
OR I G I N A L R E S E A R C H

Bioinformatics analysis of molecular genetic

targets and key pathways for hepatocellular

carcinoma
This article was published in the following Dove Press journal:

OncoTargets and Therapy

Junxue Tu1

Jingjing Chen2

Meimei He1

Hongfei Tong3

Haibin Liu3

Bin Zhou3

Yi Liao3

Zhaohong Wang3

1Department of Pharmacy, The Second

Affiliated Hospital and Yuying Children’s
Hospital of Wenzhou Medical University,

Wenzhou, Zhejiang 325000, People’s
Republic of China; 2Department of Breast

Surgery, The Second Affiliated Hospital

and Yuying Children’s Hospital of
Wenzhou Medical University, Wenzhou,

Zhejiang 325000, People’s Republic of

China; 3Department of Hepatobiliary

Surgery, The Second Affiliated Hospital

and Yuying Children’s Hospital of
Wenzhou Medical University, Wenzhou,

Zhejiang 325000, People’s Republic of

China

Background: Hepatocellular carcinoma (HCC) is the second leading cause of death among

cancers worldwide. In this study, we aimed to identify the molecular target genes and detect the

key mechanisms of HCC. Three gene expression profiles (GSE84006, GSE14323, GSE14811)

and two miRNA expression profiles (GSE40744, GSE36915) were analyzed to determine the

molecular target genes, microRNAs (miRNAs) and the potential molecular mechanisms in HCC.

Methods: All profiles were extracted from the Gene Expression Omnibus database. The

identification of the differentially expressed genes (DEGs) was analyzed by the GEO2R

method. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology

(GO) enrichment analysis performed database for Integrated Discovery, Visualization and

Annotation. The miRNA-gene network and protein–protein interaction (PPI) network were

correlated by the Cytoscape software. The key target genes were identified by the CytoHubba

plugin, Molecular Complex Detection (MCODE) plugin and miRNA-gene network. The

identified hub genes were testified for survival curve using the Kaplan–Meier plotter database.

Results: Expression profiles had 592 overlapped DEGs. The majority of the DEGs were

enriched in membrane-bounded organelles and intracellular membrane-bounded organelles.

These DEGs were significantly enriched in metabolic, protein processing in the endoplasmic

reticulum and thyroid cancer pathways. PPI network analysis showed these genes were mostly

involved in the pathogenic Escherichia coli infection and the regulation of actin cytoskeleton

pathways. Combining these results, we identified 10 key genes involving in the progression of

HCC. Finally, PLK1, PRCC, PRPF4 and PSMA7 exhibited higher expression levels in HCC

patients with poor prognosis than those for lower expression via Kaplan–Meier plotter database.

Conclusion: PLK1, PRCC, PRPF4 and PSMA7 could be potential biomarkers or therapeu-

tic targets for HCC. Meanwhile, the metabolic pathway, protein processing in the endoplas-

mic reticulum and the thyroid cancer pathway may play vital roles in the progression of

HCC.
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Introduction
Hepatocellular carcinoma (HCC), the second most common cancer in the world, is

a major contributor to cancer mortality and incidence.1 More than 580,000 new cases

are increased every year in Asia, with China accounting for more than 50%.2 Several

methods have been used for decreasing the incidence rate, containing early detection

and diagnosis. These methods are well efficacious and could reduce the mortality and

incidence. However, the 10-year survival rate remains unsatisfactory in patients.3 As
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is well known, HCC is a heterogeneous disease. The occur-

rence and development of HCC are associated with the

cellular context, environmental influences, and gene

aberrations.1 Recently, several studies suggested that cellu-

lar pathways and multiple genes may participate in the

progression of HCC.4–6 However, the underlying molecular

mechanisms remain unknown. Thus, it is urgent and impor-

tant to dig the hub molecules and to uncover the key

molecular mechanisms.

The miRNAs are a series of small, non-coding regula-

tory RNAs, which regulate gene expression and perform

a crucial role in the regulation of proliferation, cellular

differentiation and cell death. A part of miRNAs was

regarded as tumor suppressor genes, or oncogenes that

contribute to several cancer progressions. Notably, some

key miRNAs provide a novel approach for HCC therapy.

