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Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, causing transient brain dysfunction. The
seizures of epilepsy have the characteristics of being sudden and repetitive, which has seriously endangered patients’ health,
cognition, etc. In the current condition, EEG plays a vital role in the diagnosis, judgment, and qualitative location of epilepsy
among the clinical diagnosis of various epileptic seizures and is an indispensable means of detection. The study of the EEG
signals of patients with epilepsy can provide a strong basis and useful information for in-depth understanding of its
pathogenesis. Although, intelligent classification technologies based on machine learning have been widely used to the
classification of epilepsy EEG signals and show the effectiveness. In fact, it is difficult to ensure that there is always enough EEG
data available for training the model in real life, which will affect the performance of the algorithms. In view of this, to reduce
the impact of insufficient data on the detection performance of the algorithms, a novel discriminate least squares regression-
(DLSR-) based inductive transfer learning method was introduced which is on the basis of DLSR and the inductive transfer
learning. And, it is applied to promote the adaptability and accuracy of the epilepsy EEG signal recognition. The proposed
method inherits the advantages of DLSR; it can be more suitable for classification scenarios by expanding the interval between
different classes. Meanwhile, it can simultaneously use the data of the target domain and the knowledge of the source domain,
which is helpful for getting better performance. The results show that the improved method has more advantages in EEG signal
recognition comparing to several other representative methods.

1. Introduction

At present, epilepsy has become a common disease in neurol-
ogy. Its pathogenesis has not yet been fully elucidated, and it
is usually defined as a chronic neurological disease caused by
sudden abnormal discharge of brain neurons. The epileptic
seizures are sudden and repetitive. Its onset is accompanied
by clinical manifestations such as loss of consciousness, faint-
ing, and twitching of extremities. It also has cognitive and
mental disorders that seriously endanger patients’ health,
cognition, etc. [1, 2]. According to statistics, more than one
percent of the world’s population suffer from the disease
[3], and there are approximately 9 million people with epi-

lepsy in China. Therefore, the depth research and prevention
of epilepsy play an indispensable role to alleviate the suffering
of patients, improve the quality of life, and promote healthy
development. As an important method for studying epilepsy,
EEG uses electrodes to record the electrical activity of nerve
cells in the brain, which contains a large amount of physio-
logical and pathological information, and is of great impor-
tance in the clinical examination, location, and therapy of
epilepsy. Therefore, for people with a tendency to epilepsy,
automatic detection of epilepsy can analyze and screen the
EEG signals of people at high risk for epilepsy, so as to realize
early detection, perform timely intervention, and reduce the
impact of epilepsy on people and the incidence of epilepsy.
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In view of this, it is of great value to study the epilepsy
automatic detection algorithm based on EEG signals and
develop an efficient and accurate epilepsy automatic detec-
tion system.

In fact, the study of automatic epileptic detection based
on EEG signals has attracted extensive attention from
scholars and experts at home and abroad since the 1970s.
To predict the onset or preonset of epilepsy in the process
of seizure detection, machine learning and pattern classifica-
tion algorithms are generally applied to classify the EEG sig-
nals after extracting the characteristics of the time domain,
frequency domain, time frequency domain, or nonlinear
domain of the EEG. With the development of computer tech-
nology and digital signal processing technology, more and
more methods are widely used in the study of seizure detec-
tion methods and have achieved certain research results, such
as the Bayesian classifier [4], artificial neural network [5-9],
support vector machine (SVM) [10-13], and fuzzy reasoning
[14, 15]. For example, Obeyli extracted the Lyapunov expo-
nential features of EEG signals and used probabilistic neu-
ral networks to classify EEG signals, so as to achieve high
classification results [9]. Chan et al. extracted the time-
frequency features of five subbands in the wavelet trans-
form domain of epilepsy EEG signals and then used sup-
port vector machines and cluster regression models to
recognize the onset of seizures. Aarabi et al. [14] extracted
the features such as sample entropy, dominant frequency,
average amplitude, and amplitude variation coefficient of
intracranial EEG da4ta of patients with epilepsy and used
the established fuzzy inference rules to fuse the EEG feature
information for seizure detection. Although many of the
above intelligent classification methods have shown the
effectiveness of epilepsy EEG signal classification, they still
face a challenge, that is, it is very hard to get enough EEG
data for epilepsy to train the model in real life. Therefore,
it has important practical value to explore how to use
the knowledge acquired from related fields to enhance
the classification performance of EEG data in the current
scenario [16].

