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Abstract

The development of information technology has produced massive amounts of data, which

has brought severe challenges to information storage. Traditional electronic storage media

cannot keep up with the ever-increasing demand for data storage, but in its place DNA has

emerged as a feasible storage medium with high density, large storage capacity and strong

durability. In DNA data storage, many different approaches can be used to encode data into

codewords. DNA coding is a key step in DNA storage and can directly affect storage perfor-

mance and data integrity. However, since errors are prone to occur in DNA synthesis and

sequencing, and non-specific hybridization is prone to occur in the solution, how to effec-

tively encode DNA has become an urgent problem to be solved. In this article, we propose a

DNA storage coding method based on the equilibrium optimization random search (EORS)

algorithm, which meets the Hamming distance, GC content and no-runlength constraints

and can reduce the error rate in storage. Simulation experiments have shown that the size

of the DNA storage code set constructed by the EORS algorithm that meets the combination

constraints has increased by an average of 11% compared with previous work. The

increase in the code set means that shorter DNA chains can be used to store more data.

I. Introduction

IDC reports that the total amount of global information data will grow to 175 ZB in 2025.

Mass data brings convenience to people but is also accompanied by challenges. How to reason-

ably use and store massive amounts of data has become a difficult problem. Emerging technol-

ogies such as artificial intelligence and big data have solved the problem of using large data

sets, but storage remains a challenge as it requires a high-density, high-stability storage

medium. Deoxyribonucleotide (DNA) is recognized as a potential storage medium because it

has a high density, high storage capacity, strong durability, long life and low energy consump-

tion. The theoretical storage density of DNA, composed of base ATGC, is twice that of tradi-

tional binary storage. DNA data storage technology, an organic combination of biotechnology

and information technology, is a new type of storage technology of great significance for pro-

moting low-energy storage and big data storage.

One of the earliest applications of DNA storage was in 1988, when Joe Davis [1] and

researchers at Harvard University stored a Germanic picture representing female life and the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0255376 July 29, 2021 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xiaoru L, Ling G (2021) Combinatorial

constraint coding based on the EORS algorithm in

DNA storage. PLoS ONE 16(7): e0255376. https://

doi.org/10.1371/journal.pone.0255376

Editor: Tao Song, Polytechnical Universidad de

Madrid, SPAIN

Received: March 10, 2021

Accepted: July 15, 2021

Published: July 29, 2021

Copyright: © 2021 Xiaoru, Ling. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available from the figshare database (Digital Object

Identifier: 10.6084/m9.figshare.14515962, https://

figshare.com/articles/dataset/data_zip/14515962).

Funding: Baidu Co., Ltd. provided support in the

form of salary to GL. The specific roles of these

authors are articulated in the ‘author contributions’

section. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. No additional

external funding was received for this study.

Competing interests: GL is a paid employee of

Baidu Co., Ltd. This does not alter our adherence to

https://orcid.org/0000-0002-4222-1624
https://doi.org/10.1371/journal.pone.0255376
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255376&domain=pdf&date_stamp=2021-07-29
https://doi.org/10.1371/journal.pone.0255376
https://doi.org/10.1371/journal.pone.0255376
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.14515962
https://figshare.com/articles/dataset/data_zip/14515962
https://figshare.com/articles/dataset/data_zip/14515962


Earth in the DNA sequence of Escherichia coli and showed that it could be restored by decod-

ing. In recent years, DNA storage technology has gradually become a research hotspot around

the world. At the beginning of this century, Bancroft et al. [2] proposed a simple method of

codon triplet encoding, demonstrating the great potential of DNA as a storage medium.

Erlich’s team used a DNA fountain coding method to store a complete 2.14 × 106-byte com-

puter operating system, movies and other files and used Illumina sequencing to retrieve infor-

mation [3]. Chen [4] and others introduced a method of using silica balls to protect DNA

storage information. The DNA load of the DNA storage using silica balls increased to 3.4 wt%.

