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Abstract

Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer’s dis-

ease, have a dynamic lifespan of maturity that associates with progressive neuronal

dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of

the neuron undergoes extensive changes that may impact biomarker recognition

and therapeutic targeting. Neurofibrillary tangle maturity encompasses three lev-

els: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct

and overlapping characteristics observed in the human brain regarding morphologic

changes the neuron undergoes, conversion from intracellular to extracellular space,

tau immunostaining patterns, and tau isoform expression changes across the lifespan

of the neurofibrillary tangle. Post-translational modifications of tau such as phos-

phorylation, ubiquitination, conformational events, and truncations are discussed to

contextualize tau immunostaining patterns. We summarize accumulated and emerg-

ing knowledge of neurofibrillary tangle maturity, discuss the current tools used to

interpret the dynamic nature in the postmortem brain, and consider implications for

cognitive dysfunction and tau biomarkers.
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1 NARRATIVE

There are many ways to approach science and even more ways to

answering the unanswered questions of the brain. A particular fasci-

nation is how specific cells of the brain are selectively vulnerable to

the devastation of disease, but do not become affected until later in

life. Alzheimer’s disease (AD) is a prime example, as targeted popu-

lations of neurons undergo degenerative changes that lead to cogni-

tive dysfunction and brain volume loss. To study these changes in the

postmortem brain, an array of specialized stains and antibody-based

methods are used to uncover lesion types and patterns of involvement.

AD is defined by the abnormal accumulation of two proteins, amyloid

beta (Aβ) and hyperphosphorylated tau. Microscopic inspection of Aβ
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plaque pathology is observed to accumulate outside of neurons, where

plaques interfere with their ability to communicate. Aβ plaque deposi-
tion is highly predictable and is quite useful in monitoring the disease

course using targeted positron emission tomography (PET) or cere-

brospinal fluid (CSF) measures. In contrast, hyperphosphorylated tau

accumulates inside of neurons through a series of maturity levels. Dur-

ing this maturation process, neurofibrillary tangles (NFTs) form inside

the affected neuron resulting in axonal instability that impairs trans-

port of nutrients and cell signal communication. Advances in PET imag-

ing allow for the detection of abnormal tau accumulation in the living

brain. This is complementedbyblood andCSFbiomarker studies on tau

that hold great promise for identifying early changes in asymptomatic

individuals andmild cognitive impairment patients.
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Several PET radioligands and fluid biomarkers have recently

emerged that target various aspects of abnormal tau accumulation. To

understanddifferences in tauPETpatterns usingdifferent radioligands

or the temporal sequenceof fluid biomarkers, itmaybehelpful to gain a

broad perspective of NFTmaturity and tau biology. Neurofibrillary ref-

erences the appearance of tau fibers that form in the neuron and tan-

gle refers to the twisted nature of these fibers into a mass that builds

up inside the neuron. Tau functions to stabilize microtubules, which

enables smooth transport of nutrients andmessages passed from neu-

ron to neuron. As abnormal tau undergoesmanymodifications, it accu-

mulates and becomes unable to stabilize microtubules, leading to the

death of the neuron. NFTs have a lifespan that is defined through three

levels of maturity, which mark the changes that the neuron undergoes

as abnormal tau accumulates. At first, the abnormal tau deposits in tiny

granular accumulations outside the nucleus of the cell. There is debate

whether this initialmaturity level, called pretangles,may even be a pro-

tective state duringwhich theneuron is defending itself frombecoming

imbalanced. The neuron’s attempt to offset the imbalancemay eventu-

ally lead to an ill-fated rescue attempt as abnormal tau begins to over-

whelm the neuron. The granular accumulations form into fibers that

fill the neuron, which develops into the mature tangle. The nucleus of

the mature tangle-bearing neuron becomes displaced and shrunken as

transport machinery fails. As time passes the neuron dies, but the tau

fibers remain as a tombstone forming a ghost tangle.

Although the process of NFT maturity is dynamic, investigating the

postmortem brain under the microscope is like seeing a still frame of a

movie. The goal of histologic evaluation, much like Mary Shelley’s Dr.

Frankenstein, is to bring life back to the postmortem brain. Although

not in the literal sense, the “life” brought to the histologic observer in

the context of NFTmaturity is the understanding of where in the lifes-

pan of maturity was a neuron at the time of the patient’s death. This

may be especially important in neuroimaging studies investigating the

relationship between tau pathology and structural changes. Although

one may observe tau accumulation in the medial temporal lobe, atro-

phy may not be expected if all that is observed is pretangle pathology.

In contrast, if a tau PET radioligand only recognizes ghost tangles, the

tauPETsignalwouldnotbeexpectedearly in apatient’s disease course.

The goal of this review is to highlight the dynamic nature of the

NFT by discussing changes that occur along its lifespan. Morpho-

logic changes at each maturity level are first discussed to provide dis-

tinct aspects of pretangles, mature tangles, and ghost tangles. Next,

commonly used and historically relevant visualization techniques are

reviewed to provide confidence when examining changes under the

microscope. Importantly, these visualization techniques recognize a

small window in the NFT lifespan and there are currently no markers

that recognize a single NFT maturity level. One key element of NFT

maturity is that it occurs over time, suggesting a therapeutic window

of opportunity early in the development. To outline the changes in tau

biology in the context of NFT maturity, post-translational events and

isoform dominance are reviewed. Last, the implications of NFT matu-

rity in disease progression are brought into the context of neuroimag-

ing and fluid biomarkers. A holistic knowledge of the dynamic changes

to the neuron, rather than considering a tangle as a binary object that

exists or does not exist, may have far-reaching implications for the

development of treatments to aid in preventingADand associated syn-

dromes.

2 INTRODUCTION

Alzheimer’s disease (AD) is a multiproteinopathy that is character-

ized by the abnormal accumulation of two hallmark neuropathologies:

amyloid beta (Aβ) plaques and NFTs composed of tau.1,2 Aβ plaques

form in the extracellular space and contribute to synaptic dysfunction,3

whereas NFTs accumulate progressively in the intracellular space and

associate with the death of the neuron.4–6 Studies in transgenic mice

showed Aβ plaques forming within 24-hour time periods using in vivo

multiphoton imaging7 and generally remained morphologically stable

for up to5months.8 In contrast,modeling in humanbrains showedneu-

rons can survive 20 years with NFTs6 with functional capabilities that

suggest a protracted viability of tangle-bearing neurons.9 The inherent

cross-sectional design of human autopsy studies somewhat limits our

ability to interpret the dynamic nature of NFTs. Thus, a neuropathol-

ogist relies upon morphologic distinctions paired with histology and

immunohistochemical markers to interpret the still frame captured at

the time of death.

Three distinct, but overlapping forms of NFT maturities exist along

a continuum: intracellular pretangles, intracellular mature tangles, and

extracellular ghost tangles.10 This suggests the existence of a window

in which the AD brain may have (1) different molecular markers to

identify various NFT maturities, (2) different peripheral and central

biomarkers present throughout the NFT lifespan, and (3) the potential

for targeted treatment early in tangle formation to minimize neurode-

generative effects and minimize neuronal loss. The major goal of this

review is to provide ahistoric andmodernperspective onNFTmaturity

in the context of AD. We will emphasize the utility of histologic meth-

ods and tau markers used to reveal the level of NFT maturity. As such,

wewill provide an overview of concepts that demonstrate the dynamic

nature of NFT pathology for the tau biomarker community and those

new to theAD field. For further information regardingAβ neuropathol-
ogy inAD,wedirect the reader to the reviewby Sadigh-Eteghad et al.11

2.1 Alzheimer’s disease

AD is a progressive neurodegenerative disease first reported by Dr.