To solve the above challenges, a novel inductive transfer
learning method based on discriminant least squares regres-
sion (TDLSR) was proposed. Meanwhile, it was applied to
specific medical application scenarios, namely, epilepsy
EEG signal classification, so as to relieve the effect of severe
data shortage on the performance of the algorithms. Transfer
learning is an effective way to transfer knowledge from
related fields and is helpful of obtaining more information
in the absence of sufficient data or information. It focuses
on how to use the useful information from similar but differ-
ent source domains to improve the classification result of the
classifier in the target domain. When studying epilepsy EEG
signal classification, the inductive transfer learning method
naturally becomes the first choice because of insufficient
labeled epilepsy EEG samples in the target domain some-
times. What is more, since the discriminant LSR is still based
on least squares regression (LSR) [17], which can explain the
importance of each feature in the prediction model based on
the original data space, we introduced the inductive transfer
learning method based on DLSR to use for epilepsy EEG sig-
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nal classification. In summary, the innovations of this work
are summarized as follows:

Point 1. The improved method is on the basis of the
inductive transfer learning, but it has some difference from
the traditional inductive transfer learning. The latter directly
transfers the samples or features used in the source domain to
the target domain for transfer learning, while the former uses
a knowledge lever mechanism that transfers some knowledge
from the source domain to the target domain. Then, the secu-
rity of the data in the source domain can be well protected,
and the data in the target domain and the knowledge in the
source domain can be used simultaneously, so that the classi-
fication effect is better.

Point 2. The improved method expands DLSR that can be
well applied to classification scenes into a novel method with
certain transfer learning ability, so that it can be used in more
complex scenes.

Point 3. The improved method inherits the characteris-
tics of DLSR, that is, it can be better applied to classification
scenarios by expanding the interval between different catego-
ries. And, it can transfer knowledge from the source domain,
thus ensuring the rationality of its training model.

Finally, to better illustrate the basic idea of this study, the
structure of the paper is as follows:

Part 1. Introduction to the research background, status,
and significance of the thesis.

Part 2. The related work, including the related technology
of epilepsy EEG signal detection and the epilepsy EEG signal
classification based on transfer learning, is summarized in
advance so that the following sections become more readable.

Part 3. The notations of the inductive transfer learning
algorithm based on DLSR was introduced in detail.

Part 4. The reliability and validity of TDLSR algorithm in
detection of epilepsy EEG signals based on a series of exper-
imental were verified.

2. Related Work

Automatic epilepsy detection is based on signal processing
technology and pattern recognition. It analyzes EEG data to
identify the location and duration of seizures. Usually, the
EEG signals collected during seizures was called seizure
EEG, and the EEG signals collected in the nonseizure are
called nonseizure EEG. The problem of automatic detection
of epilepsy EEG is to effectively judge the above two types
of EEG signals and identify seizures. The related detection
technologies are introduced as follows.

2.1. The Related Technology of Epilepsy EEG Signal Detection.
Because the EEG signal of epilepsy is easily interfered by
many factors, it is very random, and it is a nonstationary
signal, and its rule is generally difficult to grasp. There-
fore, researchers often use quantitative analysis to extract
characteristic information of epilepsy EEG signals. The
existing methods of automatic epilepsy detection include
the following:

(1) Time-domain analysis: time-domain analysis is one
of the earliest methods used in signal analysis. It
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(2)

analyzes the time-domain waveforms of EEG signals
to study the difference between EEG waveform dur-
ing seizures and EEG waveform during nonseizures,
and directly extracts the waveform characteristics of
the signals to distinguish the two types of EEG
signals. The time-domain analysis method has the
characteristics of intuitiveness and clear physical
meaning, and it can reflect the important informa-
tion in transient waveform such as spike wave and
harp wave. The representative methods of time-
domain analysis have a template matching method,
time-domain waveform, or energy characteristics,
etc. In 2001, Litt et al. [18] performed feature extrac-
tion on EEG signals based on time-domain analysis
methods. In addition, researchers performed time-
domain analysis of EEG signals to extract waveforms
or energy features different from background activi-
ties and use amplitude, rhythm, period, and other
parameters as classification criteria to identify
epilepsy EEG signals. Gotman et al. performed a
“half-wave” decomposition of EEG signals and then
extracted EEG features, including average amplitude,
duration, and coefficient of variation relative to the
background, and set thresholds based on expert expe-
rience. The characteristic parameters are compared
with the threshold to judge whether it is an epilepsy
signal [19-21]. Time-domain analysis only performs
statistical analysis from the time domain, and it is
easy to miss other important changes in abnormal
signals, such as slow waves