Compared with the previous DNA storage method, the silica material has superior perfor-

mance in DNA storage density and stability. Carbon nanotubes (CNTs) are a new type of com-

posite material, used by Zhang et al. [5] to improve DNA storage performance. They

condensed DNA strands on the surface of one-dimensional CNTs and developed a new type

of tubular nucleic acid (TNA). Atomic force microscopy (AFM) imaging shows that TNAs

present a unique pattern with characteristic heights and distances that can be used for two-

dimensional encoding of CNTs. In the quantitative analysis of the DNA storage process, Wang

et al. [6] used the most advanced droplet digital polymerase chain reaction (ddPCR) technol-

ogy to monitor the long-term storage of DNA. Their experiments proved that ddPCR is an

effective method for detecting DNA storage. In addition, Grass et al. [7] reported a strategy of

using personal genetic information to securely store valuable information in synthetic DNA

based on security considerations as well as using personal genetic information to personalize

key protection. In 2020, Meiser [8] released a DNA storage experiment program, providing

steps and precise instructions for converting digital information into DNA sequences and

then regaining the information through DNA sequencing. Chen et al. [9] proposed a DNA

hard disk drive (DNA-HD) as a rewritable molecular storage system with DNA as the

medium, and the data in the system can only be read after the correct key is provided, which

can ensure the security of data storage.

The basic process of DNA data storage includes encoding information into DNA

sequences, synthesizing the required DNA sequences, storing these DNA sequences to form a

database and potentially storing the database for a long time, reading the DNA sequence when

it needs to be read, and then decoding the sequence into digital information according to the

coding rules. One of the two most important processes in DNA storage is DNA coding. The

purpose of DNA coding is to design efficient and stable DNA codewords. The code that meets

all the requirements of a particular application can not only increase the storage density and

ensure the integrity of the data but also reduce the error rate in the DNA storage process. Huff-

man coding is a mainstream coding method, often used in the field of information theory. In

2013, Goldman et al. [10] used Huffman coding in the DNA coding scheme, which effectively

increased the coding potential to 1.58 bits/nt. After that, Bornholt et al. [11] improved Gold-

man’s coding scheme with the exclusive OR coding principle, using XOR operation to gener-

ate redundancy so that the third sequence can be restored for any two sequences. Song et al.

[12] proposed a coding method that converts a 0–1 sequence into a DNA sequence and

described a simple and effective coding technology implementation at a rate of 1.9 bits/nt,

which achieved a lower coding rate. Immink [13] converted the standard binary maximum

run length limited sequence to the maximum run length limited q-ary sequence, avoided long

homopolymers and constructed a bit rate close to the theoretical maximum. Yazdi [14] and

others used the WMU code to design a DNA storage code, and meet the WMU DNA

sequence, but also need a large Hamming distance between each other, a balanced GC compo-

sition, and avoid primer-dimer by-products. Organick et al. [15] proposed an end-to-end

DNA data storage system that demonstrated the ability of large-scale random access and the

ability to correct errors caused by insertions and deletions. Song et al. [16] proposed a new
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three-base block coding scheme (SED3B) for reliable and orthogonal information coding of

DNA in living cells. SED3B utilizes the inherent redundancy of DNA molecules and performs

effective error correction by adding error detection bases in small data blocks. And through an

error-prone PCR experiment on E. coli cells, it was confirmed that a 19% error rate can be cor-

rected. Wang et al. [17] proposed a new type of content balance run length limitation (C-RLL),

which has an efficient coding construction method and can simultaneously generate short

DNA sequences that meet the maximum homopolymer run limitation and the balance GC

content limitation. Lee et al. [18] introduced a new synthesis strategy for DNA data storage,

which uses a template-independent terminal deoxynucleotidyl transferase (TdT) for synthesis

under motion control conditions. This strategy synthesizes a DNA strand containing 144 bits

and demonstrates the flow-type nanopore sequencing search, including addressing, which

provides a powerful solution and theoretical basis for the development of DNA digital infor-

mation storage technology. Fei et al. [19] designed a turbo-like decoder for a binary LDPC

code DNA storage channel. Simulation results show that the bit error rates of binary LDPC

codes are similar, but the speed is four times that of quaternary codes. OligoArchive, a DNA

version of a relational database similar to the SQL relational database, was proposed by Appus-

wamy et al. [20]. OligoArchive is a DNA-based storage system with a relational database

archiving layer architecture. The authors proved that OligoArchive can be implemented in

experiments by building archive and recovery tools, and even SQL query statements can be

used on OligoArchive. Yehezkeally et al. [21] considered the noise completely introduced by

uniformly repeated sequences and the relationship between the Manhattan metric and equal-

weight integer numbers. By using hyperplanes to define the intersection points across multiple

walls, the existence of full-rate reconstruction codes was proved, and a method for construct-

ing reconstruction codes was given. A storage model in which a data set is represented by M

