3+ is 2.29 times the slope for Tl+1) with the pyridine
introduction, as it turns the material positively charged.

After supporting the porphyrin on Si, sensitivity to chromium diminishes in relation to sensitivity
to thallium, even with negative zeta potentials. Comparing with the porphyrin supported on the
Merrifield membrane, the magnitude of zeta potential is lower and the density of porphyrin on the
solid support is also lower. The decrease in the steric hindrance effect would allow the larger thallium
ions to approach the porphyrin molecules. Not surprisingly, the introduction of the pyridinium
units and the resultant positive net charge is another negative factor affecting chromium sensitivity,
rendering this material more sensitive to thallium than to chromium.

3. Materials and Methods

3.1. General Remarks

The 1H-NMR was recorded in a Bruker AMX 300 NMR spectrometer or Bruker AMX 700 NMR
(Wissembourg, France) at 300.13 MHz and 700.13 MHz, respectively, where CDCl3 was used as the
solvent and TMS was used as internal reference. The chemical shifts are expressed in δ (ppm) and
the coupling constants (J) in Hertz (Hz). Mass spectra were recorded using MALDI TOF/TOF 4800
Analyzer, Applied Biosystems MDS Sciex (Sciex, Darmstadt, Germany), with CHCl3 as solvent and
without matrix. The UV-Vis spectra were recorded on a UV-2501PC Shimadzu spectrophotometer
(Shimadzu, Kyoto, Japan) using CHCl3 as solvent. For the diffuse reflectance characterization of the
solids (diluted with MgO) was used a UV-Vis Jasco V560 spectrophotometer (JASCO International Co.,
Ltd., Tokyo, Japan).
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Analytical TLC was carried out on precoated sheets with silica gel (Merck 60, 0.2 mm thick,
Darmstadt, Germany). Column chromatography was carried out using silica gel (Merck, 35–70 mesh).
Preparative thin-layer chromatography was carried out on 20 × 20 cm glass plates coated with silica
gel (0.5 mm thick).

All reagents used in this work were purchased from Sigma Aldrich (Steinheim, Germany) and
not subject to any purification process, being directly used in the reactions due to its elevated purity.
Solvents were used as received or distilled and dried by using standard procedures according to the
literature [68].

3-Bromopropyl-functionalized silica gel (200–400 mesh; extent of labelling: 1.5 mmol g−1

loading) and Merrifield’s resin (100–200 mesh, extent of labelling: 3.5–4.5 mmol g−1 Cl− loading,
1% cross-linked) were also purchased from Sigma-Aldrich.

5,10,15,20-tetraphenyl-2-aza-21-carbaporphyrin (NCTPP) and 2-N-propyl-5,10,15,20-tetraphenyl-2-
aza-21-carbaporpyrin (NCTPP-Pr+) were prepared according with literature procedures.
The characterization of NCTPP and NCTPP-Pr+ were performed by 1H-NMR, UV-Vis and
mass spectrometry with all the experimental data being in agreement with the described literature
data [59,65].

NCTPP: 1H-NMR (300 MHz, CDCl3): δ −5.10 (1H, s, inner-CH), −2.51 (2H, s, NH), 7.74–7.79 (9H,
m, H-m,p-Ph-5,10,15), 7.81-7.86 (3H, m, H-m,p-Ph-20), 8.14–8.19 (4H, m, H-o-Ph-10,15), 8.32–8.38 (4H,
m, H-o-Ph-5,20), 8.40–8.46 (3H, m, β-H), 8.49 (1H, d, J = 5.0 Hz, β-H), 8.63 (1H, s, β-H-3), 8.80 (1H, d,
J = 4.9 Hz, β-H), 8.86 (1H, d, J = 4.9 Hz, β-H) ppm. UV-Vis (DMF): λmax (log ε) 451 (5.08), 554 (3.95),
599 (3.75), 698 (4.07) 737 (4.02) nm. MS [MALDI (+)]: m/z 615 [M + H]+.

NCTPP-Pr+: 1H-NMR (700 MHz, CDCl3): δ 0.41 (3H, t, J = 7.3, CH3), 1.22–1.35 (2H, m, CH2), 3.57
(2H, t, J = 7.6 Hz, N-CH2), 7.46 (1H, d, J = 4.4 Hz, β-H-8), 7.50 (1H, d, J = 4.2 Hz, β-H-17), 7.54–7.57
(6H, m, H-m,p-Ph-10,15), 7.62–7.64 (6H, m, H-m,p-Ph-5,20), 7.71–7.74 (2H, m, β-H-12,13), 7.82 (1H, d,
J = 4.4 Hz, β-H-7), 7.83–7.84 (4H, m, H-o-Ph-10,15), 7.92 (1H, d, J = 4.2 Hz, β-H-18), 7.95–7.98 (4H, m,
H-o-Ph-15,20), 8.02 (1H, s, β-H-3) ppm. UV-Vis (DMF): λmax (log ε) 445 (4.57), 550 (3.29), 600 (3.58), 652
(3.90) 706 (4.04) nm. MS [MALDI (+)]: m/z 657 [M]+.