Frequency analysis: unlike time-domain analysis,
which mainly analyzes the waveform characteristics
of epilepsy EEG, frequency domain analysis analyzes
the frequency characteristics of EEG. It recognizes
different rhythms according to the frequency of brain
waves. Each brain wave of different rhythms corre-
sponds to epilepsy EEG signals in different time
periods or different parts of the brain [22]. Frequency
domain analysis is based on the Fourier transform
and is mainly used for power spectrum analysis of
EEG signals. It performs the Fourier transform on
the EEG signal to obtain its frequency components
and spectrum distribution and extracts the corre-
sponding EEG features in the frequency domain for
epilepsy detection and recognition. Representative
methods include power spectrum estimation, autore-
gressive (AR) model spectrum estimation, and higher
order spectrum [23]. Among them, the power spec-
trum estimation transforms the EEG signal whose
amplitude changes with time into the EEG spectrum
chart with power varying with frequency and ana-
lyzes the distribution and change of each frequency
band of the EEG signal intuitively and quantitatively
[24, 25]. Although frequency domain analysis can
provide a lot of effective information, allowing
researchers to detect epilepsy based on the frequency
domain characteristics of EEG, the overall spectrum
of the signal obtained by the Fourier transform nei-

ther can reflect the local characteristics of the signal
nor can reflect the signal frequency component
changes with time. Therefore, the detection results
obtained by frequency domain analysis are not very
satisfactory and are greatly restricted in practical
applications

(3) Time-frequency analysis: the epilepsy EEG is a typi-

cal nonstationary signal, which contains not only
the waveform parameter characteristics in the time
domain but also the energy distribution characteris-
tics in the frequency domain. However, neither the
above two methods can fully extract the transient
characteristics and information of the EEG signals
and can get the ideal results. With the development
of digital signal theory and methods, the time-
frequency analysis method combining time domain
and frequency domain is widely used in the analysis
of nonstationary EEG signals. It can obtain time
and frequency domain information at the same time
and capture transient information of EEG. In recent
years, more and more studies have adopted time-
frequency analysis methods to analyze EEG signals,
among which various wavelet change methods are
represented. The wavelet transform uses the transla-
tion and expansion of the window function to imple-
ment a wide time window for the low-frequency
components of the signal and a narrow time window
for the high-frequency components to complete the
multiscale analysis of the signal. This analysis
method conforms to the laws of nature and has a
good ability to characterize the local characteristics
of the signal [26]. It can capture the transient charac-
teristics of the EEG signal and accurately locate it in
the time and frequency domains. In addition to
wavelet transform, commonly used time-frequency
analysis methods also include empirical mode
decomposition [27-30], the Wigner-Ville distribu-
tion [31, 32], and the Stockwell transform [33, 34].
However, most of these time-frequency analysis
methods can only be used for multiresolution analy-
sis of the original signal and then need to be com-
bined with other algorithms to achieve the feature
extraction and selection of EEG. Figure 1 shows the
comparison of time-domain analysis, frequency
domain analysis, and wavelet transform analysis.

Observe the above figures, it is easy to draw a
conclusion that the time-frequency analysis can pro-
vide more useful information compared to time-
domain analysis and frequency domain analysis. In
Figure 1(c), the wavelet transform improves the time
resolution at the high frequency of the signal by
changing the time window and improves the fre-
quency resolution at the low frequency, which has a
better classification effect

(4) Nonlinear dynamic analysis: nowadays, with the

progress of nonlinear dynamics theory, researchers
are devoted to studying the nonlinear of EEG signals
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F1GURE 1: Comparison of time-domain analysis, frequency domain analysis, and time-frequency analysis. (a) Time-domain analysis.

(b) Frequency analysis (Fourier transform). (c) Wavelet transform.

to solve the problem of automatic detection of
epilepsy. Using nonlinear dynamics theory methods
for EEG signal analysis, various nonlinear features
of EEG signals can be extracted to distinguish epi-
lepsy EEG signals from normal EEG signals. This
provides some new research ideas for automatic
epilepsy detection technology. Kannathal et al. used
different entropies to measure the chaotic character-
istics of EEG signals and used them as EEG features
to distinguish EEG signals in different periods [35],
including the Shannon entropy, Renyi entropy,
Kolmogorov-Sinai entropy, and approximate entropy.
The results show that the complexity of the EEG signal
in patients with epilepsy during the intermittent
period is higher than that during the seizure period,
that is, the complexity of the EEG signal during the
seizure is reduced, and the bet value is less than the
normal EEG signal. Although nonlinear analysis can
reflect the dynamic mechanism of seizures well, most
of the nonlinear features are computationally intensive
and generally time-consuming, which is not suitable
for real-time epilepsy automatic detection systems.