Alois Alzheimer in a patient who experienced dementia, memory loss,

and delusions.1,2 Postmortem analysis of the brain revealed mature

tangles and Aβ plaques,12 which became the recommended hallmark

neuropathologies for the eponymous disorder, as first discussed by

Khachaturian criteria in 1985.13 Currently, AD is confirmed post-

mortem using guidelines provided by the National Institute on Aging

and Alzheimer’s Association (NIA-AA).14,15 The NIA-AA recommends

the use of three different measures including Thal amyloid phase (A;

Aβ plaques16), Braak tangle stage (B; NFTs17), and modified Consor-

tium to Establish a Registry for Alzheimer’s Disease (CERAD, C; neu-

ritic plaques18) to obtain an “ABC” score.14,15 Ante mortem diagnoses

of AD dementia can be made using medical history, family history, cog-

nitive testing, biofluid testing, and neuroimaging.19
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2.2 Microtubule-associated protein tau

The tau protein was first discovered in 1975 (Figure 1) and plays

a major role in microtubule stabilization.20 The gene encoding the

protein tau, microtubule associated protein tau (MAPT), was later

localized to chromosome 17q21 in 198621 (Figure 1). Tau is an intrin-

sically disordered protein that generally does not adopt a secondary

structure (for a review, see Avila et al.22). Through regulation by

phosphorylation, the tau protein’s major functions are to promote

tubulin polymerization and to stabilize microtubules.23,24 Once tau

is phosphorylated, it is released from the microtubules and promotes

microtubule disassembly.25 Diseases that are characterized by accu-

mulations of filamentous and hyperphosphorylated tau are termed

tauopathies, first coined byDr. BernardinoGhetti in collaborationwith

Dr. Maria Grazia Spillantini.26 Tauopathies include AD and frontotem-

poral lobar degeneration with tau (e.g., Pick’s disease, corticobasal

degeneration, progressive supranuclear palsy; for a review, seeMurray

andDeTure,27 Kovacs,28,29 Götz et al.,30 andMurray et al.31).

MAPT mRNA (hereafter referred to as tau mRNA) is alternatively

spliced at the amino terminus (N-terminus) and carboxy-terminus (C-

terminus). Zero, one, or two inserts (0N, 1N, 2N) may be alternatively

spliced at the N-terminus of tau mRNA32 (Figure 2). Additionally, exon

ten at the C-terminus of taumRNA can be alternatively spliced, result-

ing in the inclusion or exclusion of the second microtubule-binding

repeat region (3R, 4R).33 4R tau protein binds to microtubules with

higher affinity compared to 3R tau34 and turns over faster than 3R

tau.35 In the human adult brain, 3R and 4R tau proteins are found at

approximately equal levels.36 However, 3R tau mRNA is between two

and three timesmore abundant than4R taumRNA.33 Alternative splic-

ing of tau is a developmentally regulated process as fetal brain contains

only 0N3R tau, while the adult brain contains all six isoforms.32 Iso-

forms are differentially expressed within different neuronal types in

the nervous system. For example, in the hippocampus granule cells in

the dentate gyrus express only 3R taumRNA,whereas some pyramidal

cells of Ammon’s horn expressed 3R and 4R taumRNA.33

2.3 Nomenclature

We will use the term “NFT” to encompass all maturity levels includ-

ing pretangles, mature tangles, and ghost tangles. Historically, the term

“stage” is used to describe NFT maturities.10,12 However, to disentan-

gle “stage” from Braak tangle staging, we instead recommend the use

of “levels” to describe the NFT maturities across their lifespan. We

acknowledge that although NFT maturity levels can be morphologi-

cally distinguished, they encompass a dynamic range in which interme-

diaries exist between each definedmaturity level.

3 MORPHOLOGIES

3.1 Pretangles

The concept of a NFTmaturity level that precedes mature tangles was

discussed during the characterization of the monoclonal tau antibody

HIGHLIGHTS

∙ Neurofibrillary tangles (NFTs) mature through three lev-

els: pretangles, mature tangles, and ghost tangles.

∙ NFTmaturity levels differ in theirmorphology, tau isoform

predilection, and post-translational modifications.

∙ Visualization techniques recognize a range of the NFT

maturity levels and rarely if ever capture the entire NFT

lifespan.

RESEARCH INCONTEXT

1. Systematic review: The authors searched PubMed and

Google Scholar for literature onAlzheimer’s disease (AD),

tau, neurofibrillary tangles (NFTs), and tau biomarkers.

2. Interpretation: The NFT is a dynamic neuronal lesion

that transforms through three defined maturity levels in

AD: pretangle, mature tangle, and ghost tangle. There

is a wide array of staining techniques used to interpret

tau pathology that are reflective of earlier or advanced

aspects of NFT maturity. Based on accumulated knowl-

edge, we hypothesize that tau biomarker recognition of

early or advanced maturation levels will impact their

interpretation.

3. Future directions: We recommend quantitative charac-

terization of tau markers in the context of NFT maturity

to guide interpretation of functional deficits both in and

outside of the medial temporal lobe. Future studies are

needed to test the hypothesis that the pretangle begins

as a protective response to identify whether a therapeu-

tic window exists to prevent the death of tangle-bearing

neurons.

Alz-50.37,38 Further characterization of “stage 0 tangles” preceding

mature tangles was provided by Bancher et al. in 1989,10 but it was

not until 1991 that Bancher et al. coined the term “pretangles”39

(Figure 1). Pretangles reside in morphologically normal neurons with

a healthy nucleus and diffuse or fine granular cytoplasmic and/or

perinuclear immunostaining of tau in the neuron10,39,40 (Figure 3).

Ultrastructural studies demonstrated that pretangles contain diffusely

scattered abnormal fibers including paired helical filaments (PHF),

straight filaments, and small bundles of aggregated filaments10 (for

more discussion, refer to section 4.2). Correlative light and electron

microscopy (EM) also revealed perinuclear tau was composed of

straight filaments that were associated with the nuclear membrane.41

Additionally, pretangles are devoid of ubiquitin immunostaining.10,39

Pretangles are generally not argyrophilic,10,42 although Gallyas silver

staining was reported to visualize pretangles.43,44 Gallyas silver

staining has a predilection for tau including exon 10 (4R tau, for more
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F IGURE 1 Historical overview of special stains, antibody development, biomarkers, and Alzheimer’s disease (AD)/neurofibrillary tangle
maturity researchmilestones from 1875 to 2020. Blue, staining technique developed; purple, milestone research for AD; orange, antibody
development; green, biomarker development. Tickmarks denote 1-year interval.

discussion, refer to section 4.3)45 of which pretangles are primarily

composed.43,44 Using AT8 immunohistochemistry, early accumulation

of pretangle neuropathology in brainstem nuclei was observed in

individuals younger than 30 years of age.46,47

3.2 Mature tangles

Although yet to be termed, mature tangles (Figure 3) were first

reported by Alzheimer in 1907 as thick argyrophilic fibers in

neurons.1,2 Mature tangles reside in neurons with a shrunken and/or

displaced nucleus, with argyrophilic fibrils that appear in a “basket-

like or sling-like” shape replacing the cytoplasm.12 NFTs assume the

shape of the neuron they occupy, thusmature tangles in pyramidal neu-

rons generally have a flame-like shape. In addition to their argyrophilic

nature,10,17,42 mature tangles are ubiquitin positive48,49 and are read-

ily stained by a variety of tau antibodies, which is further discussed in

section 3.

3.3 Ghost tangles

Ghost tangles, the more advanced level of NFT maturity (Figure 3),

were first described by Alzheimer as the remaining fibrils after dis-

integration of the neuron and nucleus.1,2 These extracellular tangles

are less argyrophilic and appear more loosely bundled than mature

tangles.2,10,12 Additionally, ghost tangles appear eosinophilic by hema-

toxylin and eosin (H&E) compared to the basophilic properties of intra-

cellular mature tangles.50 Ghost tangles are ubiquitin positive10 and

can also be infiltrated with glial processes.12,50 As there is more neu-

ronal death than ghost tangles in AD brains,51 contribution of co-

existing pathologies should be considered when evaluating the rela-

tionship betweenNFT accumulation and neuronal death.41,52

3.4 Morphology in context

NFTs mature through three defined levels: pretangles, mature tangles,

and ghost tangles (Figure 3). Pretangles andmature tangles form intra-

cellularly, whereas ghost tangles become remnants in the extracellular

space. While pretangle-bearing neurons appear morphologically nor-

mal with an intact nucleus, there is evidence of transcriptional changes

compared to healthy neurons. Protein quality control genes are upreg-

ulated in pretangle-bearing neurons, suggesting a disruption of pro-

tein homeostasis.53 This may parallel the observation of increased

phospho-ubiquitin and granulovacuolar degeneration accumulation in

pretangle-bearing neurons, which becomes less frequently observed

in mature tangle-bearing neurons and may implicate a disruption in

the protective role of the mitochondrial quality control pathway.54

These early changes may initiate a protective response to the accumu-

lation of misfolded proteins, as the unfolded protein response (UPR)

becomes activated in pretangle-bearing neurons, yet these UPR acti-

vation markers (e.g., pPERK) are diminished as the mature tangle

forms.55 However, UPR activation induces kinase activity (i.e., GSK-3β)
that may overwhelm the neuron as tau becomes hyperphosphorylated

leading to inhibition of anterograde (kinesin-dependent) fast axonal

transport.56,57 GSK-3β immunoreactivity is strongly present in pretan-

gles, present to a lesser extent in mature tangles, but is not visible in

ghost tangles suggesting a precipitous decline in hyperphosphoryla-

tion as the neuron dies.58 Further support for a functional distinction

between pretangle- and mature tangle–bearing neurons is the emer-

gence of ubiquitin-labeled proteins in neuronswithmature tangles and
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F IGURE 2 Tau structure196 mappedwith tau antibody epitopes. Diagonal stripe denotes alternatively spliced region.Within each subheading
the named tau antibody is placed corresponding to its recognitionmotif with associated references.

ghost tangles, but not pretangles suggesting proteolytic degradation

attempts aremade later in tangle formation. It is important to note that

these NFT levels are not static, and intermediaries exist between pre-

tangles, mature tangles, and ghost tangles.

