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Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible

vision loss with yet limited therapies. Stem cell-based therapy is a promising novel

therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have

emerged as a leading cell source due to their neurotrophic and immunomodulatory

capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical

studies have shown that MSCs have the potential to delay retinal degeneration, and

recent clinical trials have demonstrated promising safety profiles for the application of

MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been

unable tomeet primary efficacy end points, and severe side effects were reported in some

retinal “stem cell” clinics. In this review, we provide an update of the interaction between

MSCs and the RDD microenvironment and discuss how to balance the therapeutic

potential and safety concerns of MSCs’ ocular application.

Keywords: mesenchymal stem cells, retinal degenerative diseases, interaction, trophic, inflammation, tunneling

nanotubes, immunomodulation, licensing

INTRODUCTION

Retinal degenerative diseases (RDDs), including age-relatedmacular degeneration (AMD), retinitis
pigmentosa (RP), Stargardt disease (STGD), and Leber congenital amaurosis (LCA), are some of
the leading causes of irreversible vision loss worldwide (Veleri et al., 2015). In addition, diabetic
retinopathy (DR), glaucoma, and some other retinopathies can damage the retinal neurons and are
thus also considered RDDs (Gorbatyuk and Gorbatyuk, 2013; Mead et al., 2015). These diseases
primarily damage the ganglion cells (RGCs), photoreceptors (rods and cones), or retinal pigment
epithelium (RPE) cells (Mead et al., 2015) but can also induce some secondary cellular reactions
such as neuro-inflammation, microglial activation, and retinal gliosis (activation of the Müller glial
cells) (Ghosh et al., 2018; Rashid et al., 2018).

While there are currently no effective treatments for RDDs as the human retina has no
regenerative ability, new approaches—such as gene therapy, neuroprotection, anti-VEGF (vascular
endothelium growth factors), and stem cell therapy—have the potential to delay vision loss or even
to restore vision (Dalkara et al., 2016). Gene therapy can cure certain types of RDDs caused by single
recessive gene defects, if applied in the early stages of the disease process while the photoreceptors
are still alive (Scholl et al., 2016). Neuroprotective reagents are believed to be the best method to
treat progressive photoreceptor cell degradation; however, they are unable to regenerate previously
lost retinal neurons (Oswald and Baranov, 2018). Anti-VEGF therapy is the standard of care for
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neovascular AMD; it is also used to treat DR and many other
retinal neovascular conditions. However, it has no effect on dry
AMD and non-proliferative DR (Ferrara and Adamis, 2016).

In contrast to these treatments, cell-based therapy presents
an opportunity for preserving or restoring vision in advanced
stages of retinal degeneration and can be utilized even when
photoreceptor cell degeneration has already occurred (Scholl
et al., 2016). There are numerous pre-clinical and clinical trials
regarding the application of several types of cells—including
neural stem cells, mesenchymal stromal/stem cells, embryonic
stem cells, and induced pluripotent stem cells—in RDDs (Li et al.,
2016b; Ding et al., 2017; Enzmann et al., 2017; Mclelland et al.,
2018; Jin et al., 2019; Shen, 2020). Stem cells have the capacity
for self-renewal and are able to differentiate into multiple cell
types (Ludwig et al., 2019). Degenerated retinal cells can benefit
from stem cell transplantation, which can act as vehicles for
drug delivery, immune modulators, or sources for direct tissue
regeneration (Aharony et al., 2017).

Mesenchymal stem or stromal cells (MSCs) are multipotent
cells isolated from a variety of tissues, such as adult bone marrow
(bone marrow-derived MSC, BM-MSC), adipose tissue (adipose-
mesenchymal derived stem cells, ASC), and dental pulp (dental
pulp stem cells, DPSC) (Mead et al., 2013, 2017). They can also
be isolated from neonatal tissues and fluids, such as umbilical
cord (umbilical cord-derived MSCs, UC-MSC), Wharton’s jelly
MSCs (WJ-MSCs), amniotic membrane, amniotic fluid, and
placenta (Ding et al., 2011). Although MSCs are derived from
different tissues, they share some common features. In 2006,
the International Society for Cellular Therapy established the
minimal criteria for designating a cell as MSC (Dominici et al.,
2006). MSCs are able to adhere to plastic in standard culture
conditions and have the potential to differentiate into adipocytes,
chondroblasts, and osteoblasts. In general, they do not express
hematopoietic and endothelial cell markers, such as CD34 CD45,
CD11b, CD11c, CD14, CD19, CD79α, CD86, and HLA class II
molecules, but they do phenotypically express a distinct set of
cell surface markers for CD105, CD90, CD44, CD9, and CD73
(Dominici et al., 2006; Marino et al., 2019; Naji et al., 2019). The
low immunogenicity (low levels of HLA class I and absence of
HLA class II expression) makes MSCs a good candidate for cell
transplantation (Ryan et al., 2005).

