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Abstract

Frictional drag force on an object in Stokes flow follows a linear relationship with the velocity

of translation and a translational drag coefficient. This drag coefficient is related to the size,

shape, and orientation of the object. For rod-like objects, analytical solutions of the drag

coefficients have been proposed based on three rough approximations of the rod geometry,

namely the bead model, ellipsoid model, and cylinder model. These theories all agree that

translational drag coefficients of rod-like objects are functions of the rod length and aspect

ratio, but differ among one another on the correction factor terms in the equations. By track-

ing the displacement of the particles through stationary fluids of calibrated viscosity in mag-

netic tweezers setup, we experimentally measured the drag coefficients of micron-sized

beads and their bead-chain formations with chain length of 2 to 27. We verified our method-

ology with analytical solutions of dimers of two touching beads, and compared our measured

drag coefficient values of rod-like objects with theoretical calculations. Our comparison

reveals several analytical solutions that used more appropriate approximation and derived

formulae that agree with our measurement better.

Introduction

Fluid mechanics of particles in low Reynolds number flow, also referred to as creeping flow or

Stokes flow [1, 2], plays central roles in the studies of microorganism locomotion such as cilia

and flagella propulsion [3, 4], transportation of polymers in solution [5], biochemical macro-

molecules like DNA [6, 7] and cytoskeleton proteins [8], drug delivery [9], magnetic particles

manipulation in micro-fluidic devices [10, 11], volcano ash settling in air [2], molecular

dynamics simulation [12], fungal spores flight [13], and various chemical engineering applica-

tions [14]. As the name implies, the Reynolds number (Re) in these flows is very small (Re�

1). Reynolds number is a dimensionless criterion useful for predicting the importance of
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inertial and viscous effects of the fluid [14]. It is defined to be the ratio of the inertial and vis-

cous forces of the fluid, Re = ρUa/η, where ρ is the density of the fluid, U is the relative velocity

of the object to the flow, a is the characteristic length scale, and η is the viscosity of the fluid.

Inertia is insignificant in Stokes or creeping flow, and viscous frictional effects dominate.

One salient feature of low Reynolds number flow is the simplification of the important but

often complex Navier-Stokes equations. Solutions to the Navier-Stokes equation are generally

hard to obtain, so approximations are often used for practical engineering analyses. In creep-

ing flow (Re� 1), approximate Navier-Stokes equation is reduced to [2]:

∇P ffi Zr2U ; ð1Þ

with P being the fluid mechanical pressure. In this Stokes flow approximation, density is omit-

ted in the Navier-Stokes equation, and the fluidic drag on an object becomes a function of its

translational velocity U, characteristic length scale of the object a, and fluid viscosity η (for

more discussion on Eq 2 please see Note A in S1 Appendix from the supplement):

Fdrag ¼ � constant � ZUa : ð2Þ

Analytical exact solution exists for spherical objects with the characteristic length being its

diameter 2r, and the constant term from Eq 2 turns out to be 3π. Thus the drag force on a

sphere is given by

Fdrag
sphere ¼ � 3p � ZU2r ¼ � 6pZrU ; ð3Þ

which is commonly known as Stokes’ law [15]. More generally, the drag force on any 3-dimen-

sional object undergoing translational motion in Stokes flow can be written as:

Fdrag ¼ � x � U ; ð4Þ

with ξ being the translational drag coefficient, which is proportional to the fluid viscosity and

related to only the shape, size and orientation of the object [16]. As shown in Eq 3, the transla-

tional drag coefficient for spherical object in Stokes flow is therefore ξsphere = 6πηr. Drag coeffi-

cients for other geometric shapes have been analytically calculated in the past, such as for

ellipsoid [17–21], cylindrical rod [18, 20, 22–25], two spheres [14, 26, 27], and chains of beads

[5, 28]. For rod-like objects, the calculation has been especially tricky since there is extra con-

sideration for end-effects and choice of geometrical approximation of the rod-like object. One

popular model for rods with large aspect ratios is the rough approximation in the shape of a

long thin ellipsoid or cylinder, and is often referred to as the “slender-body” theory [20, 22,

23]. Chain of beads modeling is also important in bead model theories of Kirkwood and

Riseman [29], upon which theoretical works from Garcı́a de la Torre et al. [25, 27, 30], Yama-

kawa and Tanaka [28], Doi and Edwards [5], and Swanson et al. [26] were developed. These

theoretical representations of rod-like objects agree that drag coefficients of a rod is a function

of its length and aspect ratio, but differ quite significantly among each other in the correction

factors.

