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Abstract

Motivation: The analysis of RNA-Seq data from individual differentiating cells enables us to recon-

struct the differentiation process and the degree of differentiation (in pseudo-time) of each cell.

Such analyses can reveal detailed expression dynamics and functional relationships for differentia-

tion. To further elucidate differentiation processes, more insight into gene regulatory networks is

required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-

Seq data are time-course data with high time resolution. Although time-course data are useful for

inferring networks, conventional inference algorithms for such data suffer from high time complex-

ity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to

infer networks from single-cell RNA-Seq during differentiation.

Results: In this study, we developed the novel and efficient algorithm SCODE to infer regulatory

networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-

Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We eval-

uated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network.

The performance of SCODE was best for two of the datasets and nearly best for the remaining data-

set. We also compared the runtimes and showed that the runtimes for SCODE are significantly

shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-

cell differentiation analyses.

Availability and Implementation: The R source code of SCODE is available at https://github.com/

hmatsu1226/SCODE

Contact: hirotaka.matsumoto@riken.jp

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Conventional bulk RNA-Seq reveals the average gene expression of

an ensemble of cells, and therefore does not permit the analysis of

detailed states of individual cells. With the advancement of single-cell

RNA-Seq (scRNA-Seq), we can now quantify the expression of indi-

vidual cells and analyze detailed differences among cells

(Kolodziejczyk et al., 2015). This enables several analyses such as the

identification of cell types (Buettner et al., 2015; Zeisel et al., 2015),

especially of rare cells (Grun et al., 2015; Jiang et al., 2016) and the

estimation of cellular lineages (Burns, 2015; Treutlein et al., 2014).

In analyses by scRNA-Seq, the reconstruction of cellular differentia-

tion processes attracts attention as a novel approach to revealing differ-

entiation mechanisms (Trapnell, 2015). The differentiation process can

be reconstructed using dimension reduction (Ji and Ji, 2016; Trapnell

et al., 2014) and stochastic processes (Matsumoto and Kiryu, 2016), for

example, and the degree of differentiation (in pseudo-time) of each cell

is characterized by the position in the reconstructed process. By investi-

gating the expression pattern in pseudo-time, genes can be clustered

into multiple groups with different biological functions (Trapnell et al.,

2014). Moreover, the regulatory cascade of cellular state transitions,

such as differentiation, can be inferred by comparing the timings of up-

and down-regulation (Eckersley-Maslin et al., 2016; Li et al., 2016;

Matsumoto and Kiryu, 2016).

In addition, scRNA-Seq also enables the calculation of accurate

correlations of expression between genes because scRNA-Seq can

distinguish the detailed states of individual cells without contamina-

tion from multiple cell types. The accurate co-expression pattern of

each cell type (progenitor cells and multiple types of differentiated

cells) can reveal the key regulatory factors for lineage programming

(Pina et al., 2015).

In this way, expression dynamics in pseudo-time and accurate

relationships among genes can be inferred from scRNA-Seq data.

For the next step in differentiation analyses using scRNA-Seq, it is

important to reveal the regulatory interactions among genes that

bring about the observed expression dynamics during differentia-

tion, namely, gene regulatory network (GRN) inference from

scRNA-Seq data. Pseudo-time can be regarded as time information,

and hence, scRNA-Seq performed on cells undergoing differentia-

tion can be regarded as time-course expression data at a high tempo-

ral resolution. Although several algorithms have been proposed to

reconstruct GRN from time-course data (Lee and Tzou, 2009), most

of them are not suitable for scRNA-Seq data, such as that collected

over continuous time and with a large number of samples.

Moreover, time complexity is a serious problem, and runtime

becomes infeasibly long with large numbers of samples and genes

for the network inference from time-course data.

Recently, Boolean network-based algorithms have been pro-

posed for inferring GRN from single-cell data (Chen et al., 2015;

Lim et al., 2016; Moignard et al., 2015). Although these algorithms

have revealed some interesting regulatory relationships, their time

complexity increases significantly as the number of genes and cells

increases, and they have thus been applied to data with a small num-

ber of genes. In addition, the expression data must first be converted

into binary data for Boolean network inference, and therefore the

relationship between networks and the underlying dynamics

becomes obscured (Woodhouse et al., 2016).

As another approach, ordinary differentiation equations (ODEs)

have been used to describe regulatory network and expression

dynamics. ODEs can describe continuous variables over continuous

time and the underlying physical phenomena, and therefore they are

suitable for inferring GRN from scRNA-Seq during differentiation.

Although several ODE-based network-inference algorithms have

been proposed (Di Bernardo et al., 2004; Gardner et al., 2003),

most of them are not suitable for the differentiation case because

these algorithms assume a steady-state condition. There are some

ODE-based algorithms that infer GRNs such that the observed

expression dynamics can be reconstructed from the optimized ODE

(Bansal et al., 2006). However, time complexity is still a serious

problem for such ODE-based algorithms (Lee and Tzou, 2009).