In addition to their wide distribution and ease to harvest,
MSCs are also known to possess minimal susceptibility to
malignant transformation and are capable of avoiding immune
rejection (Ding et al., 2017). MSCs have therapeutic efficacy to
promote regeneration of multiple tissues and cells, including
central nervous system (CNS) neurons (Nakano et al., 2016).
Thus, allogeneic or autologous cell transplantation of MSCs
shows promises for potential therapeutic applications in RDDs.
Indeed, several pre-clinical trials of MSCs in the treatment
of rodent RDDs (such as streptozotocin or STZ-induced
diabetic rodent models, rodent retinal degeneration models,
and rodent glaucoma and retinal ischemia models) generated
encouraging results (Lund et al., 2007; Guan et al., 2013;
Tzameret et al., 2014; Ezquer et al., 2016; Mead et al., 2016;
Roth et al., 2016). More than 40% of clinical trials of stem
cell therapy for retinal diseases are also using bone marrow

or umbilical cord-derived stem cells (Park et al., 2017; Shen,
2020).

However, there are several reports that RDD patients lost their
vision after receiving intraocular injection of autologous bone
marrow/adipose tissue–derived stem cells (Leung et al., 2016;
Kuriyan et al., 2017; Rong et al., 2018; Khine et al., 2020). These
devastating outcomes are primarily due to rhegmatogenous
retinal detachments with severe proliferative vitreoretinopathy
(PVR). The subretinal delivery of human umbilical tissue-derived
cells (palucorcel) into eyes with geographic atrophy of AMD
patients was also associated with a high rate of retinal perforation
and detachment (Ho et al., 2017). From a scientific perspective,
a probable cause is the trans-differentiation of injected MSCs
into myofibroblast-like cells, which can induce fibrosis or PVR.
Another possible mechanism is the toxicity to the retina or
optic nerve caused by the injected material, which may have
included enzymes used in the preparation process (such as
trypsin). Periocular injection of autologous bone marrow stem
cells to treat RP has also been reported to induce central retinal
artery occlusion and vision loss (Boudreault et al., 2016). These
severe complications call for a better understanding of the
interaction between the donor MSCs and the degenerative host
retinal environment. It is also imperative to have stringent quality
control of MSC preparation and careful surgical procedures
for ocular or intraocular delivery of MSCs (Apatoff et al.,
2018; Singh et al., 2020). The aim of this brief review is to
provide an update on the interaction between MSCs and the
RDD microenvironment and to discuss methods by which to
balance the therapeutic potential and safety concerns of MSCs
ocular application.

THE INTERACTION BETWEEN MSCs AND
THE RETINAL ENVIRONMENT

The communication between MSCs and host cells is mainly
mediated by paracrine activity, tunneling nanotubes (TNTs), and
extracellular vesicles (such as exosomes and microvesicles) that
contain reparative molecules (Spees et al., 2016; Holan et al.,
2019). The secretory activity of MSCs is strongly influenced by
the retinal environment (Holan et al., 2019). Collectively, these
mechanisms confer MSCs both trophic and immunomodulatory
properties, which are essential for their application for RDDs
(Figure 1).

MSCs Promote Retinal Cell Survival or RPE
Phagocytic Function
MSCs can protect retinal cells by secreting growth factors, which
can be classified into two categories (Murray et al., 2014). In the
first category are factors promoting cell proliferation, including
transforming growth factor-alpha (TGF-α), TGF-β, hepatocyte
growth factor (HGF), epidermal growth factor (EGF), and
fibroblast growth factor-4 (FGF-4); the second category consists
of factors enhancing angiogenesis, including VEGF, interleukin-
8 (IL-8), and insulin-like growth factor-1 (IGF-1) (Murphy et al.,
2013; Kocan et al., 2017). Under stress conditions, such as
hypoxia and growth factor deprivation, MSCs can increase the
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FIGURE 1 | The interactions between MSCs and the retinal environment. (A) MSCs can secrete neurotrophins, produce exosomes, or transfer mitochondria by TNTs,

all contributing to the trophic effects on RGCs, photoreceptors, and RPE cells in RDDs. (B) MSCs have immunomodulation properties to produce anti-inflammation or

pro-inflammation cytokines. Apoptotic MSCS can induce immunosuppressive effects through phagocytic cells. The secretory activity of MSCs is strongly influenced

by the retinal environment. Pre-licensing or selective suppression Rap1 may enhance the immunosuppressive effects of MSCs. TNTs, tunneling nanotubes; RGCs,

retinal ganglion cells; RPE, retinal pigment endothelium.

secretion of these factors (Anderson et al., 2016). The trophic
effects of MSCs on retinal ganglion cells (RGCs), photoreceptors,
RPE cells, and multiple cell types in diabetic retinopathy have
been observed in several pre-clinical studies (Figure 1A).