More recently, Garcı́a de la Torre et al. developed a public-domain computer program,

HYDRO++ [31, 32], based on the bead model theory. This simple software has been used to

predict and calculate diffusion coefficients and other solution properties of nano-to-micron

size particles [33, 34]. The bead model hydrodynamics implemented in HYDRO++ is also

compared as one of the bead model theories to describe the properties of the present authors’

chain-of-bead microparticles.

A number of attempts have been made to quantify the drag coefficients of rod-like objects

experimentally in the past, usually done by dropping millimeter-scale objects in a vessel [14,

Stokes flow regime translational drag coefficient measurement and comparison with theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0188015 November 16, 2017 2 / 18

https://doi.org/10.1371/journal.pone.0188015


35]. One problem with the traditional settling rates measurement is that the objects are too big

for the vessels used to have no surrounding boundary and wall effects, which is problematic

for interpretation of the experimental results. Orientation and accurate tracking of the objects

are also difficult to achieve. As for experiments using more modern technology offering more

precision and credibility, to the best of our knowledge, there are two. One is a short communi-

cation by Zahn et al. [36] that measured sedimentation speed of micron-scale bead-chains, but

how they were able to use video-microscopy to observe and calculate the sedimentation speed

is unclear. The other recent paper from Wise et al. [37] used similar methodology as ours, but

their measurement, to quote their own words, contained several “spurious results”.

In our study, we measured the drag coefficients using magnetic tweezers, a technology that

combines precise movement control of magnetic particles with accurate particle trajectory

tracking [38]. Stokes’ law (Eq 3) has been used to calibrate magnetic force on magnetic parti-

cles since some of the first magnetic tweezers experiments [39, 40]. Magnetic beads used in

this study are superparamagnetic and have low standard deviations in both geometric size and

magnetic content [10, 41, 42]. The Reynolds number is also well within the range of Stokes

flow in this case (Re< 10−5).

We used a pair of cylindrical magnets, which are magnetized in the axial direction, to

induce translational motion of bead-chains in the sidewise (perpendicular) orientation (Fig

1a). And we had a cone-shaped magnet, also magnetized in the axial direction, to generate

translational motion of bead-chains in the lengthwise (parallel) orientation (Fig 2a). Here we

report the measurement of translational drag coefficients in Stokes flow regime of bead-chains

moving either parallel or perpendicular to the axial axis. We also compare our experimental

values with theories describing hydrodynamic properties of rod-like objects, namely bead

model, ellipsoid model, and cylinder model.

1 Materials and methods

Glycerol and magnetic beads suspension

Superparamagnetic beads with diameter of 2.8 μm were obtained from Dynabeads M270, Invi-

trogen, USA. Analytical reagent grade glycerol 99+% was from Fisher Scientific, UK. Glycerol

was either used as 99% stock or 50% dilution with DI water for mixing with M270 magnetic

beads. For a few hours before experiment, glycerol solution was incubated on benchtop to

allow large trapped air-bubbles to escape, and magnetic beads were introduced to glycerol and

mixed gently to prevent air-bubbles formation. Suspension had final concentration of 600 to

700 /μl magnetic beads, equivalent to 6-7 beads per 107 μm3 of suspension volume. Beads con-

centration was kept low to minimize flow pattern and magnetic interactions from nearby par-

ticles to the particle being tracked in the camera view. In the glass tube, only particles moving

in the central region (at least 100 μm distance from the upper and lower walls) were selected to

be tracked in the focal plane such that the drag coefficient was not influenced by nearby walls.

Magnetic tweezers setup

An in-house made transverse magnetic tweezers setup was used in this study [43–45]. A minia-

ture borosilicate glass tube (VitroTubes 8250, VitroCom, USA) with inside chamber dimen-

sions of 0.5 mm, 0.5 mm and 25 mm and wall thickness of 0.1 mm was placed on an inverted

microscope (Olympus CKX41) (Figs 1a and 2a). The inner chamber of the glass tube was filled

with glycerol suspended with trace amount of magnetic particles. There was no fluid flow in

the inner chamber of the VitroTube, as the setup was intended for stationary fluids except for

the displacement of magnetic particles.

Stokes flow regime translational drag coefficient measurement and comparison with theory
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Fig 1. Magnetic tweezers setup for perpendicular translation of bead chains. (a): Schematic

representation of the magnetic tweezers with a pair of cylinder magnets. The cylindrical magnets are

magnetized in the axial direction, and they are paired up in an anti-parallel fashion. (b): Finite element

simulation of the cylinder magnets pair using Finite Element Method Magnetics (FEMM 4.2). Cross section of

the x, y-plane through the geometric center along z-axis is shown. Field density |B| decreases from pink to

blue. N and S denote north and south poles respectively. Black lines represent computed magnetic field lines.