Previous research has described optimizing an ODE by using single-

cell data and pseudo-time to infer key GRNs (Ocone et al., 2015).

Although it is a suggestive approach, the optimization assumes that

the GRNs are given and learns the ODE for a specific GRN.

Therefore, a novel and efficient algorithm is necessary to learn

GRNs from ODEs designed for scRNA-Seq performed on differenti-

ating cells and for a large number of samples and genes.

Accordingly, we developed an approach to describe regulatory

networks and expression dynamics with linear ODEs as well as a

novel, highly efficient optimization algorithm, SCODE, for scRNA-

Seq performed on differentiating cells by integrating the transforma-

tion of linear ODEs and linear regression. In the Methods section,

we show that linear ODEs can be transformed from fixed-parameter

linear ODEs if they satisfy a relational expression. We also show

that the relational expression can be estimated analytically and effi-

ciently by linear regression. In addition, SCODE uses a small num-

ber of factors to reconstruct expression dynamics, which results in a

marked reduction of time complexity. In the Results sections, we

described the application of SCODE for three scRNA-Seq datasets

during differentiation. First, we validated that the optimized ODEs

can reconstruct observed expression dynamics accurately. Second,

we evaluated the inferred network by comparing it to the transcrip-

tion factor (TF) regulatory network database based on DNaseI foot-

prints and transcription factor binding motifs. SCODE performed

best with two of the datasets and was the close second best algo-

rithm for the remaining dataset. Third, we compared the runtimes

of the algorithms, and SCODE was significantly faster than previous

algorithm that was designed for time-course data. Moreover,

SCODE is faster than some algorithms that do not use time parame-

ters. These results illustrate the remarkable efficiency of SCODE.

Lastly, we analyzed the network inferred from a dataset and deter-

mined that the de novo methyltransferases Dnmt3a and Dnmt3b

might be key regulators of differentiation.

In this paper, we propose a novel algorithm for scRNA-Seq per-

formed on differentiating cells to reconstruct expression dynamics

and infer regulatory networks with a highly efficient optimization

method. We believe that our approach will substantially advance

the development of regulatory network inference and promote the

development of further single-cell differentiation analyses and bioin-

formatics methods.

2 Materials and methods

2.1 Describing regulatory networks and expression

dynamics with linear ODEs
In this research, we focus on TFs and inferring TF regulatory net-

works. First, we describe TF expression dynamics throughout differ-

entiation with linear ODEs:

dx ¼ Axdt; (1)

where x is a vector of length G (G is the number of TFs) that denotes

the expression of TFs and A is a square matrix with dimensions

equal to G that denotes the regulatory network among TFs. We infer

An efficient regulatory network inference algorithm from scRNA-Seq 2315

Deleted Text: ,
Deleted Text: ; <xref ref-type=
Deleted Text: ; <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: Eckersley-Maslin <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: ; Lim <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: ; Di Bernardo et<?A3B2 show $146#?>al., 2004


the TF regulatory network by optimizing A such that the ODE can

successfully describe the observed expression data.

The above model and most of the algorithms which infer GRN

from RNA-Seq make no distinction between mRNA and corre-

sponding TF levels. Although several studies have shown poor corre-

lation between mRNA and protein levels (Maier et al., 2009), the

correlation increases in the case of differentially expressed mRNAs

(Koussounadis et al., 2015), and changes of mRNA and protein lev-

els are highly correlated (Lundberg et al., 2010). Therefore, TF lev-

els can be represented by mRNA levels with respect to differentially

expressed TF genes during differentiation. The delay due to transla-

tion and translocation also may impact our model. The time scales

of translation and translocation are seconds (Morisaki et al., 2016)

and several tens of minutes (Aymoz et al., 2016), which are signifi-

cantly shorter than that of differentiation (days). Therefore, our

assumption that identifies mRNA level with corresponding TF levels

will be appropriate to describe the regulatory relationships and

dynamics during differentiation.

The observed expression data consist of a G�C matrix (XðeÞ),

where C is the number of cells. In addition, the time parameter of a

cell c is given as tc. Therefore, our objective is to optimize A such that

dx ¼ Axdt can properly represent XðeÞ at a corresponding time point.

Here, A contains G�G parameters and an efficient parameter

optimization algorithm is necessary for large values of G. This is

because the time complexity is typically OðG3Þ for operation on a

G�G matrix, and it will exceed OðCG3Þ to optimize A with a gen-

eral algorithm. As experimental technologies have advanced, the

number of cells that may be subjected to scRNA-Seq has been

increasing, and hence C can be quite large. Therefore, we developed

a novel algorithm to optimize A efficiently, even if both G and C are

large, by integrating the transformation of linear ODEs and linear

regression.