4 VISUALIZATION OF NFTs

For more than a century, many stains and antibodies were developed

and used to visualize neuropathology in AD brains. Here we review

staining techniques that were historically relevant in identifying AD

neuropathology prior to the discovery of the tau protein.20 Wewill fur-

ther expand upon tau immunohistochemical methods that are partic-

ularly relevant to NFT maturity, many of which are now commercially

available. While there are numerous tau antibodies available, here we

review those of historical relevance and those that are of particular

importance to our growing understanding of NFTmaturity levels.

4.1 Staining techniques pre-dating the discovery
of the tau protein

Hematoxylin, created in the 1840s,59 is a positively charged basic

dye.60 Eosin, created in 1871,59 is a negatively charged acidic dye.60

H&E were first used together between 1875 and 187859 (Table 1, Fig-

ure 1) as a morphologic stain in which hematoxylin stains nuclei blue

(basophilic) and eosin stains the cytoplasm and extracellular matrix

pink (eosinophilic;60 Figure 4). H&E is a routine stain used bymany labs

to visualize neuronal loss, aswell asmature tangles and ghost tangles in

AD.50,61–63 Mature tangles appear basophilic compared to unaffected

neurons, whereas ghost tangles are eosinophilic due to infiltration by

astroglial processes.50

Congo red (Table 1, Figure 4) is a tinctorial stain originally created

for the textile industry as a cottondye in188459 (Figure1). This dyewill

exhibit birefringence, inwhich there are two refractive indices depend-

ing upon the orientation of polarized light.64 Thus, using polarized light

microscopy, Congo red shows anomalous colors that are traditionally

“apple green,” under cross-polarization.64 In 1886, Congo red was first

used to stain axons.59 By 1922, Congo red was used to visualize amy-

loid in tissue sections59 where it binds to β-pleated sheets.65,66 This is
due to Congo red’s ability to self-assemble into ribbons that are com-

patiblewith the β-conformation of these protein structures.67 For over

50 years, this dye was used to visualize AD neuropathology, including

mature tangles and ghost tangles.68 Congo red does not stain pretan-

gles likely owing to the lack of fibrillar structure.

Silver staining (Table 1) was the first technique used to visualize AD

neuropathology. Specifically, the Bielschowsky silver staining method

was first used by Alzheimer to visualize the neuropathology of his first

patient1,2,12 (Figure 4). This method was created by Bielschowsky in

190269 (Figure 1), and has endured through themodern era, withmod-

ified Bielschowsky silver stain protocols routinely used all over the

world. Additional silver staining techniques were developed, including
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F IGURE 3 Neurofibrillary tangle (NFT) maturity level and neuritic morphologies in the CA1 subsector of the hippocampus. Pretangles have
perinuclear accumulation of tau, in addition to a diffuse or granular staining pattern. Mature tangles assume the shape of the neuron in which they
reside (e.g., “flame-shaped”) and are composed of tightly packed bundles of fibers. The neuron has a dislocated and/or shrunken nucleus. Ghost
tangles are loosely arranged bundles of fibers with no associated nucleus as they are the remnants of mature tangles once the neuron has died.
Neuropil threads are the thread-like staining pattern outside of the soma. Neuritic plaques are the accumulation of dystrophic neurites and are
larger than a neuron. Tangle associated neuritic clusters (TANCs) are the accumulation of neurites around a ghost tangle and are around the same
size as a neuron. AT8was used for pretangle, neuropil threads, and TANCs. PHF-1 was used for mature tangles and neuritic plaques. Ab39was
used for ghost tangles. It is important to note that these antibodies recognize a range of the NFTmaturity levels. Immunohistochemistry was
counterstained with hematoxylin. Arrows point to the labeled pathology. Bracket includes the entire neuritic plaque structure. Scale bar measures
25 μm.

TABLE 1 Tinctorial dye, silver stains, and fluorescent dyes used to identify neurofibrillary tangles with references

Neuropil

threads Pretangles

Mature

tangles

Ghost

tangles Reference(s)

Tinctorial dye

H&E No No Yes Yes 50

Congo red Yes No Yes Yes 68

Silver staining 70

Bielschowsky Yes No Yes Yes 70,195

Bodian Yes No Yes Yes 70

Gallyas Yes No/Yes Yes Yes 70

Campbell-Switzer Yes No Yes Yes 70

Fluorescent dye

Thioflavin-S Yes No Yes Yes 73

Thiazin red Yes No Yes Yes 91,92
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F IGURE 4 Special stains and tau immunohistochemistry for neurofibrillary tangle (NFT) maturity levels. Representative images for each
staining technique were taken at the CA1 sector of the hippocampus in Alzheimer’s disease (AD) brains. Routine and special stains include
Bielschowsky silver stain, H&E, Congo red, thioflavin-S (Thio-S), and thiazin red. All routine and special stains recognizedmature tangles and ghost
tangles. For immunohistochemistry, Alz-50,MC-1, CP13, AT8, PHF-1, pS396, TauC3, GT-38, Ab39, andMN423were used. Tau antibodies
recognized a range of NFTmaturity levels. Immunohistochemistry was counterstained with hematoxylin.We thank Dr. García-Sierra for the
thiazin red image. Arrow head, pretangles; closed arrow, mature tangles; open arrow, ghost tangles. Scale bar measures 25 μm.

Bodian, Gallyas, and Campbell-Switzer (for a review, see Uchihara70),

which are all also used to this day. Positive silver staining is termed

argyrophilic and will appear darker compared to non-argyrophilic

structures. This is due to the reduction of silver ions to metallic par-

ticles, which can then be visualized through light microscopy (for a

review, see Uchihara70). Although both mature tangles and ghost tan-

gles are argyrophilic, ghost tangles are less intensely stained than

mature tangles12 (Figure 4). There are a variety of modifications to

silver staining methods, which influences the predilection for 3R/4R

neuropathology.45 Gallyas silver staining has a predilection for 4R tau

neuropathology, whereas Campbell-Switzer has a preference for 3R

tau neuropathology.45 This may explain why Gallyas silver staining

reportedly stained pretangles,43,44 because these are predominantly

composed of 4R tau.44,63,71,72

Thioflavins are a group of fluorescent dyes developed in the

1950s (Figure 1) that, like Congo red, will bind to β-pleated sheets.73

Thioflavin-S (Table 1, Figure 4) is excited at 440 nm and is visual-

ized over a wavelength range of 455 to 600 nm allowing detection

of Aβ plaques and advanced tangles in the AD brain.74 As Aβ plaques

and NFTs are both visualized by thioflavin-S, morphologic characteris-

tics are used to differentiate between the pathologies. Specifically, Aβ
plaques are round, extracellular accumulations that may contain dys-

trophic neurites that appear either bulbous or thread-like; whereas

NFTs take the shape of the neuron in the intracellular domain and,

once the neuron has died, may remain as a remnant in the extracellu-

lar space. Comparing modified Bielschowsky and Bodian silver stain-

ing methods with thioflavin-S, all techniques identified both plaques

and NFTs.75 However, the modified Bielschowsky silver stain and

thioflavin-S performed better than Bodian silver staining at recog-

nizing neuritic plaques.75 Pretangles are not readily visualized with

thioflavin-S as they do not contain β-pleated sheets.