Blue dot is a schematic field of view of the 50X objective, and blue dotted lines show zoom direction. Scale

bar, 5 mm. (c): As viewed in the field of view, a 24-bead chain in the magnetic field of a pair of magnets,

aligning with the field B (white arrow) along the y-axis, and translating towards the magnetic field gradientrB

(black arrow). Scale bar, 10 μm.

https://doi.org/10.1371/journal.pone.0188015.g001
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Fig 2. Magnetic tweezers setup for parallel translation of bead chains. (a): Schematic representation of

the magnetic tweezers with a single cone magnet, which is magnetized north at tip and south at base. (b):

Finite element simulation of the cone magnet using Finite Element Method Magnetics (FEMM 4.2). Cross

section of the x, y-plane through the geometric center along z-axis is shown. Field density |B| decreases from

pink to blue. N and S denote north and south poles respectively. Black lines represent computed magnetic

field lines. Blue dot is a schematic field of view of the 50X objective, and blue dotted lines show zoom

direction. Scale bar, 5 mm. (c): A 21-bead chain in the magnetic field of a single cone magnet, aligning with

the field B (white arrow) along the x-axis, and translating towards the magnetic field gradientrB (black

arrow). The force applied to the particle is in the direction of the magnetic field gradientrB. Scale bar, 10 μm.

https://doi.org/10.1371/journal.pone.0188015.g002
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Magnetic forces were applied to superparamagnetic particles (beads and their chain forma-

tions) via either a pair of cylinder-shaped permanent magnets (Neodymium material grade

N52, 3 mm diameter and 12.7 mm height, KJ Magnetics, USA) (Fig 1a) or a single cone-shaped

permanent magnet (Neodymium material grade N50, 12.7 mm diameter and 12.7 mm height,

SuperMagnetMan, USA) (Fig 2a). In our design as sketched in Figs 1 and 2, since the geomet-

ric center of magnets, either a pair of cylinder or a single cone magnet, was aligned with the

center of the camera view, this direction is defined as the x-direction. The lightpath to the

objective and CCD camera is defined as the z-direction. Then, the y-direction, which is per-

pendicular to the xz plane, is defined in the Cartesian coordinate.

Magnetic field density plot along the x, y-plane at the geometric center of magnets in z-axis

is shown for both setups (Figs 1b and 2b). The magnetic field simulation was done using an

open-source software, Finite Element Method Magnetics (FEMM 4.2), in which computed

heatmap of the external magnetic field B from the magnet(s) and approximated magnetic field

lines were plotted (see Theory/Calculations).

While the pair of cylinder magnets induced the formation of bead-chains orientated per-

pendicular to the x-axis (Fig 1c), cone magnet generated chains orientating parallel along the

x-axis (Fig 2c). Magnets were mounted on a step motor controlled by MP285 manipulator

(Sutter Instrument, USA), which can move in 3-dimensions with a 40 nm stepping accuracy.

We tuned the z position of the magnets so the magnetic force generated was parallel to the

plane of focus, and the motion of the particles was along the focal plane.

In the external magnetic field, magnetic moment of a single bead generates a stray magnetic

induction that attracts other nearby magnetic beads to chain up along the magnetic field line.

In our experimental setting, the beads concentration was kept low to minimize influence from

magnetic induction field of other magnetic beads and their formed chains. Therefore in our

experiments, we initially observed single beads. And with external magnetic field and gradual

diffusion process coupled with induced movement towards magnets, magnetized beads

moved in range of stray induction field of other beads and form linear chains. So with time,

higher percentage of beads would form chain structures and with longer chain length. None-

theless these beads are superparamagnetic, and they lose their magnetization when no external

magnetic field is present (no remanence and hysteresis). With removal of magnets, the mag-

netic chain structures disjointed into individual beads.

Magnetic particle tracking

Magnetic particles in the glass tube were bright-field-imaged with 50X magnification and

tracked at a sampling rate of 100Hz (Figs 1c and 2c). Their positions were determined by

centroids with a resolution of 30 nm [46], using a home-written LabVIEW program

(National Instruments, USA). More information on the LabVIEW image processing codes

can be found in Fig A in S1 Appendix. For the same fixed magnet position (1000 μm to 12

000 μm) in any one experiment setting, trajectories of individual beads or bead-chains along

x-axis were plotted against time as shown in Fig 3. Velocity of a given magnetic particle was

calculated as U = dx/dt, where x is the displacement along x-axis and t is time recorded. Sin-

gle beads’ velocities in a particular experiment were collected as reference and used to calcu-

late the drag coefficients of bead-chains in that same experiment. In total, eight experiments

were conducted to obtain a range of bead-chains varying in chain length from 2 to 27. All

experiments were conducted at 25 ± 1˚C. Short videos of these translational motions of

magnetic particles described in the Method can be found in S1–S3 Videos in supporting

information.

Stokes flow regime translational drag coefficient measurement and comparison with theory
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2 Theory/Calculations

Magnetic force and drag force

Magnetic particles are influenced by the presence of an external magnetic field B both in terms

of torque and magnetic force. The field will rotate and align the particle’s magnetic moment M

with the field line with a torque τ = M × B. However, a uniform field only generates torque

and a magnetic field gradientrB is needed to exert magnetic force and induce translational

motion on the suspended particle. For the superparamagnetic M270 Dynabead used in this

study, the magnetic force on a single bead with magnetic moment m is quantified as:

Fmag
1 ¼ ðm � rÞB : ð5Þ

This results in translation towards regions of higher magnetic field along x-axis. And opposite

the direction of translation is the frictional drag force:

Fdrag
1 ¼ � x1 � U1 ; ð6Þ

where U1 is the translational velocity of the spherical bead with radius r and ξ1 = 6πηr is the

single bead’s drag coefficient (Fig 4a).

One thing to note is the influence of a solid wall in the vicinity of the moving particle. The

drag coefficient of a spherical bead near a wall surface is approximated by Faxén’s law [47]:

x1 ¼
xsphere

1 �
9r

16h
þ

r3

8h3
�

45r4

256h4
�

r5

16h5

;
ð7Þ

where ξsphere = 6πηr is the theoretical drag coefficient when the bead is far away from the tub-

ing wall, h is the distance of the geometric center of the bead from wall, and r is the radius of

the bead. For bead right on surface, ξ1� 3.1 × ξsphere. For bead much far away from wall sur-

faces (i.e. h� r), ξ1� ξsphere.

Fig 3. Magnetic beads and bead-chains tracking with LabVIEW program. (a): Displacement along the x-axis of the 24-bead chain

from Fig 1c versus time plotted in red. Several single beads measured in the same experiment plotted in black. (b): Displacement along

the x-axis of the 21-bead chain from Fig 2c versus time plotted in cyan. Several single beads measured in that same experiment plotted

in black. The velocity of a given bead or bead-chain was calculated by dividing the displacement along x-axis by the time taken.

https://doi.org/10.1371/journal.pone.0188015.g003
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The magnetic bead-chain formed in the magnetization of the pair of cylinder magnets (Fig

1) is schematically shown in Fig 4b. The translational motion is perpendicular to the axial axis

of the chain, and we shall denote this translation orientation of the chain as?. For a given mag-

netic particle, the magnetic force applied to the particle only depends on the distance between

the particle and the magnets placed outside the glass tube. Given that in our experiments, the

magnets were typically positioned more than 1000 μm from the objective view, magnetic force

applied to particles can be assumed to be effectively constant over the range (travel distance of

<40 μm) of translation recorded for the measurement (see Results and discussion for the error

analysis). For the same magnet position that gives rise to Fmag
1 on a single bead, with N beads in

a chain, the magnetic force on the chain is balanced by the drag force:

N � Fmag
1 ¼ � x

?

N � U
?

N ; ð8Þ

and since Fmag
1 ¼ Fdrag

1 , the perpendicular translational drag coefficient can be written as:

x
?

N

x1

¼
N � U1

U?N
: ð9Þ

For the magnetization by the cone-shaped magnet (Fig 2), bead-chain formation is depicted

in Fig 4c. Translational motion is parallel to the axial axis of the chain, and this translation ori-

entation of the chain is marked as k. And similarly, for a chain with N beads, magnetic force

equals to the drag force:

N � Fmag
1 ¼ � x

k

N � U
k

N ; ð10Þ

Fig 4. Principle of drag coefficient calculations. Schematic illustration of magnetic force and drag force

acting on (a) single bead, (b) bead-chain moving perpendicular to its axial axis, and (c) bead-chain moving

parallel to its axial axis. For a given bead-chain of length N, the drag coefficient is calculated using Eqs 9 and

11.

https://doi.org/10.1371/journal.pone.0188015.g004
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and the parallel translational drag coefficient is given by:

x
k

N

x1

¼
N � U1

UkN
: ð11Þ

For a given bead-chain of length N, the drag coefficient can be measured by determining the

velocity of the chain UN and the average of velocities of single beads hU1i in the same experi-

ment (Fig 3).

Theoretical drag coefficients for rod-like objects

Theoretical equations describing the drag coefficients in parallel or perpendicular motion to

the axial axis of the rod were generally based on three geometrical representations of the rod-

like object: bead model, ellipsoid model, and cylinder model.

Bead model is a rigid array of N touching spherical beads, each with radius r. Yamakawa

and Tanaka [28] and Doi and Edwards [5] derived drag coefficients of rigid rod-like polymers

using such bead model.

In ellipsoid model, the rod-like object is approximated to be a slender prolate ellipsoid with

major axis L/2 and minor axis r. Oberbeck [17] and Burgers [18, 20] first calculated the flow

around such ellipsoid, and their analyses were revisited by Tchen [19], Cox [20] and Chwang

and Wu [21] among others.

For cylinder model, the rod is modeled as a cylinder with length L and cross-sectional

diameter of 2r. Calculations for drag coefficients based on such a rigid long cylinder rod were

first proposed by Burgers [18, 23], followed by theoretical development from Cox [20], Batche-

lor [23], Tillett [22], Broersma [24], and Tirado et al. [25].

All three models have derived the same basic form of equation relating drag force to a func-

tion of the length L of the rod and its aspect ratio L/(2r):

Fdrag
k ¼ � xkUk ¼ �

2pZL

ln
L
2r

� �

þ gk

Uk ;
ð12Þ

Fdrag
? ¼ � x?U? ¼ �

4pZL

ln
L
2r

� �

þ g?

U? ;
ð13Þ

where the only term that differs among the various theoretical calculations is the correction

factor γk and γ?. The values of γk and γ? are summarized in Table 1.

Clearly, all three geometrical representations of the rod-like object are related to N both as

the number of beads in a bead-chain and the aspect (or length-to-thickness) ratio L/(2r). If we

normalize the drag coefficient in Eqs 12 and 13 to that of a single bead with diameter 2r, ξ1 =

6πηr, we obtain:

xk

x1

¼
2

3

N
ln ðNÞ þ gk

; ð14Þ

x?
x1

¼
4

3

N
ln ðNÞ þ g?

: ð15Þ

So effectively we have rewritten the drag coefficient of a rod-like object as a function of N
alone.

Stokes flow regime translational drag coefficient measurement and comparison with theory
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In fact, correction factors γk and γ? proposed by Tirado [25] and Broersma [24] also come

as functions of N as well. Tirado et al. [25] predicted that

gk ¼ � 0:207þ 0:980=N � 0:133=N2 ; ð16Þ

g? ¼ 0:839þ 0:185=N þ 0:233=N2 ; ð17Þ

and Broersma’s equations give

gk ¼ � 0:114 � 0:15= ln ð2NÞ � 13:5=ð ln ð2NÞÞ2

þ37=ð ln ð2NÞÞ3 � 22=ð ln ð2NÞÞ4 ;
ð18Þ

g? ¼ 0:866 � 0:15= ln ð2NÞ � 8:1=ð ln ð2NÞÞ2

þ18=ð ln ð2NÞÞ3 � 9=ð ln ð2NÞÞ4 :
ð19Þ

Batchelor also provided the drag coefficient of a cylindrical rod in more exact forms:

xk

x1

¼
2

3
N

�þ 0:307�2

1 � �=2
þ 0:426�3

� �

; ð20Þ

x?
x1

¼
4

3
N

�þ 0:307�2

1þ �=2
þ 0:119�3

� �

; ð21Þ

where � = 1/ln(2N).

3 Results and discussion

Theoretical solutions for the translational drag coefficients of two touching spheres of the

same size in Stokes flow have been discussed extensively in literature such as Happel and

Table 1. Correction factor γk and γ? from various theories for rod-like object.

Model Author γk γ?
Bead Yamakawa [28] 0.044 1.111

Doi & Edwards [5] 0 0

Ellipsoid Oberbeck [17] 0.193 1.193

Burgers [18]

Tchen [19]

Cox [20]

Chang & Wu [21]

Cylinder Burgers [18] −0.027 1.193

Cox [20] −0.114 0.886

Tillett [22] −0.114 0.886

Batchelor [23] −0.114a 0.886a

Broersma [24] Eq 18 Eq 19

Tirado [25]b Eq 16 Eq 17

a Batchelor [23] obtained identical correction factors γ as Tillett [22] and Cox [20], and he also provided more

exact forms of the equations in Eqs 20 and 21.
b The theory in Tirado [25] has been later updated to cover even shorter cylinders and disks [48].

https://doi.org/10.1371/journal.pone.0188015.t001
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Brenner [14], Carrasco [27], and Swanson et al. [26]. The dimer bead model described in Car-

rasco [27] has been further developed into a comprehensive bead modelling methodology

[32], which is implemented in the public-domain computer program HYDRO++ [31, 32].

Such a dimer of identical spheres correspond to our measurements of 2-bead chains. The

results for dimer from our magnetic tweezers experiments are listed alongside theoretical cal-

culations in the Row 1 of Table 2. Good agreement is obtained for both parallel and perpendic-

ular translational drag coefficients. This confirmation of our experimental results for the case

of two touching spheres validates the accuracy of our experimental method.

In Row 2 onwards of Table 2, we present the experimental results for bead-chain of length 2

to 27, compared with theoretical calculations of x
k

N=x1 and x
?

N=x1. Chain lengths of short

Table 2. Comparison of experimental and theoretical values ξN/ξ1 for bead-chains of length 2 to 30.

Chain Length

N

Experimentala Swanson [26] Durlofsky [49] HYDRO++b

ξkN=ξ1
ξ?N=ξ1 ξkN=ξ1

ξ?N=ξ1 ξkN=ξ1
ξ?N=ξ1 ξkN=ξ1

ξ?N=ξ1

2 1.28 ± 0.03 (20) 1.45 ± 0.03 (24) 1.29 1.43 . . . . . . 1.23 1.39

3 1.54 ± 0.03 (16) 1.83 ± 0.04 (23) . . . . . . . . . . . . 1.49 1.78

4 1.76 ± 0.04 (14) 2.07 ± 0.04 (22) . . . . . . . . . . . . 1.71 2.13

5 2.00 ± 0.03 (16) 2.26 ± 0.06 (18) . . . . . . 1.99 2.16c 1.92 2.46

6 2.18 ± 0.05 (10) 2.64 ± 0.06 (21) . . . . . . . . . . . . 2.12 2.78

7 2.42 ± 0.08 (7) 3.13 ± 0.10 (16) . . . . . . . . . . . . 2.32 3.09

8 2.51 ± 0.06 (6) 3.37 ± 0.20 (5) . . . . . . . . . . . . 2.50 3.39

9 2.79 ± 0.04 (10) 3.48 ± 0.12 (7) . . . . . . . . . . . . 2.69 3.68

10 2.80 ± 0.09 (8) 3.74 ± 0.15 (6) . . . . . . 2.96 3.66 2.86 3.96

11 2.97 ± 0.08 (4) 4.08 ± 0.26 (3) . . . . . . . . . . . . 3.04 4.25

12 3.09 ± 0.19 (3) 4.08 (1) . . . . . . . . . . . . 3.21 4.52

13 3.17 ± 0.14 (5) 4.81 ± 0.09 (6) . . . . . . . . . . . . 3.38 4.79

14 3.14 ± 0.12 (9) 4.86 (1) . . . . . . . . . . . . 3.54 5.06

15 3.52 ± 0.11 (2) 5.04 ± 0.19 (2) . . . . . . 3.83 5.06 3.70 5.32

16 . . . 5.61 (1) . . . . . . . . . . . . 3.86 5.58

17 3.84 (1) . . . . . . . . . . . . . . . 4.02 5.84

18 4.52 ± 0.02 (2) . . . . . . . . . . . . . . . 4.18 6.10

19 4.03 (1) 6.37 ± 0.04 (2) . . . . . . . . . . . . 4.33 6.35

20 . . . . . . . . . . . . 4.64 6.36 4.48 6.60

21 4.53 (1) . . . . . . . . . . . . . . . 4.63 6.85

22 . . . . . . . . . . . . . . . . . . 4.78 7.09

23 . . . . . . . . . . . . . . . . . . 4.93 7.34

24 4.43 (1) 7.77 (1) . . . . . . . . . . . . 5.08 7.58

25 3.86 (1) . . . . . . . . . 5.43 7.63 5.23 7.82

26 5.08 (1) . . . . . . . . . . . . . . . 5.37 8.06

27 . . . 8.51 (1) . . . . . . . . . . . . 5.51 8.29

28 . . . . . . . . . . . . . . . . . . 5.66 8.53

29 . . . . . . . . . . . . . . . . . . 5.80 8.76

30 . . . . . . . . . . . . 6.15 8.85 5.94 9.00

a Mean and variance of ratio obtained from ξN and ξ1 and calculated with Taylor series expansion [50, 51]. Data are shown in mean ± s.e.m. (number of

measured bead-chains).
b Public-domain computer program HYDRO++ [31, 32]. See Note B in S1 Appendix for more details on the software usage.

c This x
?

N=x1 column is obtained after end-removal or “N − 2” treatment.

https://doi.org/10.1371/journal.pone.0188015.t002
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(N< 5) range are often excluded for application of equations on rod-like objects [20, 23–25,

28]. More importantly, no analytical solutions are available for such short arrays of beads [27]

or for short cylinders [14].

Computational solutions, however, have been proposed for short chain length in this range

(and beyond). Durlofsky et al. [49] computed using simulation the drag on linear chains of N
touching spheres and the shortest chain length attempted was five, as shown in Row 4 of

Table 2. Comparison of parallel drag coefficient ξk/ξ1 yields reasonable agreement. Durlofsky

et al. provided two sets of computation results, one with drag from the two beads at either

extremity removed, and one without such treatment. Interestingly, for parallel translational

drag coefficient, without removal of drag contribution from two ends gives better conformity

to our measurement. Perpendicular drag coefficient ξ?/ξ1, however, seems to require two-end

removal to improve the match to our measurement data. This is in relation to the larger cor-

rection factor γ? needed for perpendicular translations than parallel ones γk as shown in

Table 1. In fact, Tirado et al. [25] and Broersma [24] referred to γ as end-effect corrections.

This usage of the term combined with our experiment with computation from Durlofsky et al.
[49] suggest that end of the rod contribute more to drag coefficient in perpendicular transla-

tion than parallel motion, and resulting in larger end-effect correction in the form of γ. The

computational solutions provided by HYDRO++ program not only predict quite accurately

the translational drag coefficients for short chain length, but are also able to describe the drag

coefficients of moderately long bead-chains as seen in Table 2.

In Figs 5 and 6 we compare experimental data of ξN/ξ1 obtained in our study with the theo-

retical equations Eqs 14 and 15 substituting appropriate correction factors γk and γ? listed in

Table 1, and HYDRO++ results from Table 2. Theoretical curves for bead model and ellipsoid

model were plotted in Fig 5, and various plots of equations for cylindrical rod model were

shown in Fig 6.

The dispersion of experimental points in Figs 5 and 6 could be due to several reasons. One

is the slight heterogeneity of magnetic beads, especially their magnetic response [41, 52]. The

magnetization of these beads used in the present study arises from iron oxide nanoparticles

(10 − 20nm) embedded inside the plastic polymer, and these tiny magnetic units are distrib-

uted randomly in and among the beads [42]. Our group previously measured the heterogene-

ity in magnetization to be around 10% [52] and other magnetic tweezers group has reported

the variation between beads to be 7% [41]. During single bead calibration for ξ1, we noted the

magnetic response from the beads at the same magnet position to vary by 10% as well. And

this variation is related to another source of error in our experiment, which is the variation of

magnetic force over the field of view (FOV). The size of our FOV is 126 μm x 77 μm. For the

velocity tracking of the particles, although we rarely picked particles quite far away from the

center of the view (assuming furthest distance apart to be 60 μm), and these particles never

traveled a prolonged distance across the FOV (smaller than 40 μm), we estimated an uncer-

tainty of about 6% or less into the magnetic force value, by substituting d = 60 μm based on the

magnetic force formula in [52]. Differences in both the magnetization of the beads and their

magnetic force due to being tracked in different regions of FOV was reflected in the variation

in single bead velocities in Fig 3. The experimental measurements in this study were conducted

with multiple repeats by finding more bead-chains of certain length if possible, as shown in

Table 2. And the means obtained from more repeated experiments generally showed meaning-

ful agreement with certain theoretical predictions while deviated more from others.

All three bead models, HYDRO++ program [31, 32], Yamakawa [28], and Doi & Edwards

[5] provided solutions for the flow around rod-like object represented as bead chains (Fig 5).

However, Doi and Edwards [5] suggested their equations without any correction factors γ. As

we have observed from our comparison with Durlofsky et al. [49]’s simulation above, drag

Stokes flow regime translational drag coefficient measurement and comparison with theory
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effect from two ends of the rod-like object is more prominent in perpendicular translation

than in parallel motion. End-effect correction is needed for γ?, which is shown in curve that

has much higher x
?

N=x1 than experimental values, given by Doi and Edwards [5]. On the con-

trary, Yamakawa [28] derived γk and γ? that closely fit with our measurement for N> 5. End-

effect correction for parallel drag coefficient of the rod appears to be negligible, as shown in

the satisfactory agreement between measured x
k

N=x1 and the ones proposed by Yamakawa [28]

and Doi and Edwards [5], with γk of 0.044 and 0 respectively. Both Yamakawa [28] and Doi

[5] based their bead models on Kirkwood method [29], which itself requires approximation to

get analytical results. Our comparison of theory with measurement reveals that Yamakawa

[28] seems to use a better approximation and obtain a x
?

N=x that agrees with experimental val-

ues better, while both Yamakawa and Doi suggested very good x
k

N=x solutions. HYDRO++ pro-

rgam provides a better agreement with experiments over the whole range of chain length from

short to moderately long rods.

Fig 5. Bead model and ellipsoid model theories and measurements. (a): Schematic of the bead model and ellipsoid

model theoretical frameworks representing rod-like objects. Bead model is a rigid array of identical touching beads each with

diameter 2r; ellipsoid model is composed of major axis L/2 and minor axis r; Chain length in bead model in terms of number of

beads N is equivalent to aspect ratio of ellipsoid L/(2r). (b): Experimental values for x
?

N=x1 (red color dots) plotted along with

experimental values for x
k

N=x1 (cyan color dots) versus chain length N. Theoretical curves are from Eqs 14 and 15 substituted

with appropriate values of γ based on bead model and ellipsoid model as listed in Table 1, and HYDRO++ values in Table 2.

https://doi.org/10.1371/journal.pone.0188015.g005
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Ellipsoid model also shows a very good match between its predicted values and experimen-

tal observations (Fig 5) over much of the experimental data range. ξN/ξ1 prediction is fairly

accurate for N bigger than five. Quantitatively, ellipsoid model derives correction factors γ
very close to that by Yamakawa [28]’s bead model, and qualitatively, both provide very reason-

able models of a rod-like object in Stokes flow for N generally larger than five.

Cylinder model tend to overestimate the perpendicular x
?

N=x1 and, although slightly, paral-

lel x
k

N=x1 translational drag coefficients of the bead-chains measured in our experiment, except

for the x
?

N=x1 calculated by Burgers [18] (Fig 6). Deviation of the theory and experiment is

especially obvious for Broersma [24] with both x
?

N=x1 and x
k

N=x1 curves above the measured

values. Exact solutions to creeping motion equations for finite cylinders have been known to

be difficult to obtain [14]. Swanson [26] calculated drag coefficients specifically for short cylin-

ders and proposed that x
k

4
=x1 ¼ 1:95 and x

?

4
=x1 ¼ 2:4, when our measured data are 1.76 and

2.07 respectively. Arguably the geometrical representations of a 4-bead chain versus a cylinder

Fig 6. Cylinder model theories and measurements. (a): Schematic of the cylinder model theoretical framework

representing rod-like objects. Cylinder model has diameter of 2r and length of L. Chain length in bead model in terms of

number of beads N is equivalent to aspect ratio of ellipsoid and cylinder L/(2r). (b): The same experimental data from Fig 5b

compared with theoretical curves with various γ from cylinder model as listed in Table 1. Black arrows point to theoretical

curves obtained from Broersma [24].

https://doi.org/10.1371/journal.pone.0188015.g006
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with an aspect ratio of 4 are different enough to produce drag coefficients this far apart. How-

ever, even for when the aspect ratio/chain length N is considerably large (N> 10), cylinder

model still tend to predict higher drag coefficients than what we measured, more so for ξ?
(except Burgers [18]).

With the use of magnetic tweezers and CCD-camera based particle tracking we have con-

ducted a careful measurement of the translational drag coefficients of chains of magnetic beads

with length or aspect ratio of N from 2 to 27. These magnetic particles are of the size between

2.8 μm to smaller than 80 μm in a microtube’s inner chamber that is at least 6 × 108 larger than

these particles in volume, effectively creating an unbounded fluid condition crucial for theoreti-

cal calculations [14]. For dimers consisting of two beads, we validated past theoretical predictions

by comparing with our measurement. And with such verification we presented drag coefficients

for other short chains that are usually not considered for formulae on rod-like objects.

Conclusion

Analytical and computational solutions for rod-like objects have been built around geometri-

cal frameworks modeling these rods as an array of beads, an ellipsoid, or a cylinder. These

theories are often rough approximations of rod-like objects that can be of arbitrary shape. Dif-

ferent theories provide different correction factors γ based on how geometrical conditions are

treated in their models. The comparison between our experimental data and these theoretical

frameworks have revealed several interesting characteristics. Perpendicular drag coefficient ξ?
of rod-like objects is best captured by bead model from Yamakawa [28], the ellipsoid model,

and Burgers [18] of cylinder model. Parallel drag coefficient ξk is best described by both

Yamakawa and Doi’s bead models, the ellipsoid model, all cylinder models for N> 5 except

Broersma [24]. And for both perpendicular and parallel coefficients, HYDRO++ program [31,

32], with its comprehensive and more advanced bead modeling scheme, is shown to describe

the hydrodynamic translational drag coefficients with the best agreement over the entire rod

aspect ratio measured.

We have presented translational drag coefficients in both the parallel and perpendicular

components defined by the orientation of the rod axial axis to the direction of the flow. Hope-

fully we have helped to provide a more precise understanding of the components of the drag

and related diffusion coefficients of rod-like objects that may assist in constructing a more

accurate model for both theoretical and application works in Stokes flow.
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S2 Video. Video of perpendicular translation of bead-chains. Shown in this video is a mag-

netic bead-chain of length N = 4 translating in the magnetic field by a pair of anti-parallel
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S3 Video. Video of parallel translation of bead-chains. Parallel translation of two bead-

chains of length N = 10 in the magnetic field due to a cone-shaped magnet.
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