2.1.1 Deriving A from a linear ODE transformation

At first, we consider the following linear ODE:

dz ¼ Bzdt; (2)

where z is a vector of length G and B is a known square matrix. If

we know a matrix W that satisfies x ¼Wz, we can derive the ODE

of x by transforming the ODE of z as follows:

dz ¼ Bzdt (3)

dz ¼ BW�1Wzdt

Wdz ¼WBW�1Wzdt

dx ¼WBW�1xdt:

Therefore, if the parameter B of dz ¼ Bzdt and the relationship

x ¼Wz are given, we can derive A from WBW�1.

2.1.2 Estimating W using linear regression

To infer A, we have to estimate a matrix W that satisfies x ¼Wz.

Here, we assume that the problem of W inference can be regarded as

a linear regression problem. Initially, from dz ¼ Bzdt, we calculate z

at t¼ tc for each cell and generate a G�C matrix (ZðeÞ) (Fig. 1(a)).

With this ZðeÞ, we optimize W to successfully represent the relation-

ship XðeÞ ’WZðeÞ, which results in x ’Wz. The above problem can

be regarded as solving the linear regression for each gene, as

follows:

XðeÞgc ¼
XG
i¼1

WgiZ
ðeÞ
ic þ �; (4)

where � is a noise term. Therefore, W can be optimized analytically

and efficiently by linear regression for each TF (Fig. 1(b)), and A can

be efficiently calculated from WBW�1.

2.1.3 Dimension reduction of z

The basic idea of reduction is that the patterns of expression dynam-

ics are limited and expression dynamics can be reconstructed with a

small number of patterns. For the next step, we consider a small vec-

tor z to represent the original expression dynamics. Hereafter, z is a

vector of length D, with D� G. In this case, W is a G�D matrix,

and hence we used a pseudo-inverse matrix Wþ instead of the

inverse matrix, and A is derived from A ¼WBWþ. The matrix W is

estimated as before, via linear regression. By using a small vector z,

the time complexity of estimation of W becomes much lower.

Recently, such dimensionality reduction approach has also been

proposed to infer network (Wang et al., 2016). Although it is a

sophisticated algorithm, it is designed for discrete time-course data

and small samples, and is not suitable for scRNA-Seq data.

2.1.4 Optimizing B

Thus far, we have assumed B is given. To represent the original

expression dynamics with small values of D, we optimize B for the

Fig. 1. Abstract illustration of SCODE. (a) Sample ZðeÞ from the ODE of z (b) Estimate W based on linear regression. (c) Optimize B iteratively. (d) Infer A from opti-

mized W and B. (e) The expression dynamics can be reconstructed from the optimized ODE of x
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next step. We suppose that the appropriate value of B satisfies the

condition that the ZðeÞ generated from dz ¼ Bzdt can predict XðeÞ

with WZðeÞ accurately. Therefore, we evaluate the appropriateness

of the matrix B with the following residual sum of squares (RSS):

RSSðB;WÞ ¼
X
g;c

XðeÞgc �
XD
i¼1

WgiZ
ðeÞ
ic

 !2

: (5)

In this research, we assume B is a diagonal matrix and the ele-

ments Bii satisfy bmin � Bii � bmax (we set bmin and bmax to -10 and

2, respectively). This limitation is acceptable because large and small

values of Bii represent a dynamics of sharp change and seem to be an

inefficient basis for reconstructing the expression dynamics.

We optimize B by random sampling and iterative optimization

so that the RSS decreases (Fig. 1(c)). The brief pseudocode is given

below (see the Supplementary text for the detailed procedure).

After the above optimization, A is inferred with A ¼ cWbBcWþ

(Fig. 1(d)).

2.1.5 Time complexity

The time complexity of optimizing W and B is OðIðGD3 þGCD2ÞÞ,
where I is the number of iterations of B optimization. The time com-

plexity of calculating A is OðDG2Þ. Because we assume that D is

small, the total time complexity is about OðIGCþG2Þ. As matrix

operations on A, such as multiplication, have a time complexity of

OðG3Þ, our algorithm is highly efficient to infer regulatory network

even though it integrates time-course information into the model.

2.2 Other network inference approaches
For comparison, we also developed a simple network inference algo-

rithm based on linear regression that predicts expression of a partic-

ular TF from the expression of the remaining TFs as follows:

XðeÞgc ¼
X
i 6¼g

W0
giX
ðeÞ
ic þ �: (6)

With this method, the optimized W0 is regarded as a regulatory net-

work. In this research, we optimized W0 using two criteria. The first

criterion is based on normal linear regression, and we estimated W0

with the lm function in R. The second criterion is based on lasso

regression, and we estimated with the msgps package in R, which

automatically selects the optimal degrees of freedom (Hirose, 2012).