2.2. The Epilepsy EEG Signal Classification Based on Transfer
Learning. Traditional classification methods use a large
amount of data with label information to train a decision
function and then use this function to classify and identify
test samples with unknown label information. However,
these classification methods all have a presupposition: train-
ing data and test data need to obey the same distribution
characteristics, as shown in Figure 2. For the differences in

Training Testing
data data

Same distribution

FIGURE 2: Scene suitable for the traditional method.

the distribution of training samples and test samples as
described above, the performance of the traditional methods
significantly decrease, as shown in Figure 3. In response to
this challenge, transfer learning is a promising research
direction. Transfer learning focuses on knowledge transfer
problems that are similar to different domains or have
different data distributions. It enhances the performance
of the classifier used for target area recognition by learn-
ing useful knowledge from the source domain. According
to whether the target domain used contains samples with
labeled information, transfer learning techniques are divided
into three categories: inductive transfer learning method,
direct transductive transfer learning method, and unsuper-
vised transfer learning method [36].. In the paper, we will
focus on an inductive transfer learning method with good
performance, that is, inductive transfer learning method
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FIGURE 3: New challenge for the traditional methods.

based on discriminant least squares regression (TDLSR).
And, its application and actual effect in EEG signal detection
of epilepsy will be studied. The framework structure of epi-
lepsy EEG signal detection based on transfer learning theory
is given, as shown in Figure 4.

In short, transfer learning is to transfer the knowledge
(useful knowledge) from the source domain with a large
amount of labeled data for learning in the target domain with
no or little labeled data, thereby improving the training
quality of the target domain. This can reduce the workload
of collecting labeled data in the target domain.

3. The Inductive Transfer Learning Algorithm
Based on DLSR

To better describe the algorithm proposed in this paper,
Table 1 gives a detailed description of the symbols in the
algorithm.

Since DLSR is a nontransforming algorithm, the symbols
in Table 1 refer to the parameter variables of the original
training sample.

3.1. The Least Squares Regression. As a widely used method
based on statistical theory, LSR has become a typical
method. LSR uses the Frobenius norm to constrain the
matrix of representation coefficients. In the paper, to
expand the classification ability of the LSR algorithm, we
preconstructed the binary label matrix Y corresponding
to the training samples X, so that it can better cope with
more complex classification scenarios. The jth column of
Y indicates that only the data belonging to the jth class
corresponds to an element equal to 1, and all other ele-
ments are 0. Then, the objective function of LSR can be
redefined as follows:

arg min|| XZ Y]} + M| 2]} )

Since the LSR has an analytical solution, which can be
easily obtained, formula (1) can be rewritten as:

J(Z) = arg min[|XZ = Y[z + A|| Z][;. (2)
Z

EEG signal

Data in the same
distribution

Data in the different
distribution

T —

Transfer learning

Source
domain

Useful knowledge

Target
domain

!

Identification results

FIGURE 4: Framework of adaptive recognition for epileptic EEG
signals based on transfer learning.

TaBLE 1: Symbol description.

Symbol Description

x Training matrix of the target domain, X = [x;, x,, - ,xy]
and x; € R4

N Total number of training samples of the target domain

d Dimension of sample

C The number of classes

The binary label matrix corresponding to the training
samples in the target domain. The jth column of Y
Y indicates that only the data belonging to the jth class
corresponds to an element equal to 1, and all other
elements are 0

B Indicator matrix constructed based on Y
w Label offset matrix of the target domain
VA Mapping matrix of target domain

Zs Mapping matrix of source domain

e Vector representing all 1, e € RN

) Hadamard product operator for matrix
p The mapping offset vector of target domain
A The regularization parameter




Then, the solution process of the analytical solution of
LSR is as follows: let

0J(Z)

07
=2X"X7 - 2X"Y+2)1Z =0, (3)
= (X'X+A,)Z=X"Y.

:O’

Finally, solution of LSR can be

obtained as

the analytical

Z=(X"X + A1) ' XTY. (4)

3.2. The Discriminate Least Squares Regression. As we
know, LSR can be directly used for classification tasks.
However, since the interval between any two different
classes in the constructed binary class label matrix is
V2, the DLSR proposed in literature [37] introduces
the relaxation technique into the LSR so as to expand
the interval between the two data from different classes.
To improve the compactness of the classification task,
DLSR will comprehensively consider the class factors
and build an indicator matrix B on the basis of the
binary label matrix Y of the sample. Each element of
matrix B is defined as follows:

+1,if y, =1,
B,= { (5)

—1, otherwise.