4.2 Staining techniques developed after the
discovery of the tau protein

In April 1985, Yen et al. reported the mouse monoclonal antibody

Ab39, which was developed in an effort to identify NFT pathology
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TABLE 2 Tau antibodies and their specifications discussed in this review. The antibodies are either historically relevant or important in
understanding themakeup of the neurofibrillary tangle maturity levels

Antibody Epitope Immunogen Species Clonality Isotype Source Catalog # Ref.

4R-tau aa 275-291 VQIID-

KKLDLSNVQSKC

synthetic N279D 4R-tau

peptide

VQIIDKKLDLSNVQSKC

Rabbit Polyclonal IgG Cosmo Bio CAC-

TIP-4RT-P01

112

Ab39 Conformational Tangle pellets fromAD brain

homogenate

Mouse Monoclonal IgG1 Shu-Hui Yen 76,77

Alz-50 aa 2-10, 312-342 AD ventral forebrain

homogenate

Mouse Monoclonal IgM (Davies) 37,80

AT8 pS202, pT205 PHF-containing pellet from

AD frontal and temporal

homogenate

Mouse Monoclonal IgG1 Thermo Fisher

Scientific

MN1020

96

CP13 pS202 Mouse Monoclonal IgG1 (Davies) 105

GT-38 Conformational Tau PHFs fromAD brains Mouse Monoclonal IgG1 Abcam ab246808 114

MC-1 aa 7-9, 312-322 Alz-50 immunoaffinity

purified PHFs fromAD

brain homogenate

Mouse Monoclonal IgG1 (Davies) 84

MN423 aa 387-391DHGAE,

truncation at E391

Pronase treated

neurofibrillary tangle

preparations

Mouse Monoclonal IgG2b Nicholas Kannan

(Novak)

85–87,120

PHF-1 pS396, pS404 Non-aggregated PHFs from

AD brain

Mouse Monoclonal IgG1 (Davies) 94

pS396 pS396 Synthetic corresponding to

human tau aa 350 to the

C-terminus.

Rabbit Monoclonal IgG Abcam ab109390

RD3 aa 267-274, 306-316

continuous

KHQPGGGKVQIVYKPV

KHQPGGGKVQIVYKPV Mouse Monoclonal IgG Millipore Sigma

05-803

104

RD4 aa 275-291 VQI-

INKKLDLSNVQSKC

VQIINKKLDLSNVQSKC Mouse Monoclonal IgG Millipore Sigma

05-804

104

TauC3 aa 412-421

CSSTGSIDMVD

CSSTGSIDMVDpeptide Mouse Monoclonal IgG1 Nicholas Kannan

(Binder)

113

Tau-1 aa 162-210 Bovine heat-stable

microtubule associated

proteins

Mouse Monoclonal IgG2a Millipore Sigma

MAB3420

79–82

Tau-66 aa 155-244, 305-314 Recombinant 2N3R polymers

tau

Mouse Monoclonal IgM Nicholas Kannan

(Binder)

109

TG-3 pT231 Purified PHFs Mouse Monoclonal IgM (Davies) 106

Abbreviations: AD, Alzheimer’s disease; IgG, immunoglobulin; PHF, paired helical filaments.

(Table 2, Figure 1). The study reported that the Ab39 antibody rec-

ognized the majority of mature tangles in AD brains.76 The epitope is

currently unknown, but it is believed to recognize a conformational

epitope specific to NFTs.77 Ab39 has since been used to identify

ghost tangles in addition to mature tangles78 (Figure 4). This antibody

was available through Dr. Shu-Hui Yen, but is no longer produced

or distributed. In October of the same year, Binder et al. reported

the mouse monoclonal Tau-1 antibody (Table 2, Figure 1), which was

developed to determine the localization of tau in the mammalian

central nervous system.79 The epitope for this antibody is amino acids

162–21080 (Table 2, Figure 2) with a core sequence encompassing

amino acids 192–20481,82 and is available through Millipore Sigma

(catalog # MAB3420). Tau-1 recognizes mature tangles and to a lesser

extent ghost tangles and pretangles after dephosphorylation of AD

brain tissue sections.10,83

In 1986, Wolozin et al. reported the mouse monoclonal antibody

Alz-50 (Table 2, Figure 1), which was designed to investigate NFT

pathology in the cholinergic neurons of the ventral forebrain.37 The

discontinuous epitopemaps to amino acids 2–10, and 312–34284 (Fig-

ure 2). Alz-50 immunopositive neurons were interpreted to “recog-

nize a precursor to tangle formation” (i.e., pretangles) as they lacked

thioflavin-S co-staining37 (Figure 4). Alz-50 also recognizes mature

tangles, but does not label ghost tangles (Figure 4). Thus, Alz-50 is con-

sidered useful as an early marker of NFT maturity. In 1997, Jicha et al.
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generated the mouse monoclonal antibody MC-1 (Figure 1) to create

an antibody with a similar epitope to Alz-50 that would not react with

the Alz-50 positive protein, FAC1.84 The epitope for MC-1 is amino

acids 7–9 and 312–32284 (Figure 2). Similar to Alz-50, MC-1 recog-

nizes primarily pretangles and mature tangles (Figure 4). Alz-50 and

MC-1were previously produced by Dr. Peter Davies.

In1988,Wischik et al. reported themousemonoclonal antibody423

(mAb 423, MN423) (Table 2, Figure 1), which was developed to iden-

tify the PHF core.85 This antibody recognizes amino acids 387–391 of

tau truncated at glutamic acid (E) 391 in the core of PHFs.86,87 MN423

primarily identifies ghost tangles andmature tangles.88–90 MN423 rec-

ognizes even advanced forms of ghost tangles in the hippocampus that

display a spherical, end-stage morphology (Figure 4). MN423 is signif-

icant in the scientific understanding of AD in that it identified trun-

cated tau in the PHF core. This antibodywas originally produced byDr.

Michal Novak.

Thiazin red (Table 1) is a fluorescent stain that binds to β-pleated
sheets91 and was first used to identify plaques and tangles in AD in

198892 (Figure 1). Thiazin red visualizes mature tangles and ghost

tangles,93 but not pretangles because they do not contain fibrils (Fig-

ure 4). Additionally, ghost tangles stain less intensely than mature

tangles.93 When excited at 418 nm, thiazin red is visualized at wave-

lengths>520nm.93 Unlike thioflavin-S, thiazin red can be used to stain

frozen-thawed AD brain tissue.92

PHF-1 is a mouse monoclonal antibody developed in 198994

(Table 2, Figure 1) in an effort to recognize PHF proteins. This is a

commonly used antibody that recognizes tau phosphorylated at ser-

ine (S) 396 and S40495 (Figure 2) and predominantly immunostains

mature tangles, with reduced immunostaining of pretangles and ghost

tangles (Figure 4). PHF-1was previously produced byDr. Peter Davies;

however, Abcam’s pS396 antibody (catalogue # ab109390) may be

an acceptable commercial alternative as it shares the phosphorylated

S396 epitope with PHF-1 (Table 2, Figure 2). Like PHF-1, this antibody

primarily stains mature tangles and ghost tangles (Figure 4).

In 1992, Mercken et al. generated the mouse monoclonal antibody

AT896 (Table 2, Figure 1), which recognizes tau phosphorylated at

S20297,98 and threonine (T) 20599 (Figure 2). AT8 is an important

antibody in the AD field due to its versatility for multiple meth-

ods including immunoblotting,97,98 immunohistochemistry,98 and

immuno-EM.98 AT8 generally immunostains pretangles and mature

tangles42–44,46,72,100–104 (Figure 4). Ghost tangles are not readily rec-

ognized by AT8; however, neuritic pathology can accumulate around

them in the form of tangle-associated neuritic clusters (TANCs;42

Figure 3). In contrast, there are previous reports of AT8 immunos-

taining primarily in mature tangles and ghost tangles.40,63 AT8 is a

commercially available antibody (Thermo Fisher Scientific, catalogue

# MN1020) with a comparable non-commercial mouse monoclonal

antibody previously produced by Dr. Peter Davies, CP13. CP13 was

first reported in 1999 by Jicha et al.105 (Table 2, Figure 1). This widely

used antibody recognizes tau phosphorylated at S202 (Figure 2) and

primarily stains pretangles andmature tangles (Figure 4).

TG-3 is an antibody first reported in 1996 by Vincent et al.106 (Fig-

ure 1). This antibody recognizes a regional conformational changewith

a phosphorylation site at T231107 (Table 2). A study by Luna-Muñoz

et al. characterized TG-3 immunostaining and found this antibody to

recognize both fibrillar and non-fibrillar tau, as reported with thiazin

red co-staining.108 This antibody recognizes pretangles and mature

tangles, but with mixed reports on predilection for ghost tangles.40,108

TG-3was previously produced by Dr. Peter Davies.

