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Integrin-dependent and -independent
MMP-9 and uPAR signaling plays a

key role in glioma cell migration and
invasion. In this article, we comment on
all the possible pathways and molecules
associated with MMP-9- and uPAR-
mediated glioma cell migration with a
special emphasis on integrins, a family of
cell adhesion molecules. Our recent
research investigations highlighted the
substantial benefit of silencing both
MMP-9 and uPAR together compared
with their individual treatments in
glioma. Simultaneous knockdown of both
MMP-9 and uPAR regulated a majority
of the molecules associated with glioma
cell migration and significantly reduced
the migration potential of glioma cells.
Our results point out that the bicistronic
construct, which can simultaneously
silence both MMP-9 and uPAR offers a
great therapeutic potential and is worth
developing as a new drug for treating
GBM patients.

Cancer cell migration and invasion are
initial steps in metastasis, which is a
primary cause of cancer-related death.
Strategies to treat infiltrating gliomas, such
as chemotherapy and gene therapy, have
remained largely unsuccessful and the
property that makes glioma resistant to
treatment is the tendency of the tumor
cells to invade normal brain tissue.1

Approximately 60% of all primary brain
tumors in adults are malignant gliomas
(anaplastic astrocytoma, anaplastic oligo-
dendroglioma and glioblastoma multi-
forme). Glioblastoma multiforme (GBM)
is the most common and highly aggressive
malignant neoplasm of the central nervous

system. GBM cells secrete matrix metallo-
proteinases (MMPs). A significant correla-
tion between MMP-9 levels and the
histological grade of malignancy has
already been reported.2-5 Our recent
studies clearly demonstrated the role of
MMP-9 and the associated molecular
mechanisms in cancer cell migration.6-9

In the context of cell motility, the
extracellular matrix (ECM) is both a
requirement and a physical barrier for cell
movement. The ECM provides physical
support and organization to tissues. It is a
complex assembly of proteins and poly-
saccharides that are secreted, assembled
and modeled by cells. A well-defined brain
ECM exists in the form of a true basement
membrane, cerebral vasculature and the
glial limitans externa. The cerebral vascular
basement membrane, which surrounds the
blood vessels of the brain, contains type-IV
and type-V collagens, laminin, fibronectin
and heparan-sulfate proteoglycans.10 Type
IV collagen and laminin, which are mainly
present in the capillaries and large blood
vessels, are the main constituents of most
basement membranes. Laminin describes a
large group of adhesion glycoproteins that
are found in all basement membranes and
in hyperplastic blood vessels in gliomas,
gliosarcomas and meningiomas, as an
integral part of the glial limitans externa.
Fibronectin is found at the gliomesench-
ymal junction of tumors and in tumor-
associated blood vessels. Advanced stages
of glioblastoma have been shown to
express vitronectin, a component of the
ECM that is usually absent from normal
brain and early-stage gliomas. Tenascin-C,
another ECM proteoglycan, is synthesized
by glial and neural-crest cells, as well as by
satellite cells of the peripheral nervous
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system. Cells express plasma membrane
receptors such as integrins, a family of cell
adhesion molecules that bind to ECM
components. Cell migration therefore
often involves the coordination of ECM
proteolysis, adhesion and signaling.
Integrins are involved in interactions
between the cell and the surrounding
ECM and play a central role in cell
migration. Integrins expressed in tumor
cells contribute to tumor progression and
metastasis by increasing tumor cell migra-
tion, invasion, proliferation and survival.11

Interactions between integrins expressed
by glioma cells and the ECM and the
activity of MMPs form the basis for glioma
cell migration and invasion.12

Similar to MMP-9, the expression of
urokinase-type plasminogen activator
receptor (uPAR) is much more robust in
high-grade than in low-grade human
gliomas.13 Localization of uPAR mRNA
in astrocytoma cells and the endothelial
cells within brain tumor tissue has been
reported.13 uPAR regulates proteolysis by
binding the extracellular protease uPA and
also activates many intracellular signaling
pathways.14 Coordination of uPAR with
ECM proteolysis and cell signaling under-
lies its important function in cell migra-
tion, proliferation and survival. The most
important transmembrane receptors asso-
ciated with uPAR signaling are the integrin
family of ECM receptors. Integrins are
essential uPAR signaling co-receptors and
the interactions between uPAR-β1 and
uPAR-β3 have an important role in
signaling for cell migration and invasion.14

uPAR localizes to integrin-containing
adhesion complexes and co-immunopreci-
pitates with integrins and integrin-asso-
ciated signaling molecules such as FAK
and Src family kinases.15-21 uPAR-β1
integrin interactions are associated with
the activation of FAK and ERK, whereas
uPAR-β3 integrin interactions are asso-
ciated with the activation of Rac.14 uPAR-
β1 integrin signaling to ERK and Src
increases the expression of uPA and
MMPs through AP1 transcription fac-
tors.22-24 Although the activation of ERK
by uPAR has been considered primarily to
promote cell proliferation or protease
expression, myosin light chain kinase
(MLCK), the cytoplasmic ERK target
can regulate cell motility. uPAR signaling

activates MLCK and contributes to induc-
tion of cell motility in human tumor
cells.25 uPAR-β3 integrin interaction has
an important role in signaling for cell
migration through activation of the Rho
family small GTPase Rac. Blockade of the
uPAR function in tumor cell lines inhibits
Rac activation and cell motility, whereas
ectopic expression of uPAR drives Rac
activation.14 uPAR and integrin-driven
activation of Rac allows assembly of
filamentous actin (F-actin)-containing
membrane protrusions that extend the
leading edge of the cell forward, while
pericellular proteolysis removes ECM
barriers that would impede the extension
of these protrusions.