In essence, each element of matrix B represents the
offset direction of the corresponding class label. Then,
¢ relaxation on each element of Y is performed, and
the amount of ¢ relaxation through the matrix W is
recorded. Then, the objective function of DLSR can be
expressed as

min [|IXZ + ep” - (Y+B@W)||§ +A||Z]3 (6)

The objective function of DLSR is a convex optimiza-
tion problem. However, it cannot directly optimize the
solution. Literature [37] adopts an alternative optimization
strategy and ensures that a closed solution is obtained at
each step. The specific derivation process is as follows:

(1) Fix W, and update Z and p. Let L=Y + BOW;
formula (6) can be rewritten as

J(Z,p) =arg minHXZ+epT—L’|§+/\||Z||%. (7)
Zp
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According to the optimization theory, we take a
partial derivative of p, namely

(Zp) _,
ap ’
—Z"X"e+pefe—-LTe=0, (8)
(L'e—Z"X"e)
N

Furthermore, we find the partial derivative of Z, and

we can get
J2) _
oz

—2X'XZ-2X" (ep" —L) +21Z =0,

el - eTXZ)

:>XTXZ—XT<e< N —L>+)LZ:0,

T T
=X 1y - S ) xz-X"(1y- £ )L+ Az =0,
N N

—Z = (X"HX + M,) X"HL
(9)

(2) Fix Z and p, and update W. Let G=XZ +ep’ - Y;
then, W can be solved as follows:

arg min|G-BOW]|j;.
w (10)
s.tW=0

According to literature [37], the Frobenius norm square
of a matrix can be solved element by element, so Eq. (10)
can be equivalent to solve N x C subproblems. For element
W,j in row i and column j, there can be

. 2
min (G;; - B;Wy)", (11)
' s.t.W;;=0

where G;; and Bj; represent the jth element of the ith row of
the matrix G and matrix B, respectively and satisfy Bl-j2 =1
Then, we can get

(G — B,;W,j)* = (B,G, - W)™ (12)

And, because each element of W satisfies WijZO,

formula (12) can be written as

W,; =max (B;G;;,0). (13)
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The description of DLSR
Input:

Output:
The mapping matrix Z and the translation vector p.
Training:

Step 3: Initialize Z' =0, p=0,and W =0. Set t = 1.
Step 4: Update Q by Q= (XTHX + AI,) ' X"H.
Repeat

Step 5: Update the label matrix L by L=Y + BOW.
Step 6: Update p and Z by Egs. (8) and (10).

Step 8: Update the label shift matrix W by Eq. (14).
Step 9:Let Z' =Zand t =t +1

Until ||Z' - Z||z <107 ort> T.

Step 10: Output Z and p.

The training samples X = [x,, x,,---xy] € RV, and their corresponding class labels y, € {1,2,---C}(i=1,2,---,N),
where x; € Rd(i =1,2,--,N). The maximum number of iterations is T.

Step 1: Construct the label matrix Y and the indicator matrix B, respectively.
Step 2: Get the value of A by grid searching in the set of {10™% 10, 102,107, 10° 10, 10%}.

Step 7: Update the regression error matrix G by G=XZ +epT - Y.

ArgoriTHM 1: The description of the DLSR algorithm.

The description of TDLSR
Input:

Output:
The mapping matrix Z and the translation vector p.
Training:

Step 3: Initialize Z' =0, p=0,and W =0. Set ¢ = 1.

Repeat
Step 5: Update the label matrix L by L=Y + BOW.
Step 6: Update p and Z by Egs. (17) (18).

Step 8: Update the label shift matrix W by Eq. (20).
Step9:Let Z' =Zand t=t+1

Until ||Z' - Z|z <10 or t> T.

Step 10: Output Z and p.

The training samples in target domain X = [x;, x,, --xy] € R¥*?, and their corresponding class labels y; € {1,2,--C}(i=1,2,--,N),
where x; € R?(i = 1,2,---,N). The maximum number of iterations is T. A is learned in advanced by using DLSR from source domain.

Step 1: Construct the label matrix Y and the indicator matrix B, respectively.
Step 2: Get the value of A and # by grid searching in the set of {10’4, 103,102, 10%, 109, 10, 102}, respectively.

Step 4: Compute Q by Q= (X"HX + AI,) ' XTH and V by V = n(X"HX + (A + n)ld)les, respectively.

Step 7: Update the regression error matrix G by G=XZ +ep’ - Y.

ArcoriTaM 2: The description of the TDLSR algorithm.

Therefore, the final solution formula of W is:
W = max (BOG,0). (14)

According to the above derivation, Algorithm 1 gives a
detailed description of the DLSR algorithm.