Tau-66 is a mouse monoclonal antibody reported in 2001 by

Ghoshal et al. in an effort to investigate other conformational changes

observed in tau109 (Table 2, Figure 1). This antibody recognizes a con-

formational change of tau in which the proline-rich region interacts

with the microtubule binding domain repeat 3 (discontinuous epitope

of amino acids 155–244, 305–314)109 (Figure 2). Upon initial charac-

terization, mature tangles were immunostained by Tau-66 in the supe-

rior temporal gyrus and hippocampus.109 The Tau-66 antibody has

played a crucial role in the development of the hypothesis of sequential

conformational states of tau pathology90 (for more discussion, refer to

section 4.1). This antibodywas originally produced byDr. Lester Binder

at Northwestern University and provided by Dr. Nicholas Kanaan at

Michigan State University.

De Silva et al. developed mouse monoclonal antibodies RD3 (Mil-

lipore Sigma, catalogue # 05-803) and RD4 (Millipore Sigma, cat-

alogue # 05-804; Table 2) in 2002 (Figure 1), which recognize 3R

and 4R tau, respectively.104 The putative epitope for RD3 contains

continuous amino acids 267–274 and 306–316 and the RD4 epi-

tope contains amino acids 275–291110 (Figure 2). Pretangles pre-

dominately immunostain with RD4, mature tangles immunostain with

RD3 and RD4, and ghost tangles predominately immunostain with

RD3.44,63,71,72,103,111 To simplify double immunostaining procedures,

a rabbit polyclonal 4R-tau antibody was generated in 2013112 (Cosmo

Bio, catalogue # CAC-TIP-4RT-P01). The rabbit polyclonal 4R-tau anti-

body shares the same epitope as RD4112 (Table 2, Figure 1 and 4), and

enabled comparison toRD3byeliminatinghost species redundancy.103

Overall, RD3 andRD4antibodies are the first highly specific antibodies

to 3R and 4R isoforms, allowing investigators to study isoform changes

in AD.

Mouse monoclonal antibody TauC3 was developed in 2003113 (Fig-

ure 1) and originally produced by Dr. Lester Binder at Northwestern

University. This antibody labels tau truncated at aspartic acid (D) 421

recognizing amino acids 412–421113 (Table 2, Figure 2). This antibody

immunostained both mature tangles and ghost tangles92 (Figure 4),

providing evidence that NFTs contain tau that is truncated at a cleav-

age site.

Gibbons et al. reported the mouse monoclonal antibody GT-38

(Table 2) in 2018 (Figure 1) in an effort to identify AD-specific tau

neuropathology.114 The exact epitope is unknown, but is considered to

recognize a conformational species of tau. This antibody immunostains

both mature tangles and early ghost tangles (Figure 4). GT-38 did not

recognize tau pathology in the context of corticobasal degeneration

and progressive supranuclear palsy.114 Instead, the antibody is shown

to be specific for NFT pathology in mixed 3R/4R tauopathies, such as

AD, insteadof only 3Ror4Rprimary tauopathies, such asPick’s disease

and progressive supranuclear palsy.114 GT-38 is now available through

Abcam (catalogue # ab246808).
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F IGURE 5 Summary of neurofibrillary tangle (NFT) maturity levels from early to advanced forms. Intermediaries exist between the defined
NFTmaturity levels. NFTs in intermediary 1will have focal accumulation of fibrillar tau that does not completely fill the neuron, which was
previously speculated to be nucleation sites.108 Intermediary 2will have intense staining of the NFTwithout a nucleus. There is a shift in NFT
localization, as pretangles andmature tangles are intracellular and ghost tangles are extracellular.40 Additionally, there is a shift in isoform
expression, as pretangles predominantly express 4R tau and ghost tangles predominantly express 3R tau.44 Stainingmethods will label a range of
NFTmaturity levels, as identified by the dark blue triangles. Thioflavin-S (Thio-S) and thiazin red recognize primarily mature tangle sand ghost
tangles. CP13, AT8, Alz-50, andMC-1 primarily recognize primarily earlier NFTmaturity levels. PHF-1, pS396, and TauC3 primarily recognize a
middling NFTmaturity level. Finally, Ab39, GT-38, andMN423 primarily recognize advanced NFTmaturity levels. Scale bar measures 25 μm.

4.3 NFT visualization in context

NFTs are visualized through a variety of special stains, as well as

antibody-based immunohistochemistry. H&E can be used to iden-

tify mature tangles and ghost tangles by their tinctorial properties:

mature tangles are basophilic and appear blue, whereas ghost tan-

gles are eosinophilic and appear pink.50 The majority of the special

stains discussed (thioflavin-S, Congo red, thiazin red) will bind to the

β-pleated structure formed by fibrils of the mature tangles and ghost

tangles.65,66,73,91 Additionally, mature tangles and ghost tangles are

argyrophilic.12 Immunohistochemistry is a highly effective method

of visualizing NFTs.37,76,79,85,94,96,104,105,109,113–115 Pretangles are pri-

marily visualized with AT8, CP13, Alz-50, and MC-1. Mature tangles

are primarily visualizedwith PHF-1, pS396, Tau-66, andTauC3, and can

also be visualized with AT8, CP13, Alz-50, and MC-1. Ghost tangles

are primarily visualized with GT-38, Ab39, TauC3, andMN423. Impor-

tantly, antibodies do not solely recognize one NFT maturity level, but

will recognize a small range on the spectrum along the NFT lifespan

(Figure 5). A point of consideration with any antibody-based approach

relates to the loss of the epitope, whether an effect of conformational

events or other post-translational modifications that affect antibody

recognition.

Immunohistochemistry and light microscopy are powerful tools to

investigate AD neuropathology; however, these methods are not with-

out their limitations. One of the defining criteria to determine NFT

maturity level is the presence and shape of the nucleus. Upon sec-

tioning, nuclei can be out of plane to the neuropathology observed,

complicating the classification of the NFTmaturity level. As previously

mentioned, another limitation to microscopic methods is that there

are currently no markers available to recognize a single NFT matu-

rity level. This is because the NFT maturity levels are not static enti-

ties, but rather dynamic structures that exist along a spectrum of the

NFT lifespan. For example, the intermediary between pretangles and

mature tangles (intermediary 1, Figure 5) shows focal puncta or fibrils
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that are intensely stained for tau, but does not fill the entire neuron.

This levelwasdescribedpreviously asneuronswithbead-shaped struc-

tures that were speculated to be nucleation sites.108 The intermediary

between mature tangles and ghost tangles (intermediary 2, Figure 5)

shows intense immunostaining of tau throughout the neuron without

a nucleus. With the advent of multiplexing technology to reveal multi-

ple protein targets, future studies are encouraged to evaluate shifting

profiles along the dynamic spectrum of NFTmaturity.

5 NEUROFIBRILLARY CHANGES IN AD

5.1 Post-translational modifications of tau

Post-translationalmodifications are alterations that occur aftermRNA

has been translated to protein and can affect a protein’s function

and/or downstream signaling. Examples include phosphorylation, ubiq-

uitination, truncation, and conformational changes.116 For a detailed

review of post-translational modifications of tau in AD, please refer to

Martin et al.117 Below, we highlight the utility of immunohistochemical

markers of post-translational modifications that provide keen insight

into our understanding of the temporal sequence of events related to

NFTmaturity.

Phosphorylation occurs naturally to release tau from microtubules

and to promote depolymerization.25 All six isoforms of tau in PHFs

exhibit abnormal phosphorylation118 on S, T, and tyrosine sites.

Phosphorylated tau is observed at each level of NFT maturity.10 In

comparison, ubiquitinated tau is found in mature tangles and ghost

tangles, but not in pretangles.10,39 Additionally, dystrophic neurites

radiating from the neuritic plaques are largely found to be ubiquitin-

positive, although a subset of ubiquitin-negative neurites was also

reported.48,119

The truncated form of tau was first identified in the PHF core

in 1988.85,115 This truncation event occurs at E39187 and is recog-

nized by the antibody MN42385,115,120 (Table 2). Truncation at E391

is identified primarily in mature tangles and ghost tangles.89,121 In

2003, another C-truncation event atD421, recognized by the antibody

TauC3 (Table 2), was identified113 and occurs at a caspase cleavage

site.113,122–125 Truncation at D421 was identified in pretangles123 and

mature tangles121,123 providing a framework for the interpretation in

the context of NFTmaturity.