We used the Bayesian information criterion for model selection in

msgps.

In addition, we inferred networks with GENIE3 (Huynh-Thu

et al., 2010), which also predicts TF expression from the expression

of other TFs by using regression trees. The performance of GENIE3

was best in the DREAM5 Network Inference challenge for popula-

tion data (Marbach et al., 2012).

We also inferred networks with Jump3 (Huynh-Thu and

Sanguinetti, 2015), which is the expansion of GENIE3 for reconstructing

a network from time-course expression data. Jump3 is based on jump

trees and showed high performance for multiple time-course datasets.

2.3 Dataset
We analyzed three time-course scRNA-Seq datasets by the following

procedures. First, transcripts per million reads (TPM) and fragments

per millions of kilobases mapped (FPKM) were transformed as

log(TPMþ1) and log(FPKMþ1), and we regarded these log-

transformed values as the expression value. Next, we calculated the

averaged expression of each TF at each time point and calculated the

variance of the averaged expression for each TF. For TF data, we used

Riken TFdb for mouse (Kanamori et al., 2004), and animalTFDB for

human (Zhang et al., 2015). (Riken TFdb contains not only TFs but

also their related genes, and we called all genes in the database tran-

scription factors in this study.) Lastly, we regarded the TFs with large

variances as variable TFs during differentiation. Hereafter, we used the

top 100 variable TFs for network inference. For these 100 TFs, we esti-

mated pseudo-time (tc) with Monocle (Trapnell et al., 2014). We also

excluded 100 randomly selected cells from the training data in order to

use them as test data to evaluate adequate sizes of z (D).

2.3.1 Data1: mouse ES cells to primitive endoderm cells

The first time-course scRNA-Seq dataset (at 0, 12, 24, 48 and 72 h)

analyzed was derived from primitive endoderm (PrE) cells differenti-

ated from mouse ES cells (by using G6GR ES cells (Shimosato et al.,

2007)), containing 456 cells. This dataset was produced with

RamDA-Seq, a novel scRNA-Seq protocol developed by our labora-

tory (in submission).

2.3.2 Data2: mouse embryonic fibroblast cells to myocytes

The second dataset was derived from scRNA-Seq data obtained to

examine direct reprogramming from mouse embryonic fibroblast

(MEF) cells to myocytes at days 0, 2, 5 and 22 (Treutlein et al.,

2016). This dataset contained 405 cells.

2.3.3 Data3: human ES cells to definitive endoderm cells

The third dataset was a scRNA-Seq time course (at 0, 12, 24, 36, 72

and 96 h) derived from definitive endoderm (DE) cells differentiated

from human ES cells, containing 758 cells (Chu et al., 2016).

2.4 Network validation method
To validate the inferred networks, we used the Transcription Factor

Regulatory Network database (http://www.regulatorynetworks.

org), which was constructed from DNaseI footprints and TF-

binding motifs (Neph et al., 2012; Stergachis et al., 2014). We inte-

grated the TF regulatory networks of all cells for human and mouse,

and extracted 100�100 TF regulatory networks for each dataset.

We regarded these TF regulatory networks as correct networks for

each dataset and calculated the AUC values of the inferred net-

works. The AUC values were calculated by regarding the directed

edges that show higher absolute values as representing reliable regu-

latory relationships. We removed self-loop regulation and TFs that

do not have an edge in the correct network from AUC calculation in

order to avoid biases.

Algorithm 1. Iterative optimization of B

Initialize a diagonal matrix Bð1Þ randomly

for k ¼ 1 : I do

ZðeÞ ( Generate from dz ¼ BðkÞzdt

WðkÞ ( Solution of linear regression (XðeÞ ’WZðeÞ)

if RSSðBðkÞ;WðkÞÞ < RSSðbB;cWÞ thenbB ( BðkÞcW (WðkÞ

end if

Bðkþ1Þ ( bB
i( uniform random value 2 ½1;D�
B
ðkþ1Þ
ii ( uniform random value 2 ½bmin; bmax�

end for
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Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://www.regulatorynetworks.org
http://www.regulatorynetworks.org


3 Results

3.1 Selection of the size of z (D) and reproducibility of A

Our model was overfitted to the training data, and the inferred A was

unstable with needlessly large D. Additionally, the model cannot

reconstruct expression dynamics with insufficiently small values of D.

Therefore, the selection of appropriate values for D is necessary, and

we applied SCODE to training data and evaluated the validity of the

optimized model on the basis of the RSS of independent test data for

various values of D (D¼2, 4, 6 and 8). For each D, we executed

SCODE 100 times independently, and the first, second and third

quantiles of the RSS values of test data are shown in Figure 2(a). For

every dataset, the median of RSS is almost saturated at D¼4.