3.3. The Inductive Transfer Learning Algorithm Based on
DLSR. Most inductive transfer learning algorithms are
implemented by directly learning from the data in the source
domain through some classes. However, in the paper, we

used a knowledge-based inductive transfer learning frame-
work instead of raw data to study inductive transfer learning
methods based on source domain knowledge. Inspired by
this, an inductive transfer learning algorithm based on DLSR
was introduced. Its objective function is

min|[XZ + p" — (Y + BOW)|[} + A|IZ|[} +7]12 - Z|*
P
s.t.W=0

(15)



It can be found from the formula (15) that the first two
items directly inherit the DLSR for learning in the target
domain. The third item is used to transfer the knowledge
Z, of the source domain to the target domain. When # =0,
DSLR is DSLR.

In short, TDLSR summarizes DLSR from the perspective
of transfer learning, but it has more transfer learning capabil-
ities than DLSR and has better applicability. Similar to DLSR,
the objective function of TDLSR can also be solved using
an alternate optimization strategy. The specific derivation
process is as follows:

(1) Fix W, and update Z and p. Let L=Y + BOW;
formula (15) can be rewritten as

J(Z,p)=arg min|[XZ +ep" — L||2 +A||Z||3
Zp
+11)|Z = Zs|;.-

According to the optimization theory, we take a
partial derivative of p, namely

J(Zp) _,
op ’
—27"XTe+pefe—LTe=0, (17)
(L'e—Z"XTe)
:}p =

N

Furthermore, we find the partial derivative of Z, we
can get

31(2)
0z

—2X'XZ - 2X" (ep" — L) +2AZ +2n(Z - Zg) =0,

Tl —eTXZ
:>XTXZ—XT<e(ee)—L +AZ

:0,

N
+n(Z-Z) =0,
ee’ ee’
=X (IN - W)XZ -xt (IN - W)L
+(A+9)Z-3nZg=0,
—Z=(X"HX + A +n)I,) " (XTHL +5Zy)
(18)

(2) Fix Z and p, and update W. Let G=XZ +ep’ - Y;
then, W can be solved as:

arg min||G - B®W||12:.
w

s.t.W=0

Computational and Mathematical Methods in Medicine

Initialization
parameters

L

Construct the label matrix Y’
and the indicator matrix B

Update the label matrix L

Update the mapping matrix

of the target domain Z and

the mapping offset vector of
target domain p

J

Update the regression error
matrix G

L

Update the label shift matrix W

If ||Z’—Z||Fzs 104 or
t>T

Output Z and p

F1GuRre 5: The process of the TDLSR algorithm.

Similar to the way of solving W in DLSR, the final
solution formula of W is:

W = max (BOG,0). (20)

According to the above derivation process, Algorithm 2
gives a detailed description of the TDLSR algorithm.

To understand the TDLSR algorithm more clearly,
Figure 5 shows the specific process of the TDLSR.

4. Experimental Research

4.1. The Environment and Parameter Settings. To evaluate
the performance of the TDLSR, a lot of experiments were
carried out based on EEG signal recognition. Experiments
will be conducted from two aspects: (1) the comparison
experiments with classic LSR, SRC, RLR, DLSR, and SVM
and (2) the comparison experiments with related methods
with transform ability, such as AuSVM, Tr-Adaboost,
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TaBLE 2: The parameter settings in the experiments.

Methods Parameter settings

LSR The regularization parameter A € {10’4, 1073,1072,107%, 10°, 10, 102}

SRC The regularization parameter a € {10'3, 5%103,102,2x102,5x 1072, 10'1}

RLR The regularization parameter A € {107%,107%,107%, 107", 10° }; the heart parameter & € {2°,2%,27,---,2%,2%,2°}
DLSR The regularization parameter A € {10’4, 1073,1072,107%, 10°, 10, 102}

SVM The penalty factor c € {2'5, 2423...23 04 2> }, the kernel parameter & € {2'5, 24,23....23 24, 25}

TSVM The Lagrange multiplier upper bound ¢ € {2'5, 24 273....23 24 25}, the kernel parameter & € {2'5, 24273 ...23 24, 25}
Au-SVM The penalty factor c € {2'5, 2423....23 24 25 }, the kernel parameter 8 € {2'5, 24,23....23 24, 25}
Tr-Adaboost The penalty factor c € {2'5, 2423...23 24 2° }, the kernel parameter & € {2'5, 24,23....23, 24, 25}
LMPROJ The regularization parameters 7 € {0.25,0.1,---,200}, 0 € {0.25,0.1,---,200}, the kernel parameter § € {0.25,0.1,---,200}
TDLSR The regularization parameter A € {10’4, 1073,1072, 1071, 10% 10, 102}, ne {10’4, 1073,1072,107%, 10°, 10, 102}

TaBLE 3: The construction of experimental datasets.