Upregulation of a2β1, a3β1, a5β1,
aVβ3 and a6β1 integrins on GBM have
already been reported.26,27 Collagens,
fibronectin, laminin, vitronectin, invasin,
osteopontin, prothrombin and thrombos-
pondin serve as extracellular ligands for
these integrins.28 It was recently found that
a9β1 integrin played a significant role in
the progression of glioblastoma.29 Integrin
a9β1 is classified within a two member
sub-family of integrins highlighted in part
by its specialized role in cell migration.30

Tenascin is a ligand for a9β1 integrin.
a9β1 has distinguished its functionality
from other integrins by facilitating accel-
erated cell migration.31 Unlike other
integrin heterodimers, a9β1 was able to
both increase cell migration and inhibit
cell spreading.32,33 Our recent studies
clearly demonstrated the role played by
a9β1 integrin in glioma cell migration.6,8

a9β1 ligation can activate signaling
through Src and FAK-mediated tyrosine
phosphorylation of multiple proteins
including p130Cas and paxillin.33,34

Unlike other integrins, a9β1 has been
proposed to utilize inducible nitric oxide
synthase (iNOS)-nitric oxide (NO) and
spermidine/spermine acetyl transferase
(SSAT)-inward rectifier potassium channel
(Kir) pathways along with common integ-
rin signaling proteins such as Src and FAK
to transduce cell migration.30

Recently, we have reported the physical
interactions that exist among uPAR,
MMP-9, β1 integrin, a9 integrin and
SSAT in the context of glioma cell
migration.8,35 Cooperation between
MMP-9 and integrins is known to activate

aVβ3, which strongly enhanced tumor
migration.36 Further, uPAR knockdown in
glioma cells reduced the expression of
aVβ3 and associated glioma cell migra-
tion.37 Although the interaction of uPAR
with integrins is well reported by several
investigators, the physical association of
MMP-9 with these molecules remains
unclear. In addition to mediating glioma
cell migration via integrins, MMP-9 acts as
a processing enzyme for CD44 cleavage.9

CD44 is a single chain, transmembrane
glycoprotein that is widely expressed in
physiological and pathological conditions.
CD44 is implicated in cell-cell and cell-
matrix adhesion, migration and signaling.
CD44 expression is prominent in GBM
tissue samples.9 In addition, we noticed a
strong physical interaction betweenMMP-9
and CD44. Direct interaction of MMP-9
with CD44 promotes cleavage of the later
into extracellular and intracellular domains
that are involved in glioma cell migration
and adhesion, respectively. It was suggested
that the cleaved extracellular domain of
CD44 induces cell crawling at the leading
edge on a hyaluronic acid matrix, along with
lamellipod extension which induces mech-
anical stretching of cells, triggering extra-
cellular calcium ion flux through stretch-
activated calcium channels.38 MMP-9
knockdown in these glioma cells inhibited
MMP-9-mediated proteolytic cleavage of
CD44. Therefore, the reduced glioma cell
migration after MMP-9 knockdown could
also attribute to the inhibition of CD44
cleavage. In this scenario, it appears that the
simultaneous knockdown of both MMP-9
and uPAR offers a substantial reduction in
cancer cell migration compared with their
individual knockdowns.

In the recent past, we reported that the
transcriptional inactivation of both MMP-
9 and uPAR in combination by shRNA-
mediated gene silencing offered a prom-
inent and significant reduction in glioma
cell migration and invasion.6 The reduced
glioma cell migration could be attributed
to the regulation of several pathways and
molecules associated with cell migration,
which are downstream to both MMP-9
and uPAR (Fig. 1). MMP-9 and uPAR
knockdown in glioma cells reduced FAK,
Src and F-actin expressions.6 In addition,
the combined inhibition of MMP-9 and
uPAR reduced SSAT expression in glioma
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cells that results in the elevated intracel-
lular levels of spermidine and spermine
with subsequent blockade of Kir 4.2
potassium channel.8 Although the study
revealed the involvement of SSAT-pot-
assium channel pathway in glioma cell
migration mediated by MMP-9 and

uPAR, we failed to show that it is directly
mediated via a9β1 integrin. However, in
our earlier study, we could show that the
blockade of a9β1 integrin significantly
inhibited the increased migration potential
of glioma cells in MMP-9/uPAR over-
expressed cells. Although part of the

inhibition in migration potential after
a9β1 integrin blockade is attributed
to SSAT-potassium channel pathway
involvement, we cannot rule out the
possibility of a9β1-iNOS pathway involve-
ment in MMP-9-/uPAR-mediated glioma
cell migration. Our future studies will
elucidate the significance of a9β1-iNOS
pathway involvement in MMP-9-/uPAR-
mediated cancer cell migration. In addition
to the regulation of cancer cell migration
and invasion, combined inhibition of
MMP-9 and uPAR by gene silencing
technology reduced glioma cell prolifera-
tion, tumor growth and angiogenesis and
induced apoptosis.6,8,39-42 Taken together,
simultaneous inhibition of MMP-9 and
uPAR by plasmid shRNA construct (pMU
orMU-sh) significantly inhibited cancer cell
migration by controlling all the possible
mechanisms, and this construct appears to
have a great therapeutic potential to develop
as a new drug for treating GBM patients.
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