3.2. NCTPP Immobilization on Functionalized Silica (Si) and on Merrifield Resin (MF)

3.2.1. Synthesis of NCTPP-Si

In a sealed tube was added 500 mg of 3-bromopropyl functionalized silica (Si), meso-tetraphenyl-2-
aza-21-carbaporphyrin, NCTPP, (10 mg, 0.0163 mmol), sodium iodide (20.0 mg, 0.133 mmol) and
o-DCB (5.0 mL). The mixture was stirred for 24 h at 240 ◦C. After cooling, the resulting brown solid was
filtered and washed successively using CH2Cl2, CH2Cl2/CH3OH (9:1), CH3OH, acetone and distilled
water. After washing, the new material was dried overnight in the oven. The total immobilization
of NCTPP in the functionalized silica was calculated considering the difference between the amount
initially used and the one recovered in the washing solvents (determined by UV-Vis). The prepared
NCTPP-Si was obtained with 2% (w/w) of immobilized NCTPP.

3.2.2. Synthesis of NCTPP-MF

In a round-bottom flask, a mixture containing 250 mg of Merrifield´s peptide resin (MF), NCTPP,
(20.0 mg, 0.0326 mmol), and NaI (20.0 mg, 0.133 mmol) in dry toluene (5 mL) was maintained under
stirring for 48 h at 120 ◦C. After this time, the crude mixture was cooled down, filtered and the
resulting solid was washed using CH2Cl2, CH2Cl2/CH3OH (9:1), CH3OH, acetone and distilled water.
After washing, the new material was dried overnight in the oven. The total immobilization of NCTPP
in the functionalized silica was calculated by subtracting to the amount initially used the one recovered
in the washing solvents (measured by UV-Vis). The prepared material NCTPP-MF was obtained with
8% (w/w) of immobilized NCTPP.
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3.2.3. Synthesis of NCTPP-Si-Py+ and NCTPP-MF-Py+

The appropriate NCTPP-Si (160 mg) or NCTPP-MF (150 mg) was treated with NaI (20.0 mg,
0.133 mmol) in pyridine (2.0 mL) and stirred for 24 h under reflux. The resulting mixtures were cooled,
filtered and the respective solids were washed using CH2Cl2, CH2Cl2/CH3OH (9:1), CH3OH, acetone
and distilled water. The solids were dried overnight in the oven yielding the adequate materials
NCTPP-Si-Py+ and NCTPP-MF-Py+.

3.2.4. Si and MF Cationization

Materials Si and MF (without NCTPP) were also treated with pyridine under the same
experimental conditions used above in order to obtain the correspondent positively charged surface
Si-Py+ and MF-Py+.

3.3. Photophysical and Morphological Properties

SEM

For sample preparation for scanning electron microscopy (SEM) analysis, an aliquot of a dilute
particle suspension in ethanol was allowed to air dry on glass slides and then was coated with
evaporated carbon. SEM was performed using a scanning electron microscope Hitachi SU-70 operating
at an accelerating voltage of 20 kV.

3.4. Zeta Potential

The surface charge of the nanoparticles was assessed in a folded capillary cell by zeta potential
measurements performed in aqueous solutions of the particles (pH within the range 5.2 to 5.6), using
Zetasizer Nano ZS equipment from Malvern Instruments (Malvern, UK).

3.5. Sensing Ability Towards Metal Cations

Acoustic wave sensors were prepared by depositing each one of the prepared materials on one of
the faces of a piezoelectric quartz crystal. The coated quartz crystal was housed in a flow cell. The cell
inlet was connected through a 1/16′ ′ tube to a manual injection valve with a 0.5 mL loop, while its
output was connected to waste. A constant flow of 0.75 mL min−1 of distilled water was flowing
over the coated piezoelectric crystal, assuring a stable baseline frequency of oscillation. The injection
of a solution containing the metal ion at a known concentration able to interact with the coating
produces a decrease in the oscillation frequency, which is proportional to the increase in the coating
mass, produced by the metal. Neglecting possible differences in the acoustic properties of the coating
and any changes promoted by the metal, observed frequency decreases depend on the coating amount,
but for the same coating, magnitude of shifts is proportional to the molar amounts of metal physically
or chemically linked to the coating, and to the atomic mass of the metal. The high sensitivity of these
sensors, commonly known as quartz crystal microbalances, turns them into a superior technique to
evaluate the affinity of each compound to specific metals.

4. Conclusions

In summary, novel organic/inorganic hybrids were successfully prepared by immobilization of
5,10,15,20-tetraphenyl-21-aza-carbaporphyrin on functionalized silica and Merrifield resin via a simple
heterogeneous procedure, and the material surface was fully characterized by UV-Vis, SEM, and zeta
potential techniques.

Piezoelectric quartz crystals with gold electrodes coated with these organic/inorganic hybrids
were prepared and their sensing ability towards different metal ions was successfully explored and
studied. Results showed that immobilized N-confused porphyrin retained their ability to complex
with metals, which shows their potential use in metal cations remediation. Moreover, the interaction is
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reversible, and functionalized surfaces are easily recovered. Besides, the inclusion of charged groups
allows tailoring the selectivity of the functionalized surfaces towards metallic cations.

Finally, this study proved to be a good preliminary assay of the use of these materials as sensitive
coatings for real-time metal analysis in water.
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