unordered sequences was proposed by Lenz et al. [22]. The errors in this model are the loss of

the entire sequence and the point errors within the sequence, such as insertion, deletion and

replacement. In this storage model, the Gilbert-Varshamov lower bound and the spherical

packing upper bound of the error correction code up to the base are derived. In addition, Cao

et al. [23] proposed a BMVO algorithm based on MFE constraints to construct a DNA storage

code set and used the improved BMVO algorithm to construct a high-quality DNA storage

code set. In the era of data proliferation, because the rate of data generation far exceeds the

rate of increase of the storage density of hard disks, tapes and other media, researchers have

begun to study new architectures and media types to store “unpopular” data that are not fre-

quently accessed at a very low cost.

In this paper, an equilibrium optimization random search (EORS) algorithm is proposed to

construct DNA storage codes that meet constraints in DNA storage. The code satisfies the

Hamming distance constraint, GC content constraint and no-runlength constraint, has certain

error correction capabilities, has high robustness characteristics, reduces coding complexity,

shortens coding time and improves DNA storage system performance.

II. Coding constraints

A. Hamming distance constraint

Hamming distance is often used in coding theory to measure the similarity of two codewords.

The smaller the Hamming distance [24,25] is in DNA coding, the greater the number of iden-

tical bases between two DNA code words, and the greater the possibility of non-specific

hybridization. For different DNA sequences a, b, H(a, b) represents the number of different

bases at the i-th position of the sequence a, b. The expression of the Hamming distance con-

straint is as follows, H(a,b)� d, and the calculation formula of the Hamming distance is as
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follows:

Hða; bÞ ¼
Xn

i¼1

hðai; biÞ; hðai; biÞ ¼
0; ai ¼ bi
1; ai 6¼ bi

ð1Þ

(

B. GC content constraints

GC content refers to the ratio of bases G and C to the total number of bases in a DNA

sequence. GC content [26] is a key indicator in DNA synthesis and sequencing, as GC content

is closely related to the stability of a DNA sequence. It also has a very close relationship with

melting temperature [12]. In order to follow the above rules, the designed DNA code should

not have too much deviation in GC content. In this article, the GC content of a DNA sequence

of length s is denoted as GC(s), and |G+C| represents the total number of G and C. In this

study, |G+C| is assigned the value bs/2c.

GCðxÞ ¼
jGj þ jCj
jxj

ð2Þ

C. No-runlength constraint

The no-runlength constraint [27] requires that the DNA codeword should not include repetitive

bases. Running the same nucleotide for a long time can cause DNA coding errors. For example,

in TCCCCAC, C is repeated, so in synthesis and sequencing, it is easy to read a long C into a

short C, which causes the error rate of DNA storage information to increase and reduces the

read and write coverage rate. For codeword d (D1,D2,D3. . .Dn), the length is n for any i:

Di 6¼ Diþ1 ; i 2 ½1; n � 1� ð3Þ

III. Equilibrium optimization random search

A. Equilibrium optimizer

The equilibrium optimizer (EO) algorithm is inspired by a control volume in a hybrid

dynamic mass balance, where the mass balance equation is used to describe the concentration

of unreactive substances in a control volume weight dynamic balance. The mass balance equa-

tion provides a fundamental physical explanation for controlling the conservation of mass

entering, leaving and produced within a volume. For more details, see the original paper [28].

The mathematical model of the EO algorithm is composed of the following three parts:

Step 1: Initialization. The initial concentration is constructed according to the number

and dimension of uniformly and randomly initialized particles in the search space, and the for-

mula is as follows:

v!i ¼ cmin þ ðcmax � cminÞ�r1 i ¼ 0; 1; 2; . . . ; n ð4Þ

Here v!i represents the concentration vector of particle i, cmax,cmin respectively represent

the upper and lower bounds of the dimension, and r1 represents a random vector between

[0,1] and contains n groups of particles.

Step 2: Equilibrium pool and candidates. For all heuristic algorithms, there is an optimi-

zation objective based on their properties. For example, the ant colony algorithm [29] searches

for ants’ food, the Wolf colony algorithm [30] searches for the prey of wolves and the EO algo-

rithm searches for the equilibrium state of a system. However, during the optimization pro-

cess, the EO algorithm does not know the concentration level to reach the equilibrium state, so

it manually allocates the four best particles found in the equilibrium state, plus another particle

containing the average value of the four best particles. These five particles help EO algorithms
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perform better in exploration and exploitation, and they all exist in an equilibrium pool:

p!eq;pool ¼ ½ p
!

eqð1Þ; p
!

eqð2Þ; p
!

eqð3Þ; p
!

eqð4Þ; p
!

eqðavgÞ� ð5Þ

Step 3: Update method of concentration. Using F helps the EO algorithm find a reason-

able balance between exploitation ability and exploration ability. In a control volume, where

the turnover can vary over time, suppose λ is a random vector between 0 and 1.