Because we used random sampling during optimization, we vali-

dated the reproducibility of the optimized A. We calculated the cor-

relation coefficient among optimized A for the top 50 replicates (in

ascending order of RSS values) of test data for each D. The corre-

sponding first, second and third quantiles of correlation coefficients

are shown in Figure 2(b). For D¼4, the medians of the correlation

coefficients are 0.71, 0.94 and 0.88 for each dataset. The medians

tend to decrease for large D because the matrix A is unstable with

needlessly large D. The medians also decrease for small D, possibly

because the optimized A is trapped in local optima. In summary, the

correlations among replicates are high, and therefore, an optimized

matrix A is stable for D¼4.

Because the RSS values for test data are almost saturated and the

estimated A are stable with D¼4, we used D¼4 unless otherwise

specified. For optimized A of each D, we used the mean of optimized

A of the top 50 replicates, hereafter.

3.2 Validation of A optimization with simulation data
Next, we investigated whether SCODE can infer genuine A by using

simulated data. Because the dynamics of x become unrealistic with

randomly determined A, we used previously inferred A (for D¼4)

as genuine A and simulated data with the same condition for each

dataset (such as the same pseudo-time). We also added uniform ran-

dom numbers (� 2 ½�0:1;0:1�) to simulated data as a noise term. We

optimized A for each simulated dataset 100 times, and Figure 3

shows the first, second and third quantiles of the correlation

coefficients between the genuine A and optimized A for each D. The

medians are 0.70, 0.71 and 0.91 for D¼4, and 0.61, 0.48 and 0.49

for D¼6. Therefore, SCODE can accurately infer the genuine A

with appropriate D, and can roughly infer A with slightly different

D values unless we set extremely large or small D.

3.3 Reconstruction of expression dynamics
Although RSS values for test data were almost saturated at D¼4,

this does not necessarily mean that SCODE can successfully learn

the dynamics. Next, we investigated whether the optimized ODE

can accurately reconstruct observed expression dynamics to verify

the optimization of SCODE (Fig. 1(e)). For each set of dynamics, the

initial values (x at t¼0) were set to the mean expression of 0-h or

day 0 cells. At first, we compared the reconstructed dynamics with

observed data in the principal component analysis (PCA) space

(Fig. 4). For every dataset, SCODE was able to reconstruct the

dynamics with D � 4.

Next, we compared the reconstructed dynamics with observed

expression dynamics for some TFs (Sox2, Utf1, Epas1 and Foxq1)

in Data1 (Fig. 5). The analysis for every TF and dataset is described

in the Supplementary text. Although the reconstructed dynamics of

SCODE with D¼2 differ from the observed data, the model with D

� 4 successfully reconstructed complicated dynamics, such as

(a)

(b)

Fig. 2. The first, second and third quantiles of the RSS values of test data (a)

and the correlations among optimized A of the top 50 replicates (b) for each D

(D¼2, 4, 6 and 8) for each dataset

Fig. 3. The first, second and third quantiles of the correlation coefficients

between genuine A and inferred A for each D

Fig. 4. PCA of scRNA-Seq data for each dataset. Each circle represents a cell,

and its color represents experimental time (from light gray to black). The

reconstructed expression dynamics are projected onto PCA space and are

represented by colored lines (green, yellow, orange and red correspond to

D¼2, 4, 6 and 8, respectively)
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transient patterns. Therefore, we concluded that SCODE can suc-

cessfully optimize A and learn the ODE of x

3.4 Validation of inferred network
We also evaluated the inferred network of each algorithm including

the correlation network by comparing them to TF regulatory net-

works based on DNaseI footprints and TF-binding motifs (see

Section 2.4). Because the runtimes of Jump3 are significantly large

for large numbers of cells, we used 25 cells at even intervals in the

pseudo-time order as the data for Jump3. The AUC values of each

method for each dataset are shown in Table 1.

For Data1 and Data2, the AUC values of SCODE are signifi-

cantly larger than those of the other algorithms. This is because our

model considers the dynamics of expression and fully uses time

information. Although Jump3 is also designed for time-course

expression data, the AUC values are not high. This is because Jump3

is not designed for scRNA-Seq conducted during differentiation, but

is designed for multiple time-course data. This suggests the necessity

of a novel computational algorithm designed for scRNA-Seq data.

The performance of SCODE is second, but almost equal to the

best performance for Data3. Given that the reconstructed path in

PCA space is a little out of alignment for Data3 (Fig. 4), our model

based on linear ODEs might be slightly insufficient to describe the

expression dynamics of Data3.