A-Retinal Ganglion Cells
Intravitreal injection of BM-MSCs promoted the survival of
RGCs for at least four weeks by secretion of neurotrophic factors
in an ischemia and reperfusion rat model (Li et al., 2009) and
increased the overall RGC axon survival and reduced the RGC
axon loss rate in a laser-induced ocular hypertensive glaucoma
rat model (Johnson et al., 2010). However, intravenously injected
MSCs did not migrate to the injured eyes and had no effects
on optic nerve damages (Johnson et al., 2010). Intravitreal
transplants of DPSCs promoted significant RGC survival and
axon regeneration in a surgically induced optic nerve crush injury
rat model, where the effects were mediated by neurotrophins
and abolished after TrK receptor blockade (Mead et al., 2013).

These results were also verified by a coculture study of the
porcine retinal cells and human MSCs, separated in a Transwell
system, which suggested that MSCs produce brain-derived
neurotrophic factor (BDNF) and ciliary neurotrophic factor
(CNTF) (Labrador-Velandia et al., 2019).

Interestingly, overexpression of neurotrophin in MSCs can
enhance these protective effects. Intravitreal transplanted MSCs
engineered to express BDNF and green fluorescent protein (GFP)
survived in rat eyes with chronic hypertension and protected

retinal and optic nerve function and structure (Harper et al.,

2011). Similarly, intravitreally injected MSCs engineered to
overexpress nerve growth factor (NGF) survived and promoted
RGC survival and regeneration in a NGF-dependent manner
(Levkovitch-Verbin et al., 2010).

There is evidence that exosomesmediate the effect ofMSCs on
damaged RGCs (Mathew et al., 2019). Exosomes are membrane-
enclosed extracellular vesicles that contain mRNA, microRNA,
and proteins including neurotrophins. MSC-derived exosomes
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can rapidly reach RGCs to supply them with neurotrophins
and suppress their cell death (Mead and Tomarev, 2017).
TNT-mediated mitochondria transfer from MSCs to RGCs is
another mechanism to explain the protective effects. TNTs are
communicating intercellular transport networks formed between
many cells (Rustom et al., 2004). The TNTs are tubular structures,
with diameters varying between 50 and 1,500µm, which can
span hundreds of microns between two cells. These structures
allow immediate intercellular communication. Moreover, the
fibers formed from the cytoskeleton allow the transfer of cytosolic
material. Mitochondria can be transferred from MSCs to injured
target cells to restore their function (Spees et al., 2006; Jiang
et al., 2016; Vignais et al., 2017). In an inflammation-related RGC
degeneration mouse model (NADH dehydrogenase ubiquinone
Fe-S protein 4, or Ndufs4 knockout mice), intravitreally injected
human iPSC-MSCs could transfer functional mitochondria
across the inner limiting membrane to RGCs and restore
the RGC function against mitochondrial dysfunction-induced
inflammation (Jiang et al., 2019). While the results from these
pre-clinical studies support the usage of MSCs in the treatment
of glaucoma, there are currently no reports regarding their usage
in clinical trials (Harrell et al., 2019).

B-Photoreceptors
Subretinal transplanted mouse GFP-labeled BM-MSCs into
RP model Rho−/− mice integrated into the retinal pigment
epithelium layer and protected the photoreceptor from death
(Arnhold et al., 2007). Similarly, subretinal transplantation
(trans-scleral and trans-choroidal approach) of mouse BM-MSCs
into the Royal College of Surgeons (RCS) rat delayed retinal
degeneration and preserved retinal function (Inoue et al., 2007).
It has been demonstrated in vitro that the conditioned medium
of the MSCs delays photoreceptor cell apoptosis, suggesting
that secreted factor(s) from MSCs promote photoreceptor cell
survival (Inoue et al., 2007). Subretinal or intravitreally injected
human BM-MSCs into RCS rat can delay photoreceptor death
for about 12–20 weeks (Tzameret et al., 2014). Subretinal
transplantation of rat MSCs or engineered erythropoietin (EPO)-
expression rat MSCs into a sodium iodate (SI)-induced rat model
of retinal degeneration protected RPE and retinal neurons; EPO
expression MSCs had an even greater effect (Guan et al., 2013).
Subretinal transplantation of human adipose derived stem cell
(hADSCs) (Li et al., 2016a) and human periodontal ligament-
derived stem cells (hPDLSCs) (Huang et al., 2017) also protected
the photoreceptors in RCS rats. It has been suggested that
hADSCs can suppress the expressions of Bax, Bak, and Caspase 3
and produce VEGF, HGF, and pigment epithelium-derived factor
(PEDF), all of which may contribute to their neuroprotective
effects (Li et al., 2016a).

Interestingly, other stem cells derived from bone marrow
(not MSCs) can also protect photoreceptors. Intravitreally
injected autologous bone marrow–derived lineage-negative
hematopoietic stem cells prevented cone loss in two murine
models of retinitis pigmentosa (rd1 and rd10) (Otani et al.,
2004). Bone marrow–derived endothelial progenitor cells (EPC)
with low aldehyde dehydrogenase (Aldh) activity, when injected

intravitreally into rd1 mice, protected the retinal vasculature and
photoreceptors (Fukuda et al., 2013).