F!¼ e� l
!
ðt� t0Þ ð6Þ

where t is the increment with iteration, for which the formula is shown as follows:

t ¼ 1 �
iter
tmax

� � a2�
iter
tmaxð Þð Þ

ð7Þ

In (7), Iter and tmax, respectively, represent the current number of iterations and the maxi-

mum number of iterations, and α2 is the fixed value to control the development capacity. In

addition, parameter α1 is used to enhance the diversity and exploration capability of the popu-

lation, as follows:

t!0 ¼
1

l
! ln � a1signð r

!� 0:5Þ
h
1 � e� l

!
tÞ þ t ð8Þ

�

The production rate (R) is another parameter used to improve the exploitation operator,

which has the following formula:

R!¼ R!0�e
� l
!
�ðt� t0Þ ð9Þ

R!0 ¼ RCP
��!
�ð ceq
�! � l

!
�C
!
Þ ð10Þ

RCP
��!

¼
0:5r1 r2 > RP

0 otherwise

(

ð11Þ

where RCP
��!

is a random vector between [0, 1], r1 and r2 are both random numbers between 0

and 1 and RCP
��!

is the control parameter of the generation rate, which ultimately determines

whether the generation rate will be applied to the update process of the EO algorithm.

Finally, the updating equation of EO is as follows:

C
!
¼ ceq
�!þ ðC

!
� ceq
�!Þ� F!þ

R!

l
!
�V
�ð1 � F!Þ ð12Þ

Here V is assigned to 1, and RP is assigned to 0.5. For a more detailed introduction to the

EO algorithm, please refer to Faramarzi’s paper [28].

B. EORS algorithm

Although the EO algorithm uses parameters such as α1 to enhance the exploration ability of

the population, the population richness of the EO algorithm still decreases in the later itera-

tion, which greatly increases the probability of falling into a local optimum, especially when

solving practical problems. For this reason, another mainstream search algorithm was added

to the DNA code. The random search algorithm is a simple search algorithm suitable for large-
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scale data, although it is slow to calculate accurate results. Random search (RS) is a series of

numerical optimization methods that do not need the gradient of the optimization problem,

so RS can be used for discontinuous or differentiable functions.

RS works by iteratively moving to better positions in the search space sampled from the

hypersphere around the current position. In this paper, the random search algorithm is used

to process the output SEO of the EO algorithm. The RS algorithm can expand the search scope

of the EO algorithm and obtain a larger coding set. By initializing set S, all codes in set S and

SEO are judged one by one as to whether they satisfy combinatorial constraints. The pseudo-

code is shown in Algorithm 1.
Algorithm 1. The pseudocode of updating the encoding set S.
Input SEO
While when the termination condition is not met

Initializes the code set S
for s in S

if coding s in the coding set S and SEO satisfy the constraint
conditions

Coding s joins coding set SEO;
end if coding in coding set SEO and s do not meet the constraint

conditions
If don’t satisfy the code number is equal to 1
Delete the codes in SEO that do not meet the constraints and

add the code s to SEO
else

Code s does not join the code set SEO
end if
end if

end for
end while
Output the SBS

In the process of DNA constraint coding using EORS algorithm, the sum of Hamming dis-

tance is used as the fitness function.

fitness ¼
Xn

i¼1

Hðs; SiÞ ð13Þ

where S is the code set that has satisfied the constraint condition, s is the code word to be

calculated and n is the set size of S. Correspondingly, the EORS algorithm constraint coding

flowchart is given in Fig 1.

C. Experimental environment

An Intel Core i5 computer with 4G memory and MATLAB 2016a software were used in the exper-

iment. The results are shown in Tables 1 and 2. In order to facilitate the calculation, the numbers 0

to 3 were used to represent the four bases (T!0, C!1,G!2, A!3) in the DNA storage and cod-

ing process, and the parameters of the calculation process were consistent with the EO algorithm.