C-terminal truncations correlate with N-terminal truncations.126

Immunoblotting of the insoluble fraction containing mature tangles

and ghost tangles identified the lack of an amino terminal that is recog-

nized by the Alz-50 antibody.127 Additionally, immunohistochemistry

and immunofluorescence experiments also provide evidence for a

truncated N-terminus of tau in mature tangles and ghost tangles.88,89

In vitro experiments identified a caspase-6 cleavage site at D13126

and antibodies that span across this site recognized tau in pretangles

and mature tangles, but not ghost tangles.126 This provides further

evidence that the N-terminus is truncated in advanced levels of NFT

maturity. The “post-translational sequence of events” hypothesis is

summarized in Figure 6 (adapted fromBinder et al.90).

F IGURE 6 Proposed tau conformational and truncation events
hypothesized along the neurofibrillary tangle (NFT) lifespan. First, the
N-terminus binds to themicrotubule binding region (MTBR), as
recognized by Alz-50. Next, the C-terminus is truncated at D421, as
recognized by Tau-C3. Next, the N-terminus is truncated, and the
proline-rich region will bind to themicrotubule binding region, as
recognized by TauC3. Then, tau is truncated at E391, as recognized by
MN423. Finally, the proline-rich region is further cleaved. These
conformational and truncation events occur through the NFT lifespan.
For example, pretangles are predominantly Alz-50 positive, but not
MN423 positive. Mature tangles are positive for Alz-50, TauC3,
Tau-66, andMN423. Ghost tangles are predominantly positive for
TauC3, Tau-66, andMN423. Sequence of events figure reprinted from
Biochim Biophys Acta, 1739, Binder et al., Tau, tangles, and
Alzheimer’s disease, 216-223, Copyright (2005), with permission from
Elsevier.

The earliest known structural conformational change in tau is iden-

tified by both the Alz-50 and MC-1 antibodies. The discontinuous

epitope of these antibodies recognizes both the N-terminus and the

microtubule binding domain80,84 (Table 2, Figure 2). Alz-50 and MC-

1 were used to identify the earliest conformational change as it rec-

ognizes pretangles and mature tangles.37,38,84 The Tau-66 antibody

(Table 2) recognizes a subsequent conformational change, specific to

the interaction of the proline-rich region and the beginning of the

third microtubule binding repeat109 (Figure 2). This antibody primar-

ily recognizesmature tangles and ghost tangles88,109 andmay also rec-

ognize some pretangles determined by punctate immunostaining.109
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However, Alz-50 and Tau-66 do not co-localize, indicating these anti-

bodies recognize different populations of mature tangles.88

Many additional post-translational modifications, including glyco-

sylation,128,129 glycation,130,131 nitration,132 andacetylation133,134 are

found on tau (for a review, see Martin et al.117). We have focused on

available evidence for a sequence of conformational and truncation

events especially as it pertains to phosphorylation, but there is a need

to better understand the relevance of post-translational modifications

to NFT maturity. Does the slow accumulation of hyperphosphorylated

tau prior to N-terminal truncation account for the resilience of den-

dritic spines in the brains of individuals who died without overt cog-

nitive symptoms?135 Do C-terminal truncations of tau lead to defects

in axonal transport machinery that are ultimately responsible for the

death of the neuron? These questions and others are especially impor-

tant in the context of neuronal health, synaptic function, and axonal

transport as future studies areencouraged toexamine these sequences

of events in the context of NFTmaturity.

5.2 Ultrastructural changes

In 1963, ultrastructural studies of mature tangles demonstrated

accumulation of PHFs (Figure 1) composed of double helical

structures.136,137 X-ray diffraction studies showed that PHFs conform

to a β-pleated sheet structure,138 which is a secondary structure of

proteins composed of amino acid chains that are bound by hydrogen

bonds to form sheets (for a review, see Taylor et al.139). The major

component of PHFs is tau140–146 with a minor component composed

of ubiquitin.48,49 Immunostaining for both tau and ubiquitin mimicked

observations of argyrophilic NFTs on silver stained sections. Straight

filaments were also identified in mature NFTs by EM. However,

straight filaments are not as abundant as PHFs in AD brains.147 Using

cryogenic-EM, Fitzpatrick et al. found that PHF cores and straight

filament cores were composed of identical protofilaments; however,

PHF and straight filament cores differ in how the protofilaments are

packed.148 As cryo-EM studies continue to advance our understanding

of tau biology, it will be of great interest to characterize how protofil-

ament packaging develops from pretangles to mature tangles and

onto ghost tangles. Through careful structural visualization of filamen-

tous changes in NFT maturity we may be able to better understand

what antigen–antibody interface becomes unmasked sufficient for

therapeutic targeting.

5.3 Tau isoforms

AD is considered a 3R/4R tauopathy, meaning the NFTs are com-

posed of both isoforms with no predominance of one over the other.

This is in contrast to primary tauopathies, which are classified as

3R-predominant (e.g., Pick’s disease) or 4R-predominant (e.g., pro-

gressive supranuclear palsy, corticobasal degeneration).27,28 Although

AD is classified as a 3R/4R tauopathy, evidence suggests a shift in

the tau isoform expression through the NFT maturity levels. Both

3R and 4R tau pathology have been mapped in the hippocampus

according to NFT maturity using immunohistochemistry63,72,149 and

immunofluorescence.44,71 Pretangles contain predominantly 4R tau,

mature tangles contain both 3R and 4R tau, and ghost tangles con-

tain predominantly 3R tau.44,63,71,72,150 Even though there is a pre-

dominance of the tau isoforms in pretangles and ghost tangles, 3R and

4R tau can also be expressed in the opposite end of the NFT lifespan

as well. There is also heterogeneity of tau isoform expression in neu-

rons themselves, with 3R tau expressed in the dendrites and 3R/4R

tau expressed in the soma of mature tangle-bearing neurons.111 An

increase in 3R tau through disease progression was reported in the

brainstem of AD brains.103 The change from 4R to 3R tau is not a post-

translational modification, which indicates that possible mechanisms

for this change in isoform expression in NFTs may be due to altered

alternative splicing regulation or metabolism of the isoforms. In con-

trast, no change in tau protein isoform expression was observed in the

frontal cortex, a region that accumulates NFTs later on in the disease

course, of AD brains compared to controls.33,103 Interestingly, some

reports show the ratio between 4R:3R tau mRNAwas increased in AD

brains compared to controls,151–153 which may suggest an overcom-

pensation of generating 4R taumRNA due to the increased proportion

of 3R tau protein in the neuron.

There are currently no MAPT mutations identified that cause AD;

however, severalmutationswere identified as causative for frontotem-

poral dementia (for a review, see Ghetti et al.154). Interestingly, dif-

ferent mutations confer predominance of 3R or 4R tau inclusions.

For example, tau pathology in frontotemporal dementia patients with

V337M and R406Wmutations contain both 3R and 4R tau.36 Patients

with these two mutations have PHFs and straight filaments, as well as

pretangles, mature tangles, neuropil threads, and neuritic plaques that

are similar to neuropathology observed in AD.155,156 In contrast, there

are numerous mutations that result in predominantly 3R or 4R tau

pathology. The P301L andN279K are two examples ofmutations caus-

ing predominantly 4R tau pathology in frontotemporal dementia.36

Considerations of mutation effects on tau isoform expression are

important, especially for modeling tauopathies or biomarker evalua-

tion of taumarkers.

5.4 Neuritic pathology

Although the focus of this review is on NFTs, we would be remiss not

to discuss neuritic pathologies as they are a consistent observation

in AD brains. Neuritic pathologies encompass several forms including

neuropil threads, neuritic plaques, and TANCs. Neuropil threads

(Figure 3) were first described in 1986 (Figure 1) as argyrophilic,

thread-like structures outside of cell bodies (i.e., neuropil).157 Neuropil

threads were identified in dendrites of tangle-bearing neurons in AD

brains using100μmthick silver stained sections,158 aswell as serial tau

immunostained sections.102 Additionally, neuropil threadswere identi-

fied in axons by immuno-EM on AD brains.159 Thus, neuritic pathology

owing to axonal versus dendritic accumulation is not typically speci-

fied. Neuropil threads are observed in proximity to pretangles, mature
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tangles, and ghost tangles. They are primarily composed of PHFs and

straight filaments, but may also include neurofilament.159 In fact, evi-

dence suggests that PHFs and straight filaments replace neurofilament

in the neurites.159 Multiple antibodies recognize neuropil threads,

but this pathology is revealed to a much greater extent by antibodies

that recognize hyperphosphorylated tau (e.g., CP13, AT8, and PHF-1;

Figure 3). Neuropil threads are not readily observed on H&E, but can

be observed on silver-stained sections and with Congo red or other

fluorescent dyes (Table 1). Various subsets of neuropil threads can be

revealed depending upon the antibody, stain, or dye used, which we

speculate may reflect thematurity level of the originating NFT.