For instance, microRNA-21, microRNA-26a and

microRNA-29a-3p have been reported association with

HCC and could serve as biomarkers;7,8 Shigoka et al

also showed that plasma miR-92a could effectively discri-

minate HCC from the control subjects.9

In recent years, a large amount of data about transcrip-

tome of cells have been established using numerous of

high-throughput technologies. In particular, the microarray

is a novel high-throughput platform for the analysis of gene

expression. During tumorigenesis, the microarray techni-

que, as a useful tool for the analysis of general genetic

alteration, has been extensively used. Through accurate

microarray analyses, the key factors processed by biochip

data extraction, biological data clustering and sequence

alignment can be identified. These analytical techniques

provide a new and quick method to explore the molecular

pathogenesis mechanism of various types of cancers.

In this study, 3 gene expression profiles and 2 miRNA

expression profiles were downloaded from the Gene

Expression Omnibus (GEO) database to obtain differentially

expressed genes (DEGs) and differentially expressed (DE)

miRNAs between the HCC tissues and normal liver tissues

samples. Furthermore, functional enrichment and the PPI net-

work analyses were used to identify the DEGs. Meanwhile,

with the mRNA–microRNA interaction analysis, the ten hub

genes in DEGswere tested and four key genes andmiRNAs as

well as their potential molecular mechanisms were studied.

Materials and methods
Microarray data
Three gene expression profiles (GSE84006, GSE14323,

GSE14811) and two miRNA expression profiles (GSE40744,

GSE36915) were retrieved from the GEO database.10

Identification of DEGs and DE miRNAs
Limma is a Bioconductor package of R that offers

a comprehensive solution for the analysis of gene expression

data. limma has been widely used for gene detection.11 This

package contains sophisticated facilities for reading, normal-

izing and exploring for large datasets. Moreover, it also

applies an adjusted P-value (adj. P) to help correct false-

positives. Herein, the adj. P for selection of DEGs and DE

miRNAs was set as <0.05. Funrich webserver (http://fun

rich.org/index.html) was utilized to analyze the overlap of
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Figure 1 Identification of overlapping DEGs and DE miRNAs. (A) Identification of overlapping upregulated and downregulated DEGs in GSE84006, GSE14323 and

GSE14811. (B) Identification of overlapping upregulated and downregulated DE miRNAs in GSE36915 and GSE40744.
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DEGs in the three datasets and the overlapping DEMs in the

two miRNA expression profiles.12

Functional and pathway enrichment

analysis
Gene ontology (GO) is widely used in annotating genes, gene

products and sequences. The Kyoto Encyclopedia of Genes

and Genomes (KEGG) is a comprehensive database for

biological interpretation of genome sequences and other

high-throughput data. Both analyses were available in the

Database for annotation, visualization and integrated discov-

ery database (DAVID database), which is a bioinformatics

data resource composed of an integrated biology knowledge

base and analysis tools to extract meaningful biological

information from large quantities of genes and protein

collections.13 Herein, GO and KEGG analyses were applied

by using the DAVID database to identification of DEGs. The

cut-off criterion was set (P-value <0.05).

Construction of PPI network and analysis

of modules
The online database of STRING (https://string-db.org/) was

applied to assess the PPI containing direct (physical) and

indirect (functional) associations.14 Then, the Cytoscape

program, an open-source tool, was used for the visual

exploration of the interaction networks among different bio-

molecules, which contained protein, gene and other types of

interactions.15 Herein, the DEGs were mapped to STRING

database to assess the PPI and visualized by Cytoscape

program. The cut-off criterion of combined score and node

degree was set to >0.15 and ≥10, respectively. Recent study
suggested that the newly proposed method MCC performs

better than other 10 previous reported methods.16 Therefore,

the plug-in of Molecular Complex Detection (MCODE) was

utilized to screen hub gene modules with the degree cut-off,

haircut on, k-core, node score cut-off, max depth set as 10,

0.2, 2, 0.2 and 100. In addition, the functional and pathway

enrichment analyses of DEGs were carried out by DAVID

database in each module and the cut-off criterion of P-value

was set as <0.05.

Prediction of miRNA targets and

prognosis analysis
The target genes of the DEMs from GSE40744 and

GSE36915 were predicted by miRNet webserver (https://

www.mirnet.ca/), which is commonly used for predicting

microRNA targets.17 The target genes were superposed

with the DEGs to gain an intersection for further analysis.