C-RPE Cell Function
Subretinal injection of human umbilical tissue-derived cells
(hUTCs) in the RCS rat model of retinal degeneration can
preserve photoreceptors and visual function (Lund et al., 2007),
as hUTCs can rescue the phagocytic dysfunction in RCS RPE cells
in vitro by secreting several trophic factors—including BDNF,
HGF, and GDNF—as well as opsonizing bridge molecules MFG-
E8, Gas6, TSP-1, and TSP-2 (Cao et al., 2016). These trophic
factors—derived from the conditioned medium of hUTCs—are
also beneficial to the phagocytic function of human RPE cells
isolated from the post-mortem eyes of AMD-affected subjects
(Inana et al., 2018). In a phase 2b clinic trial, while hUTCs
(palucorcel) were delivered successfully to the targeted subretinal
space for most participants, improvements in GA (geographic
atrophy of AMD) area or visual acuity were not demonstrated;
thus, no apparent therapeutic effect was observed (Heier et al.,
2020).

D-Multiple Cell Types in Diabetic Retinopathy
Intravitreal injection of human ASCs or cytokine-primed
ASCs conditioned media (ASC-CM) into STZ-induced diabetic
athymic nude rats (Rajashekhar et al., 2014) and diabetic Ins2Akita

mice (Elshaer et al., 2018), improved ERG b-wave amplitudes
and vascular leakage, and reduced apoptotic cells around the
retinal vessels. ASC-CM (but not ASCs itself) can improve retinal
gliosis, DR-related gene expression profile, and mouse visual
acuity. ASC-CM had high levels of anti-inflammatory proteins,
including indoleamine 2, 3-dioxygenase 1 (IDO-1), IDO-2, and
TSG-6 (Elshaer et al., 2018). Intravitreally injected ASCs also
reduced oxidative damage and increased the intraocular levels of
several potent neurotrophic factors—including NGF, bFGF, and
GDNF—in a diabetic mouse model, thus preventing RGC loss
(Ezquer et al., 2016). Interestingly, intravitreally injected BM-
MSCs were found to integrate into the inner retina, differentiate
into retinal glial cells, and improve ERG amplitude, thereby
protecting vision in a STZ-induced mouse model (Çerman
et al., 2016). Excitingly, intravenously administrated autologous
BM-MSCs were found to be beneficial in non-proliferative DR
(NPDR) patients, showing significant improvements in macular
thickness and best-corrected visual acuity (BCVA) from baseline
(Gu et al., 2018).

MSCs Regulate Retinal Inflammation and
Immune Responses
When exposed to an inflammatory environment, MSCs can
modulate local and systemic, innate, and adaptive immune
responses through the release of various mediators, which
include cytokines, chemokines, and some metabolites, such as
IDO, IL-6, PGE2, and TGF-β1. While immunosuppression is
mainly mediated by IDO in human MSCs, it is mediated by
inducible nitric oxide synthase (iNOS) in mouse MSCs (Ren
et al., 2009). Interestingly, apoptotic MSCs also have some
immunosuppressive functions in vivo. MSCs can be actively
induced to undergo perforin-dependent apoptosis by recipient
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cytotoxic cells; apoptotic MSCs are engulfed by host phagocytic
cells that, by producing IDO, became the ultimate effectors of
immunosuppression (Galleu et al., 2017). Thus, host phagocytes
are crucial for generating an immunosuppressive environment
by clearing apoptotic MSCs (De Witte et al., 2018). MSCs can
suppress the proliferation of T cells, B cells, and natural killer
cells, inhibit the differentiation and maturation of monocyte-
derived dendritic cells, and promote the generation of regulatory
T cells (Melief et al., 2013). TNT-mediated mitochondria transfer
also plays a role in immunomodulation. Mitochondrial transfer
from MSCs to CD4+ T cells increases the expression of factors
involved in T-cell activation and differentiation, including FoxP3,
IL2Ra, CTLA4, and TGF-β1, leading to an increase in the
suppressive regulatory T cell population (Court et al., 2020).
Both pro- and anti-inflammatory effects can be observed in the
application of MSCs to the retina (Figure 1B).

A-MSCs Suppress Retinal Inflammation
Inflammation is a major mechanism in the pathogenesis of
RDDs, including DR, AMD, and RP (Akhtar-Schafer et al.,
2018; Arroba et al., 2018). The upregulated pro-inflammatory
mediators (such as cytokines) induce breakdown of the blood–
retinal barrier (BRB) and immune cell infiltration (such as
macrophages and microglia), which form an inflammatory
retinal microenvironment (Kauppinen et al., 2016; Mesquida
et al., 2019). MSCs can regulate this inflammatory retinal
environment through their immunomodulation properties (Shi
et al., 2018). For instance, intravitreal injection of pro-
inflammatory cytokines (IL-1β, TNF-α, and IFN-γ) into
mice induces retinal edema, vessel dilatation, and microglial
accumulation in the retina, resulting in a mouse model of retinal
inflammation (Mugisho et al., 2018). Intravitreal injection of BM-
MSCs into this mouse model reduced the retinal expression of
pro-inflammatory molecules such as IL-1α, IL-6, iNOS, TNF-α,
and VEGF and reduced macrophage infiltration (Hermankova
et al., 2019). MSC-derived exosomes can also suppress laser
injury-induced mouse retinal inflammation; MCP-1 is likely
the major cytokine mediating this effect (Yu et al., 2016).
TNT-mediated mitochondria transfer also plays a role in the
immunomodulatory effect in the Ndufs4 knockout mouse model
to reduce inflammation and RGC degeneration (Jiang et al.,
2019).