IV. Experimental results and analysis

In this paper, the DNA storage coding scheme based on constraint coding is simulated. EORS

constructs the process of DNA storage coding set as follows.

Step 1: Generate the number of particles and initial concentration in the search space, and ini-

tialize the parameters required by the algorithm. Generate candidate sequences, which are

derived from possible DNA codewords based on combination constraints.
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Step 2: Initialize the DNA storage coding set. The Equilibrium pool and candidate pool strate-

gies in the EO algorithm are used to sort the initial particle population, and the optimal fit-

ness particle is selected. The optimal fitness particle is selected as the initial particle set.

Step 3: Balance exploitation and exploration capabilities through F!, and update the particles

through (6)–(12).

Step 4: Use the updated results as the RS search input to make the next judgment on the DNA

coding represented by the particles.

Fig 1. EORS algorithm constraint coding flowchart.

https://doi.org/10.1371/journal.pone.0255376.g001

Table 1. The coding lower bound of AGC,NL(n,d,w).

n\d 3 4 5 6 7 8 9

4 Altruistic 11

EORS 12

5 Altruistic 17 7

EORS 20 8

6 Altruistic 44 16 6

EORS 55 21 8

7 Altruistic 110 36 11 4

EORS 125 46 16 6

8 Altruistic 289 86 29 9 4 4

EORS 364 110 38 15 5 4

9 Altruistic 662 199 59 15 8 4 4

EORS 737 226 71 26 11 5 4

10 Altruistic 1810 525 141 43 7 5 4

EORS 1856 546 153 53 22 9 5

https://doi.org/10.1371/journal.pone.0255376.t001
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Step 5: Determine whether the constraint is satisfied. If the constraint is satisfied, add the new

DNA coding word to the DNA storage coding set.

Step 6: Complete the number of iterations and output the DNA storage coding set.

A. Boundary of DNA storage coding

The DNA coding set with defined length n and Hamming distance d that satisfies the Ham-

ming distance constraint, GC content constraint and no-runlength constraint is AGC,NL(n,d,

w). In Table 1, the result in the table is the lower bound of 4� n� 10, 3� d� n satisfying the

constraint. In previous work, the value of n is generally less than 13, and d� n. In this work,

only the case of 4� n� 10 was compared, because the time taken to construct the DNA stor-

age coding set increased exponentially with the increase of n, and a sufficiently large DNA cod-

ing set was obtained when n = 10. The length of the DNA coding sequence is shown in

Table 1, and the results obtained based on the EORS algorithm are listed and compared with

the results of Limbachiya [27]. Limbachiya’s work was published in IEEE Communications

Letters, the top journal in the field of communication coding. The underlined part indicates

where EORS had better results under the same constraints. Altruistic represents Limbachiya’s

coding scheme, and EORS is our algorithm. The results in the table show that the lower bound

of the encoding set constructed by EORS has achieved ideal results in most cases. For example,

when n = 8 and d = 3, the lower bound of the coding set constructed by the EORS algorithm is

26% higher than the previous result. This is because the EORS algorithm uses Generation

probability and Equilibrium pool mechanisms to better balance the process of exploration and

exploitation, and it adds a random search algorithm to further expand the candidate solution

set at the later stage of the iteration. The results of the EO algorithm provide a good initializa-

tion for the random search algorithm, and the random search algorithm further expands the

results of the EO algorithm. To be more convincing, a set of DNA stored code words satisfying

the combinatorial constraint at n = 9 and d = 6 are presented in Table 2.

The lower bound of coding obtained by the EORS algorithm is better than that of the altru-

istic algorithm used by Limbachiya [27] in most cases. The altruistic algorithm is an intelligent

algorithm that iteratively removes potential code words based on a greedy algorithm, which

removes the “worst” candidate code words in each iteration. As the algorithm iterates, the

altruistic algorithm greedily deletes the maximum number of code words in the radius range

Table 2. DNA storage coding word when n = 9 and d = 6.