The subdataset Source domain Target domain

TaBLE 4: Experimental results based on nontransfer learning
algorithms.

DI AE-cach 75 AE-cach 25 Datasets LSR SRC RLR DLSR SVM
D2 BDE-ecach 75 BDE-each 25 D1 0.87 0.84 0.89 0.90 0.82
D3 ABCD-each 75 ABCD-each 25 D2 0.79 0.72 0.81 0.80 0.74
D4 BCDE-each 75 BCDE-each 25 D3 0.71 0.62 0.72 0.72 0.68
D5 BE-each 75 BC-cach 25 D4 0.71 0.64 0.70 0.72 0.66
D6 ACE-each 75 BCE-each 25 D5 0.82 0.78 0.83 0.84 0.78
D7 ADE-each 75 BDE-each 25 D6 0.73 0.60 0.72 0.74 0.61
D8 ACDE-each 75 BCDE-each 25 D7 0.70 0.60 0.70 0.72 0.59

D8 0.63 0.53 0.65 0.64 0.50

TSVM, and LMPRO)]. The hardware environment used in
the experiment is Intel (R) Core(TM) 17-9700 3.0 GHzx2,
8G RAM, and the software environment is Windows 10
64bit, MATLAB R2012b. Table 2 shows the parameter

TaBLE 5: Experimental results based on transfer learning
algorithms.

Settings of the above algorithms. Datasets Au-SVM  TSVM Tr-Adaboost LMPROJ] TDLSR
D1 0.90 0.92 0.89 0.92 0.96
4.2. Experimental Dataset. In the experiments, the EEG b2 0.82 085 0.82 0.84 0-90
dataset used for epilepsy is the Bonn dataset [38, 39], which D3 0.72 0.75 073 0.76 0.83
was collected by Andrzejak et al. at an epilepsy center at the D4 0.72 0.75 0.71 0.78 0.82
University of Bonn. The EEG dataset contains five datasets, D5 0.85 0.86 0.84 0.87 0.91
denoted by A to E. This dataset compares the EEG of the D6 0.75 0.78 0.75 0.80 0.83
patient during the onset and nononset period with the EEG D7 071 0.78 0.74 0.78 0.83
of the normal person. Dataset A and dataset B are EEG sig- D8 0.68 070 0.66 070 073

nals collected by healthy testers with their eyes open and
closed. Dataset C and dataset D are the EEG signals collected
by epilepsy patients outside and inside the lesion during the
seizure period, and dataset E is the EEG signals collected by
the patients in dataset C and dataset D during the seizure.
Each of the 5 datasets includes 100 single-channel EEGs (that
is 100 samples), the sampling frequency is 173.61 Hz, each
segment of the signal collects 4097 frequency points, and
each EEG segment lasts 23.65.

In our experiments, the use of the Bonn dataset is signif-
icantly different from many previous works. We constructed
8 subdatasets from the original 5 datasets to simulate
different scenarios in the experiments. The source and target

domains of the 8 subdatasets of experiments are composed of
the partial data extracted from the 5 sets. We randomly select
75% of the data from a certain dataset as the source domain,
and the remaining 25% as the target domain. The sample
data of source and target domains of subdatasets 1-4 are
derived from the same distribution, but the samples taken
are different. The sample data of the source domain and the
target domain of subdatasets 5-8 have different distributions.
Finally, for the data in the target domain, 20% is randomly
selected for testing, and the remaining 80% is used for
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FIGURE 6: The average classification accuracy of all nontransfer learning algorithms.

training. In addition, the training and test datasets do not
contain the same samples and are independent of each other.
Table 3 lists the detailed information of the 8 subdatasets.

4.3. Experimental Results and Analysis. To verify the effec-
tiveness of TDLSR in epilepsy EEG data recognition, the
comparative experiments were conducted among the classic
algorithms. The experimental results are shown in Tables 4
and 5, respectively.

As shown in the above experimental results, the conclu-
sions are summarized as follows:

(1) In the case of the same distribution of the source
domain dataset and the target domain dataset, both
the nontransfer learning algorithms and the trans-
fer learning algorithms achieve good classification
results. For the datasets with certain differences in
distribution, the classification effects of algorithms
without transforming abilities are quite different,
and the experimental results of the algorithms in
Table 5 are generally better than results of the
algorithms in Table 4

(2) As a whole, the performance of TDLSR introduced
in this paper is obviously superior to all other algo-
rithms. It means that by using the knowledge
transferred from the source domain to the target
domain, the TDLSR algorithm obtains better per-
formance and becomes effective for epilepsy EEG
recognition

(3) Comparing the performance of the algorithms in
Table 4, it can be found that DLSR has the best per-
formance, while SRC and SVM have poor perfor-
mance. This is because DLSR expands the ability to
distinguish between classes by using the class infor-
mation in the label space for the classification task.
As the results shown in Table 5, the TDLSR algo-
rithm performs best. This is because it not only
inherits the advantages of DLSR by increasing the
interval between different classes but also transfers
more useful information from the source domain to
the target domain. It has stronger transfer learning
ability than several other algorithms. And because
the TDLSR method requires fewer parameters to
adjust, it is easier to use, and the stability and fault
tolerance are stronger than the transfer learning algo-
rithms such as LMPROJ.