B-MSCs Promote Retinal Inflammation
The immunomodulatory capabilities of MSCs are not
constitutive but rather are licensed by inflammatory cytokines
(Boland et al., 2018); the effects of MSCs may vary depending on
the local inflammatory environment within the targeted tissues
(Han et al., 2014; Shi et al., 2018). Indeed, intraocular injection
of MSCs generally induces retinal inflammation in wild-type
animals. For instance, Wharton’s jelly MSCs (hWJMSCs),
injected intravitreally into a rat model of optic nerve axotomy-
induced RGC degeneration, secrete anti-inflammatory molecules
and trophic factors, but in naive retinas, they instead induce a
massive migration of microglial/macrophages from the choroid
to the inner retina, disrupting the retinal architecture—a typical
retinal inflammatory response (Millán-Rivero et al., 2018).

Similarly, intravitreally injected human BM-MSCs induce
tractional epiretinal membrane formation in Nod-SCID mice
(Park et al., 2017) and induce gliosis-mediated retinal folding,
upregulation of intermediate filaments, and recruitment of
macrophages in C57BL/6 mice (Tassoni et al., 2015). Retinal
glial activation and elevation of IL-1β, C3, arginase 1, and heat
shock protein 90 were also detected in SD rats with intravitreally
injected BM-MSCs (Huang et al., 2019).

C-NF-κB/Rap1 Inhibition and Pre-licensing
The method by which to simultaneously enhance the anti-
inflammatory properties and inhibit the pro-inflammatory
capabilities of MSCs is a pertinent issue to be addressed for
the therapeutic use of MSCs in the retina. There are two
possible strategies (Figure 1B). The first one is based on the
NF-κB signaling pathway, a pivotal mediator of inflammatory
responses (Liu et al., 2017). NF-κB mediates cytokine/growth
factor secretion by MSCs (Mutt et al., 2012); thus, inhibition of
NF-κB pathways may suppress the pro-inflammatory capability
of MSCs. However, as this pathway is crucial in maintaining
normal host defense and generating innate immune responses,
complete blockade of NF-κB activity is not feasible (Poon et al.,
2015; Liu et al., 2018). Rap1, a member of the telomeric shelterin
complex, is a novel modulator involved in the NF-κB pathway
(Teo et al., 2010). Selective inhibition of Rap1 in BM-MSCs
can decrease NF-κB sensitivity to pro-inflammatory cytokines
and enhance MSC-based therapeutic efficacy for myocardial
infarction (Zhang et al., 2015). It would be interesting to test if
Rap1 suppression can improve the effects of MSCs application in
the retina.

Another strategy is based on the fact that the inflammatory
environment can actually enhance the immunosuppression
function of MSCs (Naji et al., 2019). MSCs can be polarized
to pro- or anti-inflammatory phenotypes by pre-conditioning
with cytokines, including IFN-γ, TNF-α, or IL-17 (Hemeda
et al., 2010), and by signaling through Toll-like receptors
(Mastri et al., 2012). Similarly, pre-stimulation of MSCs
with anti-inflammatory factors such as TGF-β reversed the
immunosuppressive effect of MSCs and conferred a pro-
inflammatory phenotype (Xu et al., 2014). It has been
suggested that in vitro pre-stimulation of MSCs with appropriate
pro-inflammatory factors (pre-licensing) may obtain optimal
therapeutic effects in vivo (Boland et al., 2018; Naji et al., 2019).
IFN-γ is the most commonly used cytokine for pre-licensing or
priming. While IFN-γ pre-licensing enhances IDO expression
of cryopreserved human MSCs in vitro, surprisingly these pre-
licensedMSCs lose effectiveness in vivo; they rescued fewer RGCs
than either fresh or unlicensed cryopreserved MSCs in a mouse
model of retinal ischemia/reperfusion injury (Burand et al.,
2017). While MSCs licensed with IFN-γ are known to increase
expression of immunosuppressive factors, the expression of
MHC-I and MHC-II molecules was also enhanced in the surface
of these cells, which may induce strong immune rejection
(Ankrum et al., 2014a). Further investigations are needed to
optimize the pre-licensing procedures (Boyt et al., 2020).
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D-Immune Rejection and MSC Transplantation
As most clinical applications of MSCs in the retina are allogeneic
transplantations, immune rejection is an issue that needs to
be considered. The vitreous cavity and subretinal space are
advantageous for stem cell transplantation as they are immune
privileged (Mead et al., 2015). The low immunogenicity and
immunosuppressive property of MSCs also reduce the chance of
immune rejection (Li et al., 2015).