To identification of the hub genes, the results fromMCODE,
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Figure 2 GO method analyzed the overlapping DEGs. The number of DEGs were showed of black bars. (A) Biological processes (BP) of top 10; (B) Cellular components

(CC) of top 10; (C) Molecular function (MF) of top 10; (D) KEGG pathway of top 10.
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CytoHubba and miRNA-gene networks were combined. The

Kaplan–Meier plotter webserver was applied to analyze the

prognostic significance of the identified hub genes.17

Results
Identification of DEGs in expression

profiles
GSE84006 datasets contained 38 tumor tissues and 38 paired

adjacent non-tumor tissues. GSE14811 datasets contained 56

HCC samples and 56 liver samples. GSE14323 included 19

normal samples, 17 cirrhosis HCC samples, 41 cirrhosis

samples and 38 HCC samples. The miRNA expression

profile of GSE40744 included 9 normal samples and 67

HCV-associated HCC tumor samples. GSE36915 included

21 non-tumor samples and 68 tumor samples. A total of

8,655, 11,544, and 1,375 DEGs were identified after the

analyses of the GSE84006, GSE14323, and GSE14811 data-

sets, respectively. Among them, 592 genes were found in all

these datasets (Figure 1A).

Functional and pathway enrichment

analyses of DEGs
The GO analysis indicated 366 overlapping genes that are

involved in numerous biological processes (BP), such as
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Figure 3 PPI network construction and module analysis. DEGs used blue nodes to represent. Orange colors of nodes represented the correlation to modules with other

DEGs; meanwhile, the lines represented the relationship of two nodes.
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substance metabolic, single organisms and macromolecules

(Figure 2A). In terms of cellular components (CC), DEGS

were mainly enriched in the membrane-bounded organelles

and intracellular membrane-bounded organelles (Figure 2B).

The overlapping DEGs were primarily associated to the

structural organization of the extracellular matrix, organic

cyclic compounds binding, protein binding and heterocyclic

compound binding in terms of molecular functions (Figure

2C). Additionally, the DEGs were enriched in three Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways,

which included the metabolic pathways, protein processing

in the endoplasmic reticulum and the thyroid cancer pathway

(Figure 2D).

Construction of PPI network and analysis

of modules
A total of 532 nodes and 3,370 edges were mapped in the PPI

network of the identified DEGs. As shown in Figure 3, these

DEGs-overlapped showed significant interactions and net-

works. The combined scores higher than 0.4 in PPIs were

used for constructing the PPI networks. The MCODE plugin

was used to analyze the entire PPI network and four modules

were selected. As shown in Figure 4, enrichment analysis of

themodule genes of the KEGG pathway reveals enrichment in

pathogenic Escherichia coli infection and the regulation of

actin cytoskeleton. The first 50 genes provided by MCC

method were selected and sequentially ordered as follows:

SNRPD2, SF3B4, HNRNPA1, SNRPC, HNRNPU, RNPS1,

POLR2H, SF3A2, PRPF3, POLR2I and so on (Table 1 ranked

by MCC method).

miRNA-DEG pairs
As shown in Figure 1B, a total of 22 DE miRNAs were

identified by evaluating the dataset of miRNA expres-

sion dataset (GSE36915 and GSE40744). Then, 180

nodes and 224 edges were mapped in the miRNA-gene

network of the identified DEGs and miRNAs (Figure 5).

Moreover, the genes predicted by the miRNet webserver

were considered as DE miRNAs target genes. For

further identification of reliable hub genes, the identified

target genes were compared to the DEGs. In this pro-

cess, only the overlapping genes were considered as the

hub genes. After combination of the results provided by

MCODE, CytoHubba and the miRNA-gene network, ten

hub genes were selected, including PLK1, PRCC,

PRPF4, PSMA7, CHERP, GPKOW, HNRNPA1,

PSMB5, PSMC4 and RNPS1.
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Figure 4 KEGG pathway analysis. The most important four modules analyzed by KEGG pathway. Bars signified the number of DEGs. Different colors represented different modules.
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Kaplan–Meier survival analysis
To verify the results from bioinformatics analysis, the

Kaplan–Meier plotter database was performed to predict

the prognostic value of these hub genes. As shown in

Figure 6, the OS for 364 patients with HCC was analyzed

using the Kaplan–Meier survival plot. As a result, PLK1,

PRCC, PRPF4 and PSMA7 were significantly correlated

with worse OS for HCC patients.