Neuritic plaques (Figure 3) are generally larger than a neuron and

are principally composed of extracellular Aβ deposits that contain bul-
bous and thread-like dystrophic neurites. Neuritic plaques are com-

posed of both dendrites and axons160 and preferentially form near

microvasculature.161–163 Neuritic plaques are argyrophilic and can be

stained with a variety of tau antibodies. The often-overlooked form of

neuritic pathology, TANCs (Figure 3) were first defined in 1992 (Fig-

ure 1) and are composed of neurites surrounding a ghost tangle.164

However, not all ghost tangles are associated with TANCs. TANCs are

identified by silver staining and multiple tau antibodies, like AT8 and

Alz-5042,165 as well as other markers as exampled by the synaptic pro-

tein chromograninA.164 Awarenessof neuritic pathologies is especially

relevant to digital pathology studies that use quantitative software to

measure burden of pathology. Depending upon the taumarker of inter-

est, neuritic pathologies may occupy a sizable portion of the annotated

area. The specific contribution of increasing neuritic pathology may be

difficult to disentangle from accumulation of NFTs themselves. Cau-

tion is warranted not to overinterpret their contribution as above and

beyond that of NFTs depending on the marker used; as exampled by

AT8,whichmay demonstrate rich staining of neuritic pathology dispro-

portionate to the number of tangles as theymay havematured past the

point of being AT8-immunopositive (e.g., ghost tangles).

6 CLINICOPATHOLOGIC CORRELATIONS

In 1991, Braak and Braak described neuropathologic staging of neu-

rofibrillary changes in AD, which has become a widely accepted neu-

ropathologic measure termed Braak tangle stage17 (Figure 1). They

used a variety of silver staining methods to evaluate mature tangles,

ghost tangles, and neuropil threads. Braak tangle stages I and II dis-

play initial neurofibrillary changes in the transentorhinal region in the

pre-α neurons and entorhinal cortex with minimal changes in the CA1

subsector of the hippocampus.17 Braak stages III and IV have fur-

ther involvement of the entorhinal cortex and hippocampal subsectors

with involvement of temporal cortex.17 During Braak stages V and VI

ghost tangles are present in the transentorhinal region andmature tan-

gles are present throughout the hippocampus and striatum.17 Associa-

tion cortices become involved, with eventual involvement of primary

cortices.17

A strong correlation exists between clinical symptoms of AD

dementia and NFT accumulation.5,166–169 Cognitive deficits are not

readily observed with the minimal neuropathology of Braak tangle

stages I and II. However, by Braak stages III and IV with the involve-

ment of the limbic system and temporal cortices, cognitive impairment

and personality changes begin to show.166,170 This agrees well with

clinicopathologic observations from Delacourte biochemical staging

of AD that identified mild cognitive changes in cases with hippocampal

and temporal cortices involvement (stages 3-6).168 By Braak stages

V and VI, mature tangles and ghost tangles are identified throughout

muchof the brain,which is reflective of global cognitive impairment.166

Delacourte biochemical staging similarly reported striking cognitive

impairment by stage 7, whereupon two or more polymodal association

areas are affected.168 Taken together, the spatiotemporal patterning of

these staging systems underscores the detrimental nature of cortical

NFT involvement in the AD brain. Hierarchical staging provides a

robust measure useful in interpretation of global tangle involvement,

but more work is needed to understand the impact of NFT maturity

admixture. Careful evaluation of the composition of NFT maturities

(e.g., 90% pretangles with only 10% mature tangles) in the context

of cognitive impact may have wide-reaching implications for cogni-

tive reserve. Perhaps the ability of an individual to withstand NFT

pathology exists within the context of how fast or how slow pretangles

become mature tangles. Primary age-related tauopathy (PART) cases

are a good example of how NFT admixture may affect cognition,171

as cases lie along a spectrum of severity. The majority of PART cases

demonstrate mild cognitive impairment, but a subset with significant

ghost tangles in medial temporal lobe structures make up the entity

tangle-predominant dementia.150,172 As the namebelies, the extensive

involvement of ghost tangles even in the absence of significant cortical

involvement confers a dementing syndrome.

7 BIOMARKER IMPLICATIONS

Understanding the lifespan of NFT maturity is critical to the study

of how the disease progresses. In addition to investigating underly-

ing molecular processes, NFT maturity also has implications for neu-

roimaging biomarkers. Neuroimaging techniques have become more

common in assisting ante mortem diagnosis of AD dementia, especially

within the context of a research framework.173 Since the early 2000s,

multiple positron emission tomography (PET) tracers were developed

to visualize tau in vivo.31 These tracers include FDDNP,174 PBB3,175

flortaucipir (T807, AV-1451),176 and THK-5351177 (Figure 1). Flor-

taucipir is a Food and Drug Administration-approved first-generation

tau PET tracer that can differentiate patients with AD from other

tauopathies and healthy controls178–180 (Figure 7). MK-6240 is amore

recent tau PET tracer first characterized in 2016181 that was iden-

tified through in vitro binding to PHFs from AD brain homogenates

and closely reflects flortaucipir binding.182 Autoradiographic studies of

flortaucipir demonstrate binding to more mature levels of NFT pathol-

ogy, using disease states to make broad comparisons.183 As exampled

by PART cases that can lie along a spectrum of mild pretangle involve-

ment in the hippocampus to end-stage ghost tangle involvement,171

flortaucipir binding was readily observed in mild PART cases, but
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F IGURE 7 Tau positron emission tomography (PET) imaging of Alzheimer’s type tau pathology and corresponding hippocampal tau pathology.
Coronal and axial flortaucipir PET scans shown in the top panel were overlaid onto structural magnetic resonance imaging of two study
participants who later came to autopsy.179 The left panel from a Braak stage III study participant diagnosedwith diffuse Lewy body disease shows
minimal flortaucipir uptake (below threshold) throughout the brain with slightly more prominence in white matter that is likely nonspecific. The
corresponding histology image from PHF-1 immunostained hippocampus revealed scattered pretangles, mature tangles, and rare ghost tangles. In
contrast, the Braak VI study participant diagnosedwith AD in the right panel demonstrated striking flortaucipir uptake withmore intense tau PET
signal (warmer red and orange color overlay) throughout the brain. The corresponding PHF-1 immunostained hippocampus and parietal cortex
reveals frequent mature tangles and ghost tangles compared to the Braak III patient. Neuritic pathology including neuropil threads and neuritic
plaques is also readily observed in areas of tangle pathology. As the neuropathologic underpinnings of tau PET signal remains an intense area of
investigation, the comparative contribution of tangles and neuritic pathology is still unknown. Immunohistochemistry was counterstained with
hematoxylin. Black closed arrow, mature tangles; black open arrow, ghost tangles; white arrow head, neuropil thread; white closed arrow, neuritic
plaque. Scale bar measures 50 μm.

bindingwasminimally observed in areaswhere extensive ghost tangles

were identified.183 This and ongoing studies suggest that the composi-

tion of NFT maturity levels may influence tau PET signal. The field of

tau PET tracers is expanding rapidly with new compounds being evalu-

ated each year184,185 (for a review of related tauopathies, please refer

to Leuzy et al.186). Given the complex nature of tau, researchers have

high hopes that PET tracers will also demonstrate some specificity for

different isoforms of tau other than 3R/4R tau. Flortaucipir and PI-

2620, amore recentlydeveloped tauPET tracer,187 amongothers, have

shown some PET signal in 4R predominant tauopathies.188 It is too

early to know the full extent of tau PET tracer profiles for both tau

severity andNFTmaturity, but the opportunities are intriguing.