Indeed, several pre-clinical studies injecting human MSCs
into the eyes of rodent disease models (xenotransplantation)
without using immunosuppressant have not observed obvious
rejection (Lund et al., 2007; Tzameret et al., 2014; Li et al., 2016a;
Elshaer et al., 2018). Subretinally administered human adult
bone marrow-derived somatic cells (hABM-SCs) can achieve
similar therapeutic benefits to protect the rods with or without
cyclosporine A in the RCS rats (Lu et al., 2010). Interestingly,
these effects do not require the cells to survive for a long period
of time (Lu et al., 2010). This observed therapeutic benefit
in the absence of long-term survival of transplanted cells is
consistent with the so-called hit-and-run mechanism, mediated
by the production of exosomes or secretion of trophic and
immunomodulatory factors during the initial days following
MSC injection (Von Bahr et al., 2012; Ankrum et al., 2014b) and
may also be related to the immunomodulation effects mediated
by apoptotic MSCs (Galleu et al., 2017).

However, immune privilege of the subretinal space and
vitreous is determined by the retinal microenvironment and the
integrity of BRB, which may be disrupted by RDDs or surgical
procedures (Jiang et al., 1993). It has also been demonstrated that
MSCs, like all somatic tissues, express MHC class I molecules
constitutively and have the ability to express MHC class II when
exposed to inflammatory cues such as INF-γ (Galipeau and
Sensébé, 2018). Indeed, several studies used immunosuppressive
drugs after subretinal transplantation of MSCs and showed that
these treatments are efficacious in the prevention of immune
rejection and increase the survival rates of MSCs, indicating
that immune rejection does exist in these immune-privileged
tissues (Francis et al., 2009; Xian and Huang, 2015). It is still
controversial whether or not immunosuppression should be used
after MSC transplantation; it may depend on the integrity of the
RPE layer and BRB (Xian and Huang, 2015). If the RPE layer or
BRB is intact, immune suppression is not necessary; if not, as in
the RDDs, an immunosuppressant is needed (Oner et al., 2016).
While it is not clear if extended MSC persistence or immune
tolerance to MSCs will translate to a sustained therapeutic effect
and improve clinical outcomes, conventional wisdom suggests
that the beneficial effects of MSC therapy could be boosted by
extending their persistence after injection (Ankrum et al., 2014b).
In order to minimize cell rejection until the BRB is reestablished,
many clinical trials of allogeneic MSC application for retinal
diseases required systemic immunosuppressive therapy for the
first 2–3 months after cell transplantation surgery (Oner et al.,
2016; Park et al., 2017). However, the Palucorcel clinical trial
(clinicaltrials.gov identifier NCT01226628) has no protocol-
specified systemic immunosuppression included in the study,
and no apparent effect of treatment was observed in the study
(Ho et al., 2017; Heier et al., 2020).

CHALLENGES FOR MSC THERAPIES OF
RDDs

Early encouraging pre-clinical animal results in the therapeutic
use of MSCs have prompted great interest in exploring their
potential for promoting retinal cell survival and modulating
retinal inflammation. There are currently many MSC clinical
trials for retinal diseases around the world (Shen, 2020; Singh
et al., 2020). While the safety profiles shown in clinical trials
are generally promising, some outcomes of advanced clinical
trials have fallen short of expectations (Heier et al., 2020).
Overenthusiasm and optimism surrounding stem cell therapies
have also caused a surge in for-profit “stem cell” clinics globally,
forming a direct-to-consumer marketplace for autologous stem
cell interventions (Turner, 2018; Nirwan et al., 2019; Hwang et al.,
2020). These clinics are run without the oversight of regulatory
agencies and offer scientifically unproven retinal cell therapy
products, which are not prepared in a standard and rigorous
manner (Shen, 2020). The surgical procedures involved in the
delivery ofMSCs to vitreous, subretinal space, or periocular space
also have significant risks, such as retinal detachment, PVR, and
retinal perforations (Singh et al., 2020). Overall, there are still
challenges with regard to the heterogeneity in the MSC product
and the routes of delivery for MSCs (Galipeau and Sensébé, 2018;
Shen, 2020; Singh et al., 2020).