Discussion
Although HCC has been extensively studied, HCC is still

a seriously difficult problem in the early diagnosis. The

reason for that is the lack of depth understanding of the

molecular mechanisms in the occurrence, progression and

development. Therefore, a depth research, relating to the

key genes and mechanisms of HCC development and

progression, is important for HCC diagnosis and pre-

treatment. It is convenient and easy to discover the general

genetic alterations in the development and progression of

diseases by the novel microarray technology, which could

investigate the underlying hub genes and mechanisms for

the diagnosis and therapies.18–20

In this study, we analyzed 592 overlapping DEGs, both

up-regulated and down-regulated genes, in the GSE84006,

GSE14323 and GSE14811 expression profile datasets

(Figure 1). The GO analysis indicated that the 592 over-

lapping DEGs were correlated to substance metabolic,

single organisms and macromolecules at the level of

BPs. Besides, we tested DEGs in the KEGG pathway

enrichment analysis. The results showed that the overlap-

ping DEGs were mostly enriched in the metabolic path-

way, protein processing in the endoplasmic reticulum and

the thyroid cancer pathway. The metabolic pathway was

identified as one of the essential pathways of the major

modules of the overlapping DEGs (Figure 2). These

enriched pathways may provide potential strategies for

the development of new therapeutic agents.

Carcinogenesis is a complicated and complex process

influencing with some specific genes and involving multi-

ple signaling cascades. Recently, bioinformatics analyses

have been used for identifying novel diagnosis markers

and therapeutic targets for many cancers.21–23 Zou et al24

identified NRAGE as a novel biomarker for HCC by

integrated bioinformatics analysis. Furthermore, in early

HCC, the G2/M checkpoint participated in the

Table 1 Top 50 in PPI network ranked by MCC method

Rank Name Score

1 SNRPD2 2.09E+13

2 SF3B4 2.09E+13

3 HNRNPA1 2.09E+13

4 SNRPC 2.09E+13

5 HNRNPU 2.09E+13

6 RNPS1 2.09E+13

7 POLR2H 2.09E+13

8 SF3A2 2.09E+13

9 PRPF3 2.09E+13

10 POLR2I 2.09E+13

11 GTF2F1 2.09E+13

12 GPKOW 2.09E+13

13 SF3B5 2.09E+13

14 RBM17 2.09E+13

15 PRCC 2.09E+13

16 PRPF4 2.09E+13

17 CHERP 2.09E+13

18 PLK1 2.44E+09

19 AURKB 2.40E+09

20 AURKA 1.92E+09

21 PSMD12 1.48E+09

22 PSMC4 1.48E+09

23 PSMA7 1.48E+09

24 PSMB5 1.48E+09

25 PSMB4 1.48E+09

26 PSMD6 1.48E+09

27 SHFM1 1.48E+09

28 PSME3 1.48E+09

29 BUB3 1.44E+09

30 PPP2R5D 9.98E+08

31 TOP2A 9.69E+08

32 CCNB1 9.66E+08

33 CENPA 9.65E+08

34 ASF1B 9.65E+08

35 PCNA 9.62E+08

36 MCM3 9.62E+08

37 RAD54L 9.62E+08

38 OIP5 9.62E+08

39 RPL8 9.59E+08

40 RPL17 9.59E+08

41 SEC61A1 9.59E+08

42 RPS18 9.59E+08

43 RPS13 9.58E+08

44 MCM7 9.58E+08

45 RPS21 9.58E+08

46 RPL28 9.58E+08

47 RPN2 9.58E+08

48 RPN1 9.58E+08

49 SSR3 9.58E+08

50 SSR2 9.58E+08
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progression.25 Several similar researches have been shown

for HCC now. Using bioinformatics analysis, Wang et al26

have found the miR-192-3p-XIAP axis involved in HCC.

However, compared with this study, previous studies only

chose a signal data or file alone, as well as analyzed the

one module method, with a high degree of connectivity, to

select those hub genes. Notably, the genes provided by our

study that not only combining the results from CytoHubba,

Figure 5 miRNA-gene network. Regulation of DEGs in miRNA-gene network. Light blue nodes stand for DEGs, light orange nodes represent DE miRNAs. The lines

represent the regulation of relationship between two nodes.
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MCODE method and network tools for the identification

of the key genes, but also using the Kaplan–Meier data-

base. This is forceful increasing the reliability of these

results (Figures 3–5).