In addition, to further observe and compare the overall
classification performance of all algorithms, Figures 6 and 7
also give the average classification accuracy of each algorithm
on all datasets.

Observing Figures 6 and 7, it can be seen that the classi-
fication accuracy of the algorithms on the same distributed
dataset is higher than the result on the different distributed
dataset. Secondly, compared with the traditional nontransfer
learning algorithms, the algorithm with transfer learning
ability has more advantages in classification performance,
and the TDLSR has a significant improvement in classifica-
tion performance. Finally, for all datasets with different clas-
ses, the performance of all algorithms decreases continuously
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as the number of categories increases. This is because as the
number of classes increases, the information in the label
space becomes more complicated, and learning the informa-
tion in the label space becomes more difficult.

Meanwhile, to further verify the reliability and stability of
the algorithms, we randomly added 15% white Gaussian
noise to the data in the source domain to prove that the
algorithm in this paper can adapt to more complex scenarios.
The experimental results are shown in Tables 6 and 7,
respectively.

Through the above experimental results, it can be found
that the classification performance of all nontransfer learning
algorithms under noisy conditions decreases more. The rea-
son is that they cannot obtain useful knowledge from noisy
data (source domain) for classification. However, all the algo-
rithms in Table 7 can transfer some useful knowledge from
the source domain for classification in the target domain, so
their performance is better than the results in Table 6.

In summary, the TDLSR algorithm introduced in the
paper is superior to the other algorithms in the detection of
epilepsy EEG signals. And, it is easy to learn and train, has
high stability, and shows certain advantages compared with
other intelligent algorithms.

5. Conclusion

To solve the problem of serious shortage of training data in
the current scene and improve the accuracy of classification,
a novel DLSR-based inductive transfer learning algorithm
(TDLSR) was introduced for the detection of epilepsy EEG
signals. It can take advantage of both inductive transfer learn-

TaBLE 6: Experimental results based on nontransfer learning
algorithms with 15% noise in the source domain.

Datasets LSR SRC RLR DLSR SVM
D1 0.83 0.80 0.84 0.85 0.77
D2 0.74 0.67 0.76 0.76 0.70
D3 0.66 0.59 0.68 0.69 0.65
D4 0.66 0.61 0.67 0.68 0.63
D5 0.78 0.74 0.80 0.80 0.74
D6 0.65 0.56 0.69 0.69 0.58
D7 0.64 0.57 0.67 0.71 0.56
D8 0.60 0.50 0.62 0.61 0.47

TaBLE 7: Experimental results based on transfer learning algorithms
with 15% noise in the source domain.

Datasets Au-SVM TSVM Tr-Adaboost LMPROJ TDLSR
D1 0.87 0.86 0.89 0.89 0.93
D2 0.79 0.79 0.82 0.81 0.87
D3 0.69 0.70 0.72 0.73 0.80
D4 0.69 0.68 0.72 0.75 0.79
D5 0.82 0.81 0.83 0.84 0.88
D6 0.72 0.72 0.75 0.77 0.80
D7 0.68 0.71 0.75 0.75 0.80
D8 0.65 0.63 0.67 0.67 0.70

ing and DLSR. On the one hand, it can not only protect the
security of the source domain data but also use the data of
the target domain and the knowledge of the source domain
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to get better performance. On the other hand, it inherits the
DLSR’s characteristics of being more suitable for real classifi-
cation scenarios by expanding the interval between different
categories. Therefore, compared with DLSR, the new algo-
rithm not only enhances the ability of transfer learning but
also ensures that the model is more reasonable. The results
reflect that the improved algorithm has more advantages in
epilepsy EEG signal classification compared with the tradi-
tional algorithms. However, it is found that the results is
easily affected by the parameters. In a word, the quality of
the parameter selection will directly affect the final detection
accuracy. Therefore, to obtain higher detection accuracy, it is
worth to further study the characteristics of the EEG signal to
guide the setting range of the parameters in the transfer
learning algorithm.

Data Availability

The labeled dataset used to support the findings of this study
are available from the corresponding author upon request.
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