Overcoming the Heterogeneity in the MSC
Product
MSCs are an inherently heterogeneous population of cells whose
therapeutic potency varies with the characteristics of the donor,
tissue of origin, isolation method, and in vitro preparation
methods (e.g., cell culture protocol and scale-up). The common
sources of MSCs for clinical trials of retinal degeneration therapy
are bone marrow (BM) stem cells (Cotrim et al., 2017; Park
et al., 2017), adipose-derived MSCs (ASC) (Oner et al., 2016,
2018) and umbilical cord-derived MSCs (such as UC-MSC or
palucorcel) (Heier et al., 2020). They differ in the ease and
efficiency of harvesting, proliferative ability and senescence,
and paracrine activities, which greatly affect their therapeutic
potency (Fričová et al., 2020). For example, BM aspirate is
difficult to harvest and contains only 0.001–0.01% MSCs in
the overall cell population; an intensive culturing process to
expand the MSCs is required for clinical use. ASCs can be
harvested easily from a small area under local anesthesia—an
ASC harvest obtains a 500 times greater yield of MSCs than
an equivalent amount of BM aspirate; thus, ASCs are a better
source for autologous clinical use. UC-MSC harvesting is the least
invasive and can produce a large amount of MSCs which can
minimize the need to extensively expand the cells for allogenic
use. In general, UC-MSCs proliferate faster than ASCs, and ASCs
proliferate faster than BM-MSCs. UC-MSCs, ASCs, and BM-
MSCs have been found to have senescence landmarks starting
at passage 16, 8, and 7, respectively. Senescence can influence
the therapeutic effectiveness, number, and maximum lifespan
of the MSCs. ASCs have a relatively low secretion rate of pro-
angiogenic molecules and cytokines, and thus they might be

Frontiers in Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 617377

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lin et al. Mesenchymal Stem Cells and Retinal Degeneration

less suited to suppressing inflammation. UC-MSCs can secrete
more angiogenic, neuroprotective factors, which make them an
attractive option in RDD therapy. The potential concern for
UC-MSC transplantation is that, as a type of non-neuronal or
non-terminally differentiated cell, they may retain a capacity
for continued proliferation inside the eye after transplantation
(Fričová et al., 2020; Singh et al., 2020).

The obvious heterogeneity of the MSC product introduced
during the manufacturing process emphasizes the need for
characterizing and controlling the therapeutic potency of MSCs.
Quality control protocols to standardize MSC product potency
can reduce the risk of clinical failure (Trivedi et al., 2019). The
most widely used potency assay for the MSC product is based
on in vitro inhibition of T cell proliferation using activated
CD4+ T cells (Bloom et al., 2015). While potency assays may
improve product quality by excluding MSCs with low potential
therapeutic efficacy, alternative strategies are needed to generate
high-quality MSCs in sufficient quantities for large clinical trials
(Levy et al., 2020).

In order to overcome MSC product heterogeneity and
generate homogeneous, standardized high-quality MSCs,
human-induced pluripotent stem cell (iPSC)-derived MSCs have
been proposed as an unlimited source of cells for therapeutic
applications in regenerative medicine. These cells possess
better cell quality with batch-to-batch consistency and higher
proliferative potential and display stronger immunomodulation
effects (Zhang et al., 2012; Sabapathy and Kumar, 2016).
CymerusTM iPSC-MSCs significantly prolong survival in a
pre-clinical humanized mouse model of graft-vs-host disease
(GVHD) (Ozay et al., 2019). Good manufacturing practice
(GMP)-grade iPSC-MSCs have already been used in clinical
trials for refractory GVHD (Bloor et al., 2020). The iPSC-
MSC approach serves as an excellent solution for scaling
MSC manufacturing without sacrificing therapeutic potency
through the passage and expansion of cells. One major
concern regarding iPSC-MSCs is that the viral vector-based
strategy for reprogramming might present a potential for
tumorigenic transformation. However, recent developments in
non-viral-based technologies, such as non-integrating episomal
plasmid-based reprogramming (Slamecka et al., 2016), might
present safer strategies for the generation of iPSC-MSCs suitable
for use in a clinical setting (Sabapathy and Kumar, 2016). Human
embryonic stem cells and iPSCs have already been extensively
investigated for use as potential retinal stem cell treatments
(Takagi et al., 2019); GMP-grade iPSC-MSCs may improve the
efficacy of cell therapy for retinal degeneration.

Another strategy to overcome MSC product heterogeneity is
using primedMSCs or boosting the innate therapeutic efficacy by
other bioengineering methods (Levy et al., 2020). For instance,
using a medium-based approach (similar to pre-licensing),
MSCs can be induced to secrete elevated levels of neurotropic
factors, including GDNF, BDNF, VEGF, and HGF, which
have been shown to have protective effects in animal models
of neurodegenerative diseases (Gothelf et al., 2014). When
administered to patients with neurodegenerative diseases, these
primed MSCs have been demonstrated to simultaneously deliver
multiple neurotrophins and immunomodulatory components

(Gothelf et al., 2017). While some pre-clinical studies have
shown promising results of primed MSCs for RDDs, such as
erythropoietin (EPO)-expressed rat MSCs (Guan et al., 2013),
BDNF-expressed MSCs (Levkovitch-Verbin et al., 2010; Harper
et al., 2011), it remains to be seen whether or not these engineered
MSCs improve therapeutic outcomes in a clinical setting.