We predicted 10 hub genes containing PLK1, PRCC,

PRPF4, PSMA7, CHERP, GPKOW, HNRNPA1, PSMB5,

PSMC4 and RNPS1. A few studies have reported these

genes in other cancers. To ensure the results obtained from

the bioinformatics analysis, the Kaplan–Meier plotter database

was been chosen to predict the prognostic value of these key

genes. Only PLK1, PRCC, PRPF4 and PSMA7 significantly

correlated with worse OS for the HCC patients (Figure 6).

PLK1, a serine/threonine-protein kinase that belongs to

the polo-like kinase family, participates in various biolo-

gical processes about embryonic development, cell cycle

and RNA processing.27 Xu et al28 tested high expression

of PLK1 in the HCC tissues showed significantly worse

effect in the histological type. PLK1 and HOTAIR

Figure 6 Survival rates of four target genes. Using the Kaplan–Meier plotter database to analyze prognostic significance of the target genes in individuals of HCC. (A) PLK1.
(B) PRCC. (C) PRPF4. (D) PSMA7. The red lines signified individuals with high expression of target gene and black lines with low expression.
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accelerate proteasome degradation of SUZ12 and ZNF198

during hepatitis B virus-induced liver carcinogenesis.29

PLK1 phosphorylation of PTEN causes a tumor-

promoting metabolic state.30

PRCC, the most common TFE3 fusion partner in papillary

renal carcinoma, is associated with pre-mRNA splicing

factors.31 In a subset of papillary renal cell carcinomas,

PRCC has been repeatedly reported and presumably causes

cancer.32,33 By RNA sequencing and FISH experiment, the

clinicopathological analysis and detection of the gene fusion

verified that the PRCC-MITF gene fusion defines a novel

member of the MiT family translocation renal cell

carcinoma.33

PRPF4, a key component of the spliceosomes, plays

a critical role in pre-mRNA splicing and its mutations

result in retinitis pigmentosa due to photoreceptor

defects.34,35 PRPF4 is necessary part for cell survival,

and in zebrafish, PRPF4 participate in posterior lateral

line primordium migration.36 However, PRCC and

PRPF4 are not reported with HCC, and studying these

important genes can therefore increase the understanding

of not HCC but other cancers. Notably, it is not coincident

in the PRPF4 mRNA level and its corresponding miRNA

level. That result potential showed that miRNA may be not

directly control PRPF4.

The gene PSMA7 encodes a member of the peptidase

T1A family, which is a 20S core alpha subunit.37 PSMA7 is

often over-expressed in several human common cancers. In

addition, overexpression of PSMA7 correlates with reduced

survival rate in several types of cancers. Holmila et al38 tested

a diagnostic use of PSMA7 to screen for early HCC. Tan

et al39 investigated that PSMA7 inhibited the tumorigenicity

of A549 human lung adenocarcinoma cells. The effects of sh-

PSMA7 on cell proliferation and vascular endothelial growth

factor expression via the ubiquitin-proteasome pathway in

cervical cancer.40 Salivary exosomal PSMA7 is a promising

biomarker of inflammatory bowel disease.41

Conclusion
In conclusion, a total of four genes including PLK1,

PRCC, PRPF4 and PSMA7 were identified as HCC bio-

markers, and metabolic pathway, protein processing in the

endoplasmic reticulum and thyroid cancer pathway were

confirmed to be the essential and most mechanisms in the

development of HCC. Our study, however, had some

obvious limitations such as no analysis of clinic liver

tissue samples, or only using the Kaplan–Meier plotter

database to analyze the prognostic value of these

molecular target genes. Further studies should explore

these markers in the HCC patients to ensure the prognostic

effect and need to dig the underlying mechanisms or

related pathways. In the next step, we would try to use

computer to predict which compound could target these

hub genes to inhibit HCC development; meanwhile, using

some biological method we could investigate these poten-

tial functions in vivo and in vitro. Overall, our results

showed that the interactive network of miRNAs and

mRNA is highly complex. However, we need more experi-

ments to investigate these novel, key and hub genes.

Data Availability
The raw data are provided in the Supplemental Information.
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