Further understanding of NFTmaturity may also be useful in identi-

fying other blood or cerebrospinal fluid (CSF) biomarkers to aid diag-

nosis. As the technology continues to advance, molecular detection

of above-mentioned tau truncations and conformational events may

be a viable target in CSF and plasma. Recent work demonstrates the

hypothesized associations of serum and CSF biomarkers and AD neu-

ropathology. Plasma tau pT181 is strongly associatedwith both Aβ and
tau PET.189 Plasma tau pT181 better predicted elevated brain Aβ than
total tau and was equal or enhanced compared to age and apolipopro-

tein E (APOE) ε4 carrier status combined.190 Others have shown an

association between baseline CSF Aβ1-42 and changes in CSF tau

pT181191 that was strongest in female APOE ε4 carriers, emphasizing

the potential role of sex differences in AD pathology.192 Extension of

NFT maturities to the temporal sequence of CSF tau or plasma-based

taumeasureswill be an invaluable contribution toourunderstandingof

how to predict neuropathologic changes and their impact on cognition

in preclinical patients. Does early detection of pT217 and pT181 cor-

respond with the slow accumulation of pretangle pathology, whereas

later recognition of pT205 corresponds to accumulation of significant

mature tangle pathology?193 As the technology continues to advance,



1568 MOLONEY ET AL.

molecular detection ofmultiplexed tau truncations and conformational

events in CSF and plasmamay become the targeted biomarker capable

of predicting change before neuronal death has occurred.

8 SPECULATION AND FUTURE DIRECTIONS

Itmay not be enough to have potential treatments removeNFT lesions.

It may be more prudent to prevent them from maturing. To move for-

ward, we must close this gap of knowledge concerning NFT maturity.

This largely startswith deeper characterizations of the antibodies used

to better answer scientific questions. There are many tau antibodies

available to researchers that recognize different populations of tan-

gles. For example, AT8 is widely used and suggested as a means to

obtainBraak staging.14,15 AT8predominately visualizes pretangles and

mature tangles, and rarely recognizes ghost tangles, excluding anentire

maturity level from its studies. While AT8 may be an ideal antibody

to study NFT formation, it lacks utility in neurons that are dying/dead

fromNFTs.

Overwhelming evidence supports the concept of NFT maturation.

However, given the cross-sectional nature of postmortem studies, it

is difficult, if not impossible, to observe NFTs maturing in the human

brain in vivo. A critical knowledge gap concerning the shift in 4R to 3R

tau isoform expression may represent differential dysregulation of tau

throughout the NFT lifespan.53,71,150,153 Because 4R positive pretan-

gles lack fibrillar structure, it seems unlikely that they will serve as a

seed through which PHF will form and aggregate. As such, we cannot

exclude the possibility that pretangles, mature tangles, and ghost tan-

gles are distinct lesions that occur in isolation. As discussed by Luna-

Muñoz et al., bead-like structures were observed in neurons between

pretangles andmature tangles.108 They speculated these structures to

be nucleation sites, which may provide evidence for the maturation of

pretangles into mature tangles through an intermediary 1 level (Fig-

ure 5).108 Regardless, there is a need to further understand pretangles

and how mature tangles form as a distinct or minimally related struc-

ture compared to ghost tangles.

AD researchers must also work to establish a more complete

sequence of post-translational events through the maturity levels.

Some conformational and truncation events have been heavily investi-

gated; however, phosphorylation at different sites, ubiquitination, and

other post-translational events have been lesswell characterized. Even

though it is likely that many of these events occur outside of a tempo-

ral sequence, understanding the order of post-translational eventsmay

allow for more targeted treatment options.

There is a need for more studies concerning functional conse-

quences of the NFT maturity levels, both within the neuron and in the

neuronal network. More clarity is needed to determine why pretan-

gles form, and if they are protective or toxic. Studies in mouse models

have shown that neuronswithNFTs remain functional in networks for a

time, but do they become non-functional? How long do NFT-burdened

neurons remain functional compared to not?

We also suggest scientists in the biomarker field work more closely

with neuropathologists. For neuroimagers, collaborating with a neu-

ropathologist may lead to a better understanding under the micro-

scope of what the PET ligand may be binding to. We cannot forget

the lessons learned from tau antibody-based studies that demonstrate

post-translational events will remove or add epitopes that allows for

less or more binding of an antibody through the NFT lifespan. Why

would the same not be true for PET ligands? It is possible that post-

translational events of tau in NFTs will open up or remove ligand bind-

ing sites that can influence PET imaging results. More must be done

to better understand what these PET ligands are binding to and is sig-

nal lost as the NFT matures. For fluid biomarkers, working with a neu-

ropathologist will allow a better understanding of where in the NFT

lifespan the targets exist. These targets have been known for a signifi-

cant number of years, yet we lack understanding of their temporal dis-

tribution in the NFT lifespan.

For many years, we have known that certain populations of neu-

rons are predominately vulnerable to NFT pathology, with many com-

pelling follow-up questions. Do NFTs in certain regions or neuronal

populations in the brain mature at different rates? Additionally, does

the tau isoform expression of neuronal populations predispose neu-

rons to NFTs? Do NFT maturity levels affect the neuropil surrounding

tangle-burdened neurons?

With the accumulated knowledge, we speculate that early events

in the lifespan of NFT maturity begin as protective. The maladaptive

response leads to an ill-fated rescue attempt that overwhelms the

neuron driving it to form a mature tangle. Neuroimaging biomarkers

designed to target NFTs from tissue homogenates likely recognize the

middling form whereupon the neuron begins to die. This may result

in a lack of binding until sufficient tau has accumulated, which should

correlate well with functional and structural changes. Circulating tau

markers will likely benefit early diagnostics. As circulating markers do

not provide regional specificity, pairing with neuroimaging measures

should provide deeper insight as not all AD cases accumulate tau in the

expected topographic pattern.

9 CONCLUSIONS

NFTs exist on a spectrum from early to advanced forms of three

distinct, but overlapping, maturity levels (Figure 5). This spectrum

spans the intracellular domain to the extracellular space. Pretangles

are found in morphologically normal neurons and have a diffuse or

granular tau immunostaining pattern that may also be hyperphos-

phorylated. Mature tangles occur in neurons that may have a dis-

located or shrunken nucleus, and are composed of tightly packed

fibrils of phosphorylated tau. Ghost tangles occur after the neu-

ron has died, and are composed of loosely packed bundles of fib-

rils. As NFTs are not static entities, intermediaries of these levels can

also be identified in patient tissue. The predominance of tau isoform

changes from 4R in pretangles, to 3R/4R in mature tangles, and 3R in

ghost tangles. Post-translational modifications, including phosphoryla-

tion, acetylation, glycosylation, and ubiquitination, are present across

NFT maturity levels. Truncation and conformational changes of tau

occur throughout the lifespan of NFTs, which can be visualized using
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immunohistochemical techniques (Figure 4). A variety of other stain-

ing techniques are used to identify NFT maturity levels, including tinc-

torial dyes such as H&E andCongo red, and special stains such as silver

staining and thioflavin-S (Figure 4).

There is more than 100 years of research on AD,1,12 yet a large gap

in knowledge regarding tau and NFTs still exists. It is well known that

tau is hyperphosphorylated in AD, but the reason for this event is still

unclear. It is also currently unknown why PHFs are not degraded even

though they are ubiquitinated. Questions still remain as to whether

therapeutic intervention could halt neuropathology at the pretan-

gle level, thereby preventing neuronal death and cognitive decline.

Much of our accumulated knowledge regarding NFT maturity derives

from the hippocampus and was thus the focus of this review. NFT

maturity studies in the entorhinal cortex40,42 and nucleus basalis of

Meynert53,101 have greatly informed thebiology. Future studies should

consider evaluation of these critical areas and evaluation throughout

the cortex to examine similarities and differences in the molecular

profile of NFT maturities given heterogeneity of cell types. Moreover,

the effect of underlying transcript differences that may confer selec-

tive vulnerability deserves further investigation in the context of NFT

maturity to uncover timing of mRNA changes prior to formation of

lesions or as a result.

The accumulated knowledge and use of immunohistochemical

techniques provides us with the ability to infer the dynamic aspects of

NFT pathology. Molecular insights gleaned from animal modeling and

postmortem human studies provide a broad perspective of the lifespan

of NFTmaturity. Coupled with modern biomarker readouts, the future

holds great promise for identifying mechanisms of early accumulation

of tau pathology that can be targeted prior to structural change and the

eventual death of the neuron. Thus, the historic perspective of mor-

phology has provided the basis for our understanding of NFTmaturity.

Through multi-disciplinary approaches integrating next generation

sequencing and innovative neuropathology techniques,194 we are well

positioned to uncover themeaning of the lifespan of NFTs in AD.
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