Optimization of Delivery Methods
A pre-clinical study indicated that systemically administered
MSCs did not migrate to the injured eyes and had no effects on
RDDs, as they are trapped in lung capillary beds (Johnson et al.,
2010; Ge et al., 2014). Thus, local administration is the major
route of delivery of MSCs for RDD therapy, as this route can
deliver paracrine factors directly to the retina. Most clinical trials
use intravitreal or subretinal transplantation, but subtenon’s or
retrobulbar injections are also used in the non-FDA registered,
patient-funded clinical trial “Stem cell ophthalmology treatment
study (SCOTS)” (Singh et al., 2020). It is imperative that the
transplantation techniques have a reasonably low risk, so that the
safety and efficacy of the MSCs can be evaluated properly.

Subretinal injection allows direct contact of the host and
MSCs, but the injection procedure may disturb the retina. There
are two main surgical approaches, internal and external. The
internal approach requires an initial vitrectomy, after which a
small-gauge needle is introduced into the eye via the pars plana
and is passed through a retinotomy at the injection site and the
cell suspension is deposited in the subretinal space near the fovea.
The external approach involves subretinal delivery of cells via
a cannula delivered outside the eye through the suprachoroidal
space. This technique avoids exposure of the cells to the vitreous
cavity but can induce retinal perforation and detachment (Ho
et al., 2017). These severe adverse effects (retinal detachment or
perforation) can be avoided by optimizing the procedures, as
shown in a phase 2b study (Heier et al., 2020).

The intravitreal delivery approach is straightforward and
widely used in anti-VEGF therapy in the ophthalmic clinics. The
MSCs are injected as a suspension into the vitreous cavity via
a needle through the pars plana. The cells do not gain access
to the subretinal space and remain in the vitreous. Cellular
cluster formation in the vitreous occurred in some cases of
MSC intravitreal injection (Tzameret et al., 2014). As MSCs
generally do not integrate into the retina, intravitreal injection
is safer than subretinal injection. However, MSCs injected into
vitreous cavity can still cause secondary glaucoma, epiretinal
membrane and PVR (Kuriyan et al., 2017; Park et al., 2017;
Khine et al., 2020). MSCs may locate on the retinal surface and
differentiate improperly into myofibroblast-like cells which may
induce fibrosis, PVR, and tractional retinal detachment; they can
also increase oxygen demand, inducing ischemic microvascular
changes and subsequent ocular neovascularization (Kuriyan
et al., 2017; Khine et al., 2020). There are no definitive answers
about which delivery approach leads to the best therapeutic effect.
Thus, these surgery-related severe adverse effects will need to be
carefully monitored in clinical trials.

Both intravitreal and subretinal injection can disturb the
host BRB and expose the grafted cells to the host retinal
immune system and thus raise concerns about long-term donor
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cell survival. Indeed, both the retention and survival of MSCs
following local administration are important factors affecting
the therapeutic outcome (Levy et al., 2020), despite pre-clinical
study suggesting that the therapeutic potency to protect the
retinal cells is not dependent upon the long-term survival of
the donor cells (Lu et al., 2010). Nevertheless, multiple strategies
have been investigated to improve the local administration of
MSCs, including priming MSCs in vitro (Levy et al., 2020).
For example, hypoxic priming upregulated the expression of
prosurvival factors such as hypoxia-inducible factor 1, which
can help MSCs adapt to the typically hypoxic disease site (Hu
et al., 2008). Similarly, human MSCs from Wharton’s jelly
(hWJMSCs) expressing erythropoietin enhance the survival of
retinal neurons against oxidative stress (Shirley Ding et al.,
2018). Using biomaterials to encapsulate MSCs is another
promising strategy to overcome challenges associated with local
administration (Führmann et al., 2016). For example, HGF-
overexpressing MSCs in a synthetic peptide-based hydrogel
survived much longer and showed superior reduction in scar
formation compared with native MSCs (Wu et al., 2017). It will
be interesting to test these strategies in the MSC clinical trials for
RDDs treatment in the future.

CONCLUSIONS

Retinal degeneration diseases are a leading cause of blindness
worldwide and there is no effective treatment. MSCs can be
easily isolated from multiple tissues and have shown promise
in treating many diseases by restoring organ homeostasis
in inflamed, injured, or diseased tissues. Pre-clinical animal

studies suggested that their trophic and immunomodulatory
properties can protect retinal neurons and enhance the function
of retinal pigment epithelium cells from an array of retinal
degeneration diseases. Recent clinical trials have demonstrated
promising safety profiles for the application of MSCs in retinal
diseases and have provided valuable data for future exploration.
However, significant complications that arise from poorly
designed clinical trials, questionable practices or regulatory
shortcuts could substantially hinder research in MSC-based
retinal therapies. Nevertheless, MSCs have great therapeutic
potential for the treatment of retinal degeneration. A better
understanding of the interaction between MSCs and host retinal
degenerative environments is the key to yield an optimal
benefit. Overcoming the heterogeneity in the MSC product and
optimizing ocular surgical delivery to avoid adverse sequela
are major challenges to translational use of MSCs to treat
retinal degeneration.
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