In summary, our algorithm can infer TF regulatory networks

with high performance in comparison to other network inference

algorithms, especially for Data1 and Data2. This result implies the

importance of time parameters in network inference and the

necessity of a novel network inference algorithm designed for

scRNA-Seq data obtained during differentiation.

We also compared the result of SCODE of Data3 with TRRUST,

which is a human transcriptional regulatory network database based

on small-scale experimental studies (Han et al., 2015). As a result,

SCODE successfully identified the relationship included in TRRUST

that GATA3, which is the known marker for the differentiation of

Data3, positively regulate ZEB1 (see Supplementary text for the

detailed explanation).

3.5 Runtimes
We investigated the runtime of each method and the runtimes for

Data1 are shown in Table 2. The runtime of Jump3 is calculated

using the data from 25 cells as stated above. The runtime of SCODE

is 11 seconds and is significantly smaller than that of Jump3.

Moreover, the runtime of SCODE is smaller than those of msgps

and GENIE3, which do not consider time dynamics. These results

show that SCODE can infer regulatory networks efficiently, even

though it considers a time parameter in its model.

3.6 Network analysis
Lastly, we investigated the structure of the inferred regulatory net-

work of Data1. At first, we defined the threshold a as the value of

the 1000th largest absolute value in A, and we counted the number

of positive edges (Aij � a) and negative edges (Aij � �a) for TF j.

Figure 6(a) shows the total counts for each TF in decreasing order.

About 39% of edges are included in the top 10 TFs, and this result

implies the existence of key regulators for differentiation.

Interestingly, most TFs mainly have either positive or negative edges,

and this result suggests that TFs might mainly work as either activa-

tors or inhibitors in differentiation. This tendency was shared with

Data3, but was not seen in Data2 (see Supplementary text). This

result might reflect a difference in the systems; Data1 and Data3 rep-

resent differentiation from ES cells, while Data2 represents direct

reprogramming from MEF cells.

We also visualized the top 10 TF results Figure 6(b).

Interestingly, Dnmt3a and Dnmt3b, which are the de novo DNA

Fig. 5. Observed expression of four TFs and reconstructed dynamics for each

D (green, yellow, orange and red correspond to D¼2, 4, 6 and 8, respec-

tively). The x-axis represents pseudo-time and y-axis represents log(TPMþ1)

Table 1. The AUC values of each method for each dataset

SCODE lm msgps Cor GENIE3 Jump3

Data1 0.536 0.480 0.510 0.505 0.474 0.504

Data2 0.581 0.489 0.516 0.492 0.472 0.492

Data3 0.523 0.480 0.499 0.524 0.522 0.501

Note: Cor is the correlation network.

Table 2. The runtimes of each method for Data1 (456 cells)

SCODE lm msgps Cor GENIE3 Jump3

Runtime (s) 11 1.0 40 0.73 2:9� 102 2:7� 103*

Note: The runtime of Jump3 is calculated using data from 25 cells. The

computations were performed on a MacBook Pro equipped with a 3.1 GHz

Intel Core i7 processor and 16 GB of 1867 MHz DDR3 RAM.

(a) (b)

Fig. 6. (a) Bar graph of positive and negative edges of each TF in decreasing

order. For visibility, only the top 60 TFs are shown (see Supplementary text

for plot of all TFs). (b) Bar graph of the top 10 TFs
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methyltransferase have several positive edges. Data1 is derived from

scRNA-Seq obtained from cells differentiating from mouse ES cells

into PrE cells. To maintain the pluripotency of ES cells, Dnmt3a and

Dnmt3b seem dispensable, and these genes must be unimportant for

ES cells (Tsumura et al., 2006). However, several studies have sug-

gested the importance of Dnmt3a and Dnmt3b in differentiation.

For example, these TFs restrict the lineage-specific function of TFs

during differentiation via DNA methylation (Oda et al., 2013). In

addition, Dnmt3a is essential for hematopoietic stem cell differentia-

tion and it seems to enhance differentiation by epigenetic silencing

of multipotency genes (Challen et al., 2012). Thus, Dnmt3a and

Dnmt3b are known to affect differentiation based on de novo DNA

methylation.

In this study, these genes were inferred to regulate several TFs

positively. Because DNA methylation essentially silences expression,

these TFs might be regulated positively indirectly via the inactiva-

tion of negative regulators of these TFs. Although the direct targets

of Dnmt3a and Dnmt3b are obscure, our result suggests that they

are the key regulators of this differentiation.

4 Discussion

The advancement of scRNA-Seq and the analysis of differentiation

reconstruction and pseudo-time have elucidated differentiation

mechanisms. The inference of regulatory networks associated with

differentiation is necessary to further our understanding of differen-

tiation and development. In the inference of regulatory networks, it

is important to fully use pseudo-time information and expression

dynamics. However, there are no efficient algorithms for inferring

the regulatory networks of many TFs from continuous time expres-

sion data. Thus, we developed SCODE, an efficient algorithm based

on linear ODEs. SCODE is based on the transformation of linear

ODEs and linear regression, and the time complexity is significantly

small.

We applied SCODE to three scRNA-Seq datasets during differ-

entiation and showed that SCODE can successfully optimize ODEs

so that these ODEs can reconstruct observed expression dynamics.

In the validation of the inferred network, the AUC values of SCODE

were higher than those of other methods in almost of all cases. The

runtime of SCODE is significantly smaller than that of Jump3,

which also infers networks from time-course data. Additionally,

SCODE is faster than GENIE3, which does not use time informa-

tion. These performance results show the efficiency of SCODE.

Single-cell sequencing technologies are developing rapidly, and

the number of scRNA-Seq datasets produced from differentiating

cells will therefore increase. Our novel and efficient method for

inferring regulatory networks demonstrated high performance and

will therefore enhance the analysis of regulatory networks.

Moreover, our model can reconstruct expression dynamics accu-

rately. This means that we can simulate expression dynamics (such

as those associated with the knockout of a TF) by using an opti-

mized model, and such simulation-based analyses will be useful for

many types of research, such as detection of drivers of differentia-

tion. Thus, SCODE is useful not only for regulatory network infer-

ence, but also for various analyses using simulation, and therefore,

our research is a promising computational tool for further single-cell

sequence analyses.

Acknowledgements

The authors thank Yohei Sasagawa, Hiroki Danno, Masashi Ebisawa, Mana

Umeda and Haruka Ozaki for assistance in this study. We also thank Tsukasa

Fukunaga for critically reading the manuscript and Suguru Yaginuma for

helpful discussions about our algorithm.

Funding

This work was supported by a Grant-in-Aid for Japan Society for the

Promotion of Science (JSPS) Fellows, JSPS KAKENHI (Grant Number

16J05079, 15H01465, 25134701, 25870190, and 16H01532), and Core

Research for Evolutional Science and Technology (CREST) “Creation of

Fundamental Technologies for Understanding and Control of Biosystem

Dynamics” from the Japan Science and Technology Agency (JST).

Conflict of Interest: none declared.

References

Aymoz,D. et al. (2016) Real-time quantification of protein expression at the

single-cell level via dynamic protein synthesis translocation reporters. Nat.

Commun., 7, 11304.

Bansal,M. et al. (2006) Inference of gene regulatory networks and compound

mode of action from time course gene expression profiles. Bioinformatics,

22, 815–822.

Buettner,F. et al. (2015) Computational analysis of cell-to-cell heterogeneity

in single-cell RNA-sequencing data reveals hidden subpopulations of cells.

Nat. Biotechnol., 33, 155–160.

Burns,J.C. a.o. (2015) Single-cell RNA-Seq resolves cellular complexity in sen-

sory organs from the neonatal inner ear. Nat Commun., 6, 8557.

Challen,G.A. et al. (2012) Dnmt3a is essential for hematopoietic stem cell dif-

ferentiation. Nat. Genet., 44, 23–31.

Chen,H. et al. (2015) Single-cell transcriptional analysis to uncover regulatory

circuits driving cell fate decisions in early mouse development.

Bioinformatics, 31, 1060–1066.

Chu,L.F. et al. (2016) Single-cell RNA-seq reveals novel regulators of human

embryonic stem cell differentiation to definitive endoderm. Genome Biol.,

17, 173.

Di Bernardo,D. et al. (2004) Robust identification of large genetic networks.

Pac. Symp. Biocomput., 9, 486–497.

Eckersley-Maslin,M.A. et al. (2016) MERVL/Zscan4 network activation

results in transient genome-wide DNA demethylation of mESCs. Cell Rep.,

17, 179–192.

Gardner,T.S. et al. (2003) Inferring genetic networks and identifying com-

pound mode of action via expression profiling. Science, 301, 102–105.

Grun,D. et al. (2015) Single-cell messenger RNA sequencing reveals rare intes-

tinal cell types. Nature, 525, 251–255.

Han,H. et al. (2015) TRRUST: a reference database of human transcriptional

regulatory interactions. Sci. Rep., 5, 11432.

Hirose,K. (2012) msgps: Degrees of freedom of elastic net, adaptive lasso and

generalized elastic net. R package version 1.3.

Huynh-Thu,V.A. and Sanguinetti,G. (2015) Combining tree-based and

dynamical systems for the inference of gene regulatory networks.

Bioinformatics, 31, 1614–1622.

Huynh-Thu,V.A. et al. (2010) Inferring regulatory networks from expression

data using tree-based methods. PLoS ONE, 5, e12776.

Ji,Z. and Ji,H. (2016) TSCAN: Pseudo-time reconstruction and evaluation in

single-cell RNA-seq analysis. Nucleic Acids Res., 44, e117.

Jiang,L. et al. (2016) GiniClust: detecting rare cell types from single-cell gene

expression data with Gini index. Genome Biol., 17, 144.

Kanamori,M. et al. (2004) A genome-wide and nonredundant mouse transcrip-

tion factor database. Biochem. Biophys. Res. Commun., 322, 787–793.

Kolodziejczyk,A.A. et al. (2015) The technology and biology of single-cell

RNA sequencing. Mol. Cell, 58, 610–620.

Koussounadis,A. et al. (2015) Relationship between differentially expressed

mRNA and mRNA-protein correlations in a xenograft model system. Sci.

Rep., 5, 10775.

Lee,W.P. and Tzou,W.S. (2009) Computational methods for discovering gene

networks from expression data. Brief. Bioinf., 10, 408–423.

2320 H.Matsumoto et al.



Li,J. et al. (2016) Systematic reconstruction of molecular cascades regulating

GP development using single-cell RNA-Seq. Cell Rep., 15, 1467–1480.

Lim,C.Y. et al. (2016) BTR: training asynchronous Boolean models using

single-cell expression data. BMC Bioinformatics, 17, 355.

Lundberg,E. et al. (2010) Defining the transcriptome and proteome in three

functionally different human cell lines. Mol. Syst. Biol., 6, 450.

Maier,T. et al. (2009) Correlation of mRNA and protein in complex biological

samples. FEBS Lett., 583, 3966–3973.

Marbach,D. et al. (2012) Wisdom of crowds for robust gene network infer-

ence. Nat. Methods, 9, 796–804.

Matsumoto,H. and Kiryu,H. (2016) SCOUP: a probabilistic model based on

the Ornstein-Uhlenbeck process to analyze single-cell expression data dur-

ing differentiation. BMC Bioinformatics, 17, 232.

Moignard,V. et al. (2015) Decoding the regulatory network of early blood

development from single-cell gene expression measurements. Nat.

Biotechnol., 33, 269–276.

Morisaki,T. et al. (2016) Real-time quantification of single RNA translation

dynamics in living cells. Science, 352, 1425–1429.

Neph,S. et al. (2012) Circuitry and dynamics of human transcription factor

regulatory networks. Cell, 150, 1274–1286.

Ocone,A. et al. (2015) Reconstructing gene regulatory dynamics from high-

dimensional single-cell snapshot data. Bioinformatics, 31, 89–96.

Oda,M. et al. (2013) DNA methylation restricts lineage-specific functions of

transcription factor Gata4 during embryonic stem cell differentiation. PLoS

Genet., 9, e1003574.

Pina,C. et al. (2015) Single-cell network analysis identifies DDIT3 as a nodal

lineage regulator in hematopoiesis. Cell. Rep., 11, 1503–1510.

Shimosato,D. et al. (2007) Extra-embryonic endoderm cells derived from ES

cells induced by GATA factors acquire the character of XEN cells. BMC

Dev. Biol., 7, 80.

Stergachis,A.B. et al. (2014) Conservation of trans-acting circuitry during

mammalian regulatory evolution. Nature, 515, 365–370.

Trapnell,C. (2015) Defining cell types and states with single-cell genomics.

Genome Res., 25, 1491–1498.

Trapnell,C. et al. (2014) The dynamics and regulators of cell fate decisions are

revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32,

381–386.

Treutlein,B. et al. (2014) Reconstructing lineage hierarchies of the distal lung

epithelium using single-cell RNA-seq. Nature, 509, 371–375.

Treutlein,B. et al. (2016) Dissecting direct reprogramming from fibroblast to

neuron using single-cell RNA-seq. Nature, 534, 391–395.

Tsumura,A. et al. (2006) Maintenance of self-renewal ability of mouse embry-

onic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a

and Dnmt3b. Genes Cells, 11, 805–814.

Wang,D. et al. (2016) DREISS: Using State-Space Models to Infer the

Dynamics of Gene Expression Driven by External and Internal Regulatory

Networks. PLoS Comput. Biol., 12, e1005146.

Woodhouse,S. et al. (2016) Processing, visualising and reconstructing network

models from single-cell data. Immunol. Cell Biol., 94, 256–265.

Zeisel,A. et al. (2015) Brain structure. Cell types in the mouse cortex and hip-

pocampus revealed by single-cell RNA-seq. Science, 347, 1138–1142.

Zhang,H.M. et al. (2015) AnimalTFDB 2.0: a resource for expression, predic-

tion and functional study of animal transcription factors. Nucleic Acids

Res., 43, 76–81.

An efficient regulatory network inference algorithm from scRNA-Seq 2321


	btx194-TF1
	btx194-TF2