A T C T G C T C A A T C G A G A T G

G T A G T C G A T T A T C G T A G C

T A G C T A G C T T G T C A G C T A

G A C T A T C G A A G T A C G T A C

A C A C A G T C T C A T A T G A C G

G A T G T A C T C G A T C A C T A G

T A G A C T C T G T C G T C A T G A

A G A G C A G T A A T G A T G C G A

C T A T G A C G T A G A T A C A G C

T C A C T C A T G T G C A T C T G T

T C T A G A G A G G T A T C T A C G

C A C G C A T A T T C A G A T C A C

C T G T A T G T C C G C A G T A T A

https://doi.org/10.1371/journal.pone.0255376.t002
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d–1 until the code set has the minimum distance d. However, the altruistic algorithm based on

the greedy algorithm does not consider the overall optimal solution, so it constructs only the

local optimal solution in a certain sense. Therefore, the heuristic algorithm EORS is used in

this work. EORS, based on the random search algorithm, is an improvement over the EO algo-

rithm and has the advantages of fast convergence speed and high population richness.

B. Coding rate

Using the EORS algorithm to build a larger DNA coding set under the same constraints pro-

vides a solid foundation for DNA storage in the next step and reduces the cost by more effi-

ciently storing information. For a given length, finding a larger set of coding can not only

reduce the cost but also increase the coding rate, where coding rate refers to the encoding rate.

A coding rate of 1/4 means 1 code goes in and 4 codes come out. The greater the coding rate,

the higher the efficiency. When the channel quality is relatively poor, more redundant infor-

mation needs to be added to ensure that the receiving end can demodulate the signal correctly.

More redundant information means a low coding rate. The minimum coding rate is a code

that requires 3 redundant signals. The remaining code is 1/4 code. When the channel quality is

good, a few redundant parity bits are needed to demodulate, and the coding rate can be

increased. The system can select an appropriate coding rate according to the change of the

channel so that users with good channel quality can get a higher rate and increase the average

throughput rate. The coding rate is generally calculated by

R ¼
log

4
M
n

ð14Þ

whereM is the size of the coding set and n is the length of the coding word.

As shown in Fig 2, the figure lists the coding rate performance of the DNA storage code set

obtained by the two encoding methods under n = 6, 7, 8, the x-axis represents the Hamming

distance d and the y-axis represents the encoding rate. When the length of the codeword n is

constant, the encoding rate constructed by the EORS algorithm is higher than that of the altru-

istic algorithm.

In particular, when n = 8 and d = 4, the coding rate of the EORS algorithm is R = log4 110/

8�0.42, which is consistent with Limbachiya’s result when n = 9 and d = 3. The coding rate is

the same, and the same performance can be achieved with a shorter code length. Therefore,

Fig 2. Coding rate of coding set constructed by EORS algorithm.

https://doi.org/10.1371/journal.pone.0255376.g002
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the same performance can be achieved at a smaller code length. Moreover, the DNA storage

coding constructed by EORS has better DNA storage capacity, coding rate and error correc-

tion ability. This result again demonstrates the superiority of the constrained coding scheme

based on the EORS algorithm and its rationality in practical application. In addition, in other

applications of DNA, such as long-time tracking [31] and neural network optimization [32],

[33], DNA coding optimization [34,35], DNA molecular lock [36] and DNA image encryption

[37], some excellent solutions have also emerged, providing new ideas for coding schemes in

future work.

V. Conclusion

In this paper, a DNA storage scheme based on the EORS algorithm is proposed to encode

DNA storage through constraints. In this study, the combinatorial constraints of DNA storage

coding problem are abstracted into a multi-objective optimization problem, and the approxi-

mate optimal solution of the DNA storage coding problem is determined by a heuristic algo-

rithm. It not only takes full advantage of the heuristic algorithm’s ability to solve nonlinear

multi-objective optimization problems but also applies the characteristic of low complexity of

constraint coding to the field of DNA information storage, which improves the shortcomings

of DNA being error-prone and exhibiting nonspecific hybridization in the synthesis and

sequencing process. An effective DNA coding set is constructed by adding combinatorial con-

straints, and the results are obviously improved in comparison with previous work. Simulation

experiments show that the coding scheme in this paper achieves ideal results in most cases,

and the lower bound of the coding set is significantly improved, which further demonstrates

the superiority of the EORS algorithm. The size of the DNA storage coding set is expanded by

11%–26%. Larger storage coding sets can store more effective information within the same

DNA length, which not only reduces the cost but also improves the storage efficiency. Finally,

this work compares the coding rate, which is an evaluation index of coding performance. As

shown in Fig 2, with the same codeword length, the coding rate constructed by the EORS algo-

rithm is higher than that constructed by the altruistic algorithm. The coding scheme based on

EORS can achieve the same coding rate in a shorter sequence length. The same performance

can be achieved in smaller coding lengths, increasing the efficiency and competitiveness of

DNA